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Abstract. In view of the meaning of ruled surfaces in aesthetics, statics, scale and manufacturing tech-
nologies, we point out the possibility of a mathematical analysis in the case of infinitesimal deformations
by considering the rigidity of surfaces. In case of bendable surfaces it is useful to discuss the variation
of magnitudes such as the shape operator. The shape operator is a good way to measure how a regular
surface S bends in R3 by valuation how the surface normal ν changes from point to point. In this work
we consider variations of the shape operator, the normal curvature and the principal curvatures of helicoid
under infinitesimal bending of the surface.

1. Introduction

Ruled surfaces have wide application in civil engineering and architecture, but in many other sciences,
too. The simplicity of production and very rich spectrum of shapes are the main reason for application of
this kind of surfaces. Since DNA molecules is often studied as a double helix model, in this work we will
consider curvature based functional variations of helicoid under infinitesimal bending.

Ruled surfaces and conoids were a subject of investigation of numerous books and papers from different
point of view: [1], [8], [9], [10], [11], [12], [13], [19], [24].

Since the shape is an important feature of objects and can be immensely useful in characterizing objects,
we point out the shape analysis considering the variation of quantities that characterize the shape itself.
Fundamental functionals that measure the bending of a surface, are the shape operator, as a vector function,
the normal curvature, as a real-valued function, with the principal curvatures as its extreme values.

Variation of some geometric magnitudes under infinitesimal bending was considered in [4], [5], [6], [7],
[18], [19] and [21]. Gaudi surfaces at small deformations were analized in [14] and [16]. Aplication and
variation of shape operator under infinitesimal bending of surface were considered in [15] and [20]. The
variation of the Willmore energy under infinitesimal bending of a surface was studied in [17]. Infinitesimal
bending field of DNA helices was determined in [22]. Curves on ruled surface under infinitesimal bending
were presented in [23].
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2. Preliminary of Curvature Based Functions

Two rudimentary ways to characterize the shape of a surface S are to consider how the unit normal v
behaves as we move around and to compare S to a sphere. The former of these methods is accomplished
using the shape operator. It is a linear operator that calculates the bending of surface S. The calculus of
variations studies the extreme and critical points of functions. It has its roots in many areas, from geometry
to optimization to mechanics.

2.1. Shape Operator and Curvatures

Shape operator is a linear operator that calculates the bending of surface S. Marc L. Irons said that
everything you had could want to know about a surface’s curvature was locked up in the shape operator.
The linear operator, the shape operator, applied to a tangent vector vp is the negative of the derivative of ν
in the direction vp.

Definitions and preliminary of shape operator and curvature based functions are given in [20].

Definition 2.1. Let S ⊂ R3 be a regular surface, and let ν be a surface normal to S defined in a neighborhood of a
point p ∈ S. For a tangent vector vp to S at p we put

S(vp) = −Dvν. (1)

Then S is called the shape operator.

The shape operator of a plane is identically zero at all points of the plane. For a nonplanar surface, the
surface normal νwill twist and turn from point to point, and Swill be nonzero.

Now, we will show how to express the shape operator in terms of the coefficients of the first E,F,G and
the second L,M,N fundamental form, in next Theorem that is proved in [1].

Theorem 2.2. (The Weingarten equations) Let r : D→ R3,D ⊂ R2 be a regular surface. Then the shape operator S
of r is given in terms of the basis {ru, rv} by

{
−S(ru) = νu =

MF−LG
EG−F2 ru +

LF−ME
EG−F2 rv,

−S(rv) = νv =
NF−MG
EG−F2 ru +

MF−NE
EG−F2 rv.

(2)

While the shape operator is vector function that measures the bending of a surface, normal curvature is
a real-valued function that does the same thing.

