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Abstract. In our work we presented the modified field equations generated by action with unspecified
function f(R). Assuming spherical symmetry, we used the corresponding static Schwarzschild-like metric
in the weak field limit. Also we considered geodesic equations of motion describing orbits and orbital
speeds which can be measured in galactic environment. We solved geodesic equations in the case of a
power-law f(R) theories, that is we set f(R) = f;,R".

1. Introduction

The modified theories of gravity have been proposed like alternative approaches to Einstein theory of
gravity [1-5]. In this work we consider power-law fourth-order theories of gravity [6, 7]. f(R) gravity is a
straightforward extension of General Relativity (GR) where, instead of the Hilbert-Einstein action, linear in

the Ricci scalar R, one considers a power-law f(R) = fp,R" in the gravity Lagrangian [1, 6-11]. In the weak
field limit, a gravitational potential may be written as [6, 7]:

GM r\P 1212 = 7n— 1 — V36m* + 1213 — 83n2 + 501 + 1
®(r) = —22 1+(—) , p= > , (1)
2r Tc 6n> —4n+2

where r. is the scale-length parameter and it is related to the boundary conditions and the mass of the
system and f is a universal parameter related to the power n [7]. For the case n = 1, we obtain f(n = 1) =0,
and the GR is recovered.

In this paper we considered geodesic equations for spherically symmetric static (5SS) metric and power-
law fourth-order theories of gravity f(R) = fo,R". In Section 2 we presented basic properties of SSS metric,
in Section 3 we presented field equations in unspecified f(R) gravity, while in Section 4 we find geodesic
equations in case of power-law fourth-order theories of f(R) gravity, using procedure as proposed in
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references [12-16]. The calculations of orbits and periods in R" gravity are presented in Section 5, then,
Section 6 provides comparison between our numerical results with astronomical observations, while Section
7 is devoted to concluding remarks.

2. General properties in case of SSS metric

We assume metric for static spherical symmetric space [12]:

ds*> = A(r)dt* — B(r)dr* — r*d0* — r* sin® 0d¢?, )

1
where: goo = A, g11 = =B, g = —7?, 933 = —1*sin? 0, gt = g—, g = goog11922933 = —ABr*sin? 0.

up
Cristoffel symbols are [12]: T¢, = dre “ ond _ Y
ristoffel symbols are [12]: zg 7 (Goey + Jove = Jev,s) AN hay = 3 and g0 = g
. 1 dA 1 dA 1 dB
Crystoffel symbols I'%, different from zerlo are: T} = B N =1, = A L= B
r r ,
r, = ~5 I, = “3 sin0, T%,=T% = ~ I, =—sinOcosO, T3, =T3, =ctgh.

Ricci tensor Ry, and Ricci scalar R are expressed:

2 2
Ry =T%,,—T% +T% I —T¢T0 Roo=—idA 1 dAdB l(dA) 1 dA

b = i + Tl = Tl 2 ar i dr dr T 1B \ar) 7B dr”
1 d?2A 1 (dA 2 1 dAdB 1 dB 1 1 dA 1 dB
Ry=—"t - — - = 27— 1, Ry =Rysin?
ne 2A drz  4A2 (dr) 4ABdrdr  rBdr’ 7 "2ABdr " 2p2ar v TR T hmsm o
R = "R —_LdZ_A_FLd_A +Ld_Ad_B+£( _l)+id_B_id_A
=9 R = AB dr?  2BA2\ dr 2AB? dr dr 12 B/ rB2dr rABdr’

3. Field equations and geodesic equations in unspecified f(R) gravity

As an alternative to Einstein-Hilbert action, we assume action in the form: S = f d*xf(R) /=g, where

f(R) is a function of Ricci scalar R. The field equations of unspecified f(R) gravity are [13]: Ry, — % gmé =

1 2f 3 df Ph oh 1
_ AN Z — - _ " - - _Z " o _TrAr A v
U =gulh) 3 R = Fp =l b= Gro hw = 5oas —Thas, k) = n=i (v=a9+0.0).

T L U W L TR LN AR,
AT 92 Uor ~ o2 2Baradr’ A\ 24Bdr ZBZdr dr B o2’ Ve A 1s covaria
derivate.

After some mathematical manipulation given in paper by Sobouti [13] we obtain four field equations [13]:

L1 a (140 1)

Adr Bdr hdrr  2hdr\Adr Bdr)’
LEA_1(104,2)(104 1a8) 2,20 280 (105, )10
Adrr 2\Adr r|\Adr Bdr 2 hdr2 \Bdr r)hdr
1A 1 (dA\" 1 dAdB 21dB _ _f 1dA 2\1dh
ZW__(dr) AR d & rBdr ﬁ‘z(ﬂﬁ ;)W'

2f 3[(1dA 1dB 2\1dh 1d°h
R—T‘[(ﬁa‘ﬁaﬁ)za*ﬁﬁ]- @

)
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4. Geodesic equations in R" gravity

