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Abstract. In this paper we present the ongoing research on connection between digraphs associated to
finite (commutative) rings and quiver representations. Digraph associated to a finite ring A has the set of
vertices V = A2 and arrows (or edges) E =

{(
x, y
)
→
(
x + y, xy

)
, x, y ∈ A

}
. In another terminology, it is a

finite quiver with loops. In addition to previous work to understand these graphs, the main goal of the
present work is to introduce some new cohomological and quiver methods. These methods should provide
us with better understanding of properties and classification of finite rings.

Consider the (small) category of directed graphs DG. We shall use the term ”graph” interchangeably
with ”digraph”, since we are all the time working in DG.

Definition 1. The graph G is a functional graph if for every vertex a ∈ V(G) there exist only one arrow or edge
v ∈ E(G), v : a→ b from a.

This means that there is a bijection V(G) → E(G), a 7→ v. Let FG ⊂ DG be the full subcategory of
functional graphs.

In yet another terminology, digraph G = Q is a quiver. A quiver is exactly a directed graph, possibly
with multiple arrows, loops and cycles, V(G) = Q0, E(G) = Q1 and for an arrow v : a → b, a = s(v) and
b = h(v) (the source or tail and the head of arrow v). If G is functional, Q1 = Q0.

The problem in which we are interested is description of the structure of a special functional graph,
introduced in [1]. Let A be a finite commutative ring with unity, with n elements. Then A2 = A × A is also
a commutative ring with unity in a standard way, with n2 elements. Define a mapping

φ : A2
→ A2

by

φ (α) = φ
((

x, y
))
=
(
x + y, xy

)
forα ∈ A2. There is a general feeling that this mapping should somehow reflect the ring structure of A. Func-
tional graph G(A) is the graph defined by vertices V = A2 and arrows E =

{(
x, y
)
→
(
x + y, xy

)
, x, y ∈ A

}
� V.

In the sequel it will be called a ring graph. Some preliminary results are published in [2,3]. For A = Zn there
is an interesting occurence of longer cycles in these graphs [3].
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1. Standard digraph homology

Let Q = (V,E) be a directed graph (or a quiver) with set of vertices V = Q0 and set of edges (or arrows)
E = Q1, with two standard mappings, source s : E → V and head h : E → V. Let F0 = ZQ0 be the free
Z-module (i.e. Abelian group) generated by V = Q0 and F1 = ZQ1 the freeZ-module generated by E = Q1.
If we consider G as a topological space in a standard way, there is a standard chain complex

...←− 0
d0
←− F0

d1
←− F1

d2
←− 0←− ...

where the homomorphism d1 is defined on generators by d1(v) = h(v)−s(v). Obviously, d0 = 0 and Kerd0 = F0,
and a ∈ Kerd1 if and only if a is the sum of arrows in a cycle (i.e. a closed directed path) in G. The usual
definition of homology gives us H0(G) = Kerd0/Imd1 = Coimd1, H1(G) = Kerd1/Imd2 = Z

[
a, a is a cycle

]
(and all other homology groups being 0). The group H1(G) is the cycle group. If the graph G is finite,
with n vertices, m arrows, and c connected components, then H0(G) � Zc and H1(G) � Zm−n+c. For a
finite functional graph, m = n and the rank of H1(G) is c. The number c of connected components is also
the number of all cycles (including loops, i.e. cycles of length 1), since every component must end in a
unique cycle. Actually, this is the only topological property of such graph that can be traced by its standard
homology. Note that connected components of ring graph G(A) are also functional graphs. For details one
can see for example [4].

2. Digraph ”line cohomology”

Homological approach is fruitful when there is a natural increase of topological dimension. However,
in our case one deals only with line structures - paths. Therefore, for these very specific graphs we try
to introduce concept similar to ”cohomology”, with purpose to achieve control over various path length
functions.