Definition 2.3. [1] Let up is the tangent vector of regular surface S ⊂ R3 that is ∥up∥ = 1. Then the normal
curvature of S in direction up will be equal:

kn(up) = S(up) · up. (3)

In general case, if vp is an arbitrary non-zero tangent vector of S in p ∈ S, then

kn(vp) =
S(vp) · vp

∥vp∥
2 . (4)

Normal curvature can be expressed as in [18]:

Lemma 2.4. The normal curvature of S at a given point p ∈ S, in direction of tangent vector (u(t))s, can be expressed
in form:

kn(t) = L cos2 t + 2M sin t cos t +N sin2 t, (5)

where (u(t))s represents all directions: (u(t))s =

(
cos t
sin t

)
s

, t ∈ [0, 2π) and index s presents a vector in standard base

{xu, xv}: (xu)s = (1, 0), (xv)s = (0, 1).
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The principal curvatures measure the maximum and minimum bending of a regular surface S at each
point p ∈ S.

Definition 2.5. Let S ⊂ R3 is regular surface and p ∈ S. The maximal and the minimal value of normal curvature
kn of S at point p we call the principal curvatures of S at point p and denote k1 and k2.

2.2. Connections among the curvatures

Among the curvatures and shape operator there are some connections.

Definition 2.6. Gaussian and mean curvatures are the functions K,H : S→ R defined as:

K(p) = det(S(p)) , H(p) =
1
2

tr(S(p)) . (6)

Theorem 2.7. Let k1 and k2 are the principal curvatures of regular surface S ⊂ R3. Gaussian curvature of surface S
is in form:

K = k1k2 . (7)

Mean curvature of surface S is in form:

H =
1
2

(k1 + k2) . (8)

Depending on the sign of curvatures, there are four types of surface points.

Definition 2.8. Let p is a point of regular surface S ⊂ R3. The point p is:

• p is elliptic if K(p) > 0 (k1k2 > 0);

• p is hyperbolic if K(p) < 0 (k1k2 < 0);

• p is parabolic if K(p) = 0 and S(p) , 0 (k1 = 0 ∨ k2 = 0);

• p is planar if K(p) = 0 and S(p) = 0 (k1 = k2 = 0).

2.3. The Main Types of Conoid Surfaces

Definition 2.9. Ruled surface S ⊂ R3 is surface which contains at least one 1-parameter family of straight lines.
Thus, a ruled surface has a parameterization r : D→ S of the form:

r(u, v) = α(u) + vγ(u), (9)

where α and γ are curves in R3 with α′ , 0.We call r a ruled patch, the curve α is called the directrix or base curve
of the ruled surface, and curve γ is called the director curve. The rulings of the ruled surface are the straight lines

v→ α(u) + vγ(u), (10)

A ruled surface is called a conoid if it can be generated by moving of straight line parallel to a plane,
intersecting a fixed straight line-axis of conoid and a fixed basic curve α(u).

The main kinds of conoid surfaces are hyperbolic paraboloid, helicoid, Plucker’s conoid, generalized
Plucker’s conoid, cononeus or conical edge of Wallis, and sinusoidal conoid - famous as Gaudi surface,
considered in [12], [14], [16].

In this work, we considered the helicoid, by calculating the curvatures and their variations and pointed
out vanished curvatures.
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3. Curvatures of Helicoid

Using the next parametrization for helicoid surface,

r(u, v) = (u, v, c arctan
v
u

) , (11)

we can expressed the curvatures and its variation under the infinitesimal bending of the surface.
Using the parametric equation (11) and calculating the coefficients E,F,G,L,M,N, we can get:

S =
1

1
3
2

(
uv(2u2 + 2v2 + 1) v4

− u4 + v2

v4
− u4

− u2
−uv(2u2 + 2v2 + 1)

)
, (12)

where 1 = (u2 + v2 + 1)(u2 + v2) .
Also, the normal curvature of helicoid is equal to expression:

kn(t) =
1

(10)
3
2

(
u0v0(2u2

0 + 2v2
0 + 1) cos2 t + (v2

0 − u2
0)(2u2

0 + 2v2
0 + 1) sin t cos t−

− u0v0(2u2
0 + 2v2

0 + 1) sin2 t
)
,

(13)

where 10 = (u2
0 + v2

0 + 1)(u2
0 + v2

0) .
At points with v0 = 0 the normal curvature of helicoid is equal:

kn(t) = −
2u2

0 + 1

u0(1 + u2
0)

3
2

sin t cos t . (14)

4. Variation of Curvatures of Helicoid

Using the basics of infinitesimal banding of a surface according to [4] and [7], as well as the standard
machinery of differential geometry [26], it can be get the field of infinitesimal bending of helicoid.