We are solving relativistic equations of motion for massive particles in R” gravity with assumption given
in the paper by Capozzielloetal. [7]: AB=1,h =1.
dxt L A daf
dp>  Pdp dp
equations for the four space-time components: x* = (t(p), r(p), 6(p), p(p)), where p is parameter describing

Geodesic equations for the metric (2) are: = 0. These equations provide differential

the trajectory. Since, the metric is symmetric about 6y = 5 the coordinate system may be oriented so that

the orbit of the particle lies in that plane, and fix the 6 = g [12]. These equations become:

@t VdAdrdr ol LA LB (dr ' p (de o P 2drde
dp>  Adrdpdp ' dp* 2Bdr\dp 2B dr \dp B\dp) 7 dp> rdpdp
. . 1 . . . Ao
From the first equation we get: @ =7 From the third equation we obtain: | = r i const. =

VGML = +/GMa(1 - €2), and using the second equation we finally have:

(dr)z r? (1 Erz) 2t (dr)z_ c? ct c2J? (dr)2_ A? A JPA?
dt]

“or T i gy - ¢ _LpL e Ja
ip) "B\ T )T A \ax B " ABE ErPB’ BT B " 7B (©)

where E and | are constants of the motion and 7 is proper time [12].
' Bd
Also, ds = c2dt” = Edp?, where angle ¢(r) is given by expression: ¢(r) = @(r-)+ f VBdr ,
- 2 E B 1

TR
andr. =(1+e)a A L= (1 - ez) a, where a - semimajor axis, L - semilatus rectum, e - eccentricity. The angle
of orbital precession per revolution is [12]: Ap = 2|p(ry) — @(r-)| — 27

20 GM d
In case of R" gravity, taking into account the following equations: A =1+ = and ® = >, [1 + (rl) },
c

ri)ﬁ] B=1/A.

c

d A B
We also obtained angular velocity w in R" gravity: w = fp_JA_J_JCM _JCMr
at 22 A ek

M
we obtain expressions for functions A and B in R" gravity: A =1 - Py [1 + (

, and orbital velocity:

dr

2
Z =4 c2—A(E+£—2)=vgﬂ,. @)

4.1. The case of Newtonian limit

In polar coordinates (7, ¢), and with respect to the center of mass, we obtain the following EoM:

2 d d
ar i[rz—(p]zo:»rZ—(P

@ = —VO(r), T i i = | = const. (8)

The total energy of the system can be written using the reduced mass 1 [14]:

2 2
d M M
Eu—lp[(dr) +r2(—(P)]—Gm , m m<M= u=m, 9)

T2\ ar dt r Ly
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2By _(dr)' ofdo)) 20M - dr_drdp i ] o= [ (10)
m  |\at dt r . odt dodt  dpr \/21;1, 2GM T

m]J? Rz
It can be shown [17] that the angle of orbital precession per revolution in Newtonian case is: A@ =

20p(r,) — p(r)] — 27 = 0.

4.2. The case p = 0 or the case of Schwarzschild metric

In order to calculate ¢ and A to first order in MG/r we need B(r) to the second order, whereas A(r) will
be needed only to first order [12]. After mathematical manipulations we obtain following relations:

2GM 2GM  4G*M? G*M?
A=1- 2 B=1+ > +W, A(p(O)—6TC]27, (11)
3G2M?
1+e(0 1- ———
(0)cos [(P[ J2c? ” e(0 —-E GM?
- = 7 2 = 2 + 4 7 (12)
r LO LO* Tg To
1 GM _ 2 2 _4G2M2 o
fG- T XO=¢-E f=] (1 aE ) LO=L-2, (13)
where 7 = (rs - Schwarzschild radius).

5. The calculations of orbits and periods in R” gravity

We consider a test particle bound in an orbit around the massive central object. Test particle reaches
its minimum and maximum values r_ and r, at periapsis and apoapsis, respectively. At both points dr/d¢
vanishes, so we obtain equations:

dr 1 o E
ap 0T AT Ea) TR "
From these two equations we obtain two constants of motion:
11 7.2 B r_2
P _A@) AG) _rlrlAG)-A@) E_ Al Ao _ A@)rd - Afor? (15)
2 L _ i CADA) (2= 2 -2 A(r)Ar) (2 —r2)
12 r2

After integration of expression (7) and taking into account constants of motion (15) we obtain the period
of revolution and the angle of orbital precession per revolution in R” gravity given by the Eq. (16):

]f E, B2 1 ]f > A

C

R FrRR
o)) == [ il A Ap=20p() - gl - 2m. (16)

o [aE e a

2 +]2 )
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5.1. Thecase =0

L(0) 3 _ co 1 _1+e(0)cosk ) o
17e(0) VB3 = c+ P L0) . Let us mention here thate(f = 0) = ¢(0)

is given by Egs. (12). Now, we solve integrals I; and I, [18]:

Herewehave: r, =

k r
c; L (0) f dr 2¢,L (0) 1-¢(0) k
L = —— gk = = arctan | ———tan - |, (17)
o (1+e(0)cosk) . r\/(&)z_(l_L)z \/1_6(0)2 /1_6(0)2 2
L(0) r L(0)

k alL (0)2 r dr 1 [C1L (O)Ze (0) sink }

= | —1———dk= - _

. j(; (1 +¢(0) cos k) fr ¢ (0) 2 1 \2 1-e(0)*] 1+e(0)cosk Ly, (8)
i) - o)

Ji=(1+ 2 @by, J(5-0)= (14 2)(hk=m + k=0 - hEk=0 - Lk=0)} (19

The period of revolution in case § = 0 is given by the following expression:

= (14 ) 0P + O .