Definition 2. A path λ of length k is a sequence

α→ φ (α)→ φ2 (α)→ · · · → φk (α) .

where α ∈ A2. It is a path in the digraph G of length k. The set of all paths of a given length k is Lk (A) = Lk. Path of
length k has k+ 1 vertices and k arrows. One has L0 = A2 = V(G), L1 = E (G) (� V(G) for a functional graph G). In
the case of ring graph, all Lk are bijective with A2, all have n2 elements and each path λ is uniquely determined by its
starting vertex α.

Standard concatenation introduces a partial binary operation L × L → L, Lk × Lm → Lk+m (two paths λ
and µ can be concatenated λµ iff h(λ) = s(µ)) on the set of all paths L = ∪

k≥0
Lk. This operation can be extended

to full binary operation on L by zero (if two paths λ and µ are such that h(λ) , s(µ), set λµ = 0). One
can consider other operations on paths in a digraph: right cancellation r = rk : Lk → Lk−1, left cancellation
l = lk : Lk → Lk−1 and, in the case of functional graphs, extension d = dk : Lk → Lk+1 (concatenation
Lk × L1 → Lk+1). Extension d and right cancellation r are mutually inverse: dk ◦ rk+1 = id, rk+1 ◦ dk = id,
Lk � Imdk = Lk+1, however composition of extension and left cancellation produces right shift of paths.

Definition 3. A path λ ∈ Lk is singular if it has two equal vertices, i.e. if for some 0 ≤ i < j ≤ k, φi (α) = φ j (α). In
the opposite case, i.e. when all vertices are distinct, a path is regular. Let i be the smallest such index in a singular
path λ, and j the next one i.e. such that the difference m = j− i is minimal. The path λ′ : φi (α)→ · · · → φm−1 (α) is
regular and its extension φi (α)→ · · · → φm (α) is a subcycle of λ. A singular path λ ∈ Lk is called cycle if the first
and the last vertex are equal and all other vertices are distinct.

Singular paths in Lk form a subset Sk, cycles - a subset Ck ⊂ Sk, regular paths - a subset Rk ⊂ Lk and
Lk = Sk ∪ Rk, Sk ∩ Rk = ∅, Ck ⊂ Sk ⊂ Lk. Define S0 = ∅ and therefore R0 = V(G). It is easy to see that in a ring
graph, C1 = S1 = {(x, 0)→ (x, 0) | x ∈ A} has n elements and R1 has n2

− n = n(n − 1) elements. If we define
σk = #Sk, ρk = #Rk, then for all k, ρk + σk = n2 and, in particular, ρk = ρk+1 + ∆σk where ∆σk = σk+1 − σk.
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Lemma 1. Cancellation maps send regular paths to regular paths rk, lk : Rk → Rk−1. Extension map sends singular
paths to singular paths dk : Sk → Sk+1. Moreover, if γk = #Ck, then Ck+1 ⊂ dk(Rk) ∩ Sk+1 and γk+1 ≤ ∆σk. It is clear
that γ1 = n, these are the n loops of length 1. □

So, dk may map regular paths to singular paths i.e. dk(Rk) ∩ Sk+1 , ∅ and their number is ∆σk. In the
set-theoretic setting, Rk = Rk+1 ∪ ∆Sk, Rk+1 ∩ ∆Sk = ∅, where ∆Sk is the set of all new singular paths in Lk+1
which have originated by dk from regular paths in Lk. In other words, ∆Sk = dk(Rk) \ Rk+1.

In ZLk, the two subgroups generated by singular and by regular paths of length k are ZSk, ZRk, they
are also free, and ZLk = ZSk ⊕ZRk splits. The ranks of the two subgroups are σk and ρk, and ρk + σk = n2.
These groups form the singular path sequence

ZS0 � 0→ ZS1 � Z
n
→ ZS2 → . . .

and the regular path sequence

F0 = ZR0 � ZL0/ZS0 � Z
n2
→ F1 = ZR1 � ZL1/ZS1 � Z

n(n−1)
→ F2 = ZR2 � ZL2/ZS2 → . . .

where homomorphisms (which are in the sequel also denoted by di) are compositions ZRk ↪→ ZLk
di
→

ZLk+1 ↠ ZLk+1/ZSk+1 � ZRk+1. After a finite number of steps, the first sequence stabilises and the second
sequence becomes zero, because after a finite number of extensions every path becomes singular and the
generators gradually dissapear. The biggest k = m after which there are only zeros is the length of the
longest regular path. In the next step the path would become singular, i.e. would end with a cycle. Note
that these are not real cochain sequences, since in general d2 , 0.

Proposition 1. For rings A = Zn, n = 2, ..., 9, the regular path sequences F0 � Zn2
→ F1 � Zn(n−1)

→ F2 → . . .
are:
Z4
→ Z2

→ Z→ 0 for n = 2 with the length m = 2.
Z9
→ Z6

→ Z4
→ Z2

→ Z→ 0 for n = 3 with the length m = 4.
Z16
→ Z12

→ Z6
→ Z2

→ 0 for n = 4. The length is m = 3.
Z25
→ Z20

→ Z16
→ Z12

→ Z5
→ Z2

→ 0 for n = 5. The length is m = 5.
Z36
→ Z30

→ Z21
→ Z8

→ Z4
→ 0 for n = 6. The length is m = 4.

Z49
−→ Z42

−→ Z36
−→ Z30

−→ Z25
−→ Z21

−→ Z17
−→ Z12

−→ Z7
−→ 0 for n = 7. The length is

m = 8.
Z64
−→ Z56

−→ Z40
−→ Z28

−→ Z16
−→ Z8

−→ 0 for n = 8. The length is m = 5.
Z81
−→ Z72

−→ Z54
−→ Z36

−→ Z15
−→ Z9

−→ 0 for n = 9. The length is m = 5.

Proof. Proof is by direct calculation.

3. Cycles

Let’s look at the properties of left cancellation l.

Proposition 2. Let the path λ ∈ Sk be singular. Then λ is a cycle if and only if left cancellation sends λ ∈ Sk to a
regular path l (λ) ∈ Rk−1.

Proof. Namely, if the path obtained by left cancellation is regular, then the source vertex of the original path
has to coincide with the tail vertex t(λ) = s(λ) and all other vertices are distinct (if not, then the next pair of
vertices obtained by extension d would also coincide and the path l (λ) is not regular) .

Therefore, for λ ∈ Sk, l (λ) ∈ Rk−1 ⇐⇒ λ ∈ Ck, or Ck = l−1 (Rk−1)∩Sk. In a descriptive way, cycles of length
k are exactly those singular paths of length k obtained from regular paths of length k − 1 by their extension
to the left of the source s(λ).
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For k ≥ 1 consider the sequences

...→ ZLk−1
dk−1
→ ZLk

dk
→ ZLk+1 → ...,

...← ZLk−1
rk
← ZLk

rk+1
← ZLk+1 ← ... and

...← ZLk−1
lk
← ZLk

lk+1
← ZLk+1 ← ....

and the subgroup structure ZLk = ZSk ⊕ ZRk. It is clear that Fk = ZR|k
dk
→ ZRk+1 = Fk+1 is epi, and

that the exact sequence 0 → d−1
k (ZSk+1) ∩ ZRk → ZRk

dk
→ ZRk+1 → 0 splits by ZRk

rk+1
← ZRk+1. Then

Fk = ZRk = d−1
k (ZSk+1) ∩ Fk ⊕ F′k, where F′k � Fk+1 = ZRk+1 by rk+1. Factoring out the ”kernels” of dk we

obtain the sequence

...→ Fk−1/d−1
k−1(ZSk) ∩ Fk−1

d′k−1
→ Fk/d−1

k (ZSk+1) ∩ Fk
d′k
→ Fk+1/d−1

k+1(ZSk+2) ∩ Fk+1 → ... or