Since we consider a regular surface S , parameterized by:

r(u, v) = (u, v, f (u, v)) , (15)

and infinitesimal bending field by:

z(u, v) = (ξ(u, v), η(u, v), ζ(u, v)), (16)

we used the parametrisation of helicoid given with:

r(u, v) = (u, v, c arctan
v
u

) . (17)

The field of infinitesimal bending of helicoid was determined in [22] and given with expression:

z(u, v) =
(
u(1 − 2 ln |u|) sin v + c1, u(ln |u| − 1) cos v + c2, c3

)
, (18)

for c = 1.
According to [22], we can also consider the variation of DNA helices or, more precisely the flexibility

of DNA molecule, i.e. the flexibility of double helix in infinitesimal bending theory. In that sense, we can
present the parametric lines of helicoid.
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Figure 1: u and v parametric lines of DNA molecule

4.1. Shape operator under the infinitesimal bending of helicoid

Using the standard machinery of differential geometry [26] we can get that the coefficients of the first
and the second fundamental form (see [21]) of surface Sϵ. In [15] the variation of the shape operator of
surface under infinitesimal bending was calculated. Since, from the bending field, ζ = 0 , we get:

Lemma 4.1. Variation of shape operator under infinitesimal bending of helicoid:

δS(ru) =
1

1
3
2

(
uv(2u2 + 2v2 + 1) zu + (v4

− u4 + v2) zv

)
,

δS(rv) =
1

1
3
2

(
(v4
− u4

− u2) zu − uv(2u2 + 2v2 + 1) zv

)
,

(19)

where 1 = (u2 + v2 + 1)(u2 + v2).

4.2. Normal curvature under the infinitesimal bending of helicoid

Using the expression of variation of normal curvature and proved corollary in [18]:

Corollary 4.2. Variation of the normal curvature of a surface under infinitesimal bending will be equal zero if the
third coordinate of bending field z is linear function.

We can conclude:

Lemma 4.3. Variation of normal curvature under infinitesimal bending of helicoid is equal zero.
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4.3. Principal curvatures under the infinitesimal bending of helicoid

Also, from the same work [18], according to variation of principal curvatures and corollary:

Corollary 4.4. Variation of the principal curvatures of a surface under infinitesimal bending of a surface, will be
equal zero if the variation of the mean curvature vanishes.

And it is expressed:

δH=
(1 + f 2

u )ζvv − 2 fu fvζuv + (1 + f 2
v )ζuu

2
√

1 + f 2
u + f 2

v

.

Since,

ζ = 0 ⇒ δH=0 ,

there is conclusion:

Lemma 4.5. Variation of principal curvatures under infinitesimal bending of helicoid is equal zero.

4.4. Kinds of points under the infinitesimal bending of helicoid

Since the Gaussian curvature is stationary under infinitesimal bending of a surface, it is obviously
that elliptic points stay elliptic and hyperbolic points stay hyperbolic. The thing is what happened with
parabolic and planar points under the infinitesimal bending of a surface.

If we suppose that p is parabolic K(p) = 0 and k1 = 0 ∨ k2 = 0, for example, k1 = 0 and k2 , 0.
Then, δK = 0 ⇔ δ(k1k2) = k1δk2 + k2δk1 = 0, and must be δk1 = 0, which means that k̃1 = 0.

The conditions when δk2 will be vanished are given in next Lemma, presented in [20]:

Lemma 4.6. If the variation of the mean curvature vanishes, parabolic point remains parabolic and planar point
remains planar under the infinitesimal bending of the surface.

As it is valid that the mean curvature of helicoid vanishes, parabolic point remains parabolic and planar
point remains planar under the infinitesimal bending of the helicoid.
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