6. Comparison between calculations and some astronomical observations

T =

L(0) (20)

In this section we compare our calculations with some astronomical observations for S-stars. Tables 1,
2 and 3 present period of revolution (T') and orbital precession (Ag) for S-stars (52, S38 and S55), estimated
for the following three values of 8: § = 0.00001, § = 0.001 and § = 0.01. Value for parameter 7. is taken to be
1,10? and 10* AU, respectively. The observed orbital elements and their uncertainties are taken from Table
3 of [19]:

S2:a=1044.2 + 7.5 (AU); e = 0.8839 + 0.0019; Pyps = 16.00 + 0.02 (yr);
S38: 1 =1178.1 + 1.7 (AU); e = 0.8201 + 0.0007; Pyps = 19.2 + 0.02 (yr);
S55: a =896.9 + 8.3 (AU); e = 0.7209 + 0.0077, Pyps = 12.80 + 0.11 (yr).

Recently, the GRAVITY Collaboration claimed that they detected orbital precession of the S2 star around
the Galactic Center [20] and found that it is close to the corresponding GR prediction which for S2 star is
Ag@ = 0°.201 per orbital period. Also, according to data analysis in the framework of Yukawa gravity model
in the paper [21], the orbital precessions of the 538 and S55 stars are close to the corresponding prediction
of GR for these stars, which are 0°.119 and 0°.106 per orbital period, respectively.

Table 1: Period of revolution (T) in (yr.) and orbital precession (A¢) in (° per orbital period) for S-stars (S2, S38 and S55), estimated for
the following three values of 8: = 0.00001, § = 0.001 and = 0.01. Value for parameter r. is taken to be 1 AU. The observed orbital
elements and their uncertainties are taken from Table 3 of [19].

Name Period of revolution (T) (in yr.) Precession (Ag) (in °)

of star || =0.00001 [ B=0.001 [ f=0.01 || f=0.00001 [ =0.001 | B=0.01
S2 16.04 16.01 15.77 0.189 0.078 -1.045
S38 19.43 19.40 19.10 0.107 0.004 -1.049
S55 12.91 12.89 12.69 0.096 0.00002 -0.978

From the Tables 1, 2 and 3 we can see that period of revolution and orbital precession for S-stars (S2,
S38 and S55) are in good agreement with astronomical observations for very small values of gravitational
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Table 2: The same as in Table 1, but value for

parameter r. is taken to be 102 AU.

Name Period of revolution (T) (in yr.) Precession (Ag) (in °)

of star || = 0.00001 \ B =10.001 \ p=0.01 || p=0.00001 \ B =10.001 \ g =0.01
S2 16.04 16.03 15.96 0.189 0.079 -1.022

S38 19.43 19.42 19.32 0.108 0.004 -1.026

S55 12.91 12.90 12.84 0.096 0.00002 -0.957

Table 3: The same as in Table 1, but value for parameter . is taken to be 10* AU.

Name Period of revolution (T) (in yr.) Precession (Ag) (in °)

of star || f=0.00001 | =0.001 | =0.01 || p=0.00001 | p=0.001 | B=0.01
S2 16.04 16.05 16.14 0.189 0.078 -0.999

S38 19.43 19.44 19.55 0.107 0.004 -1.002

S55 12.91 12.92 12.99 0.096 0.00002 -0.935

8580

parameter f < 0.001. For larger value of § > 0.001 precession takes negative sign, i.e. it is opposite to the GR
precession. Gravitational parameter 7. has smaller influence on period of revolution and orbital precession
for S-stars (52, S38 and S55) and values of 7, are in the range from 1 to 10* AU, which is in agreement with
our earlier findings [10, 11].

7. Conclusions

In this work we presented the modified field equations and solved geodesic equations in the case of a
power-law f(R) theories, i.e. f(R) = fo,R". We assume spherical symmetry and we used the corresponding
static Schwarzschild-like metric in the weak field limit. Also, using geodesic equations of motion we
describe the stellar orbits around Galactic Center, which are measured by observational facilities. We
obtain for § = 0 that the GR is recovered. We show that both parameters § and r. affect the obtained orbital
periods and precessions of S-stars. However, for the studied range of parameters, the influence of 8 is more
noticeable.

Also, our calculations showed a good agreement with the corresponding astronomical observations of
several S-stars. We hope that using this method with geodesics, we can evaluate parameters of alternative
models for a gravitational potential at the Galactic Center with higher accuracy.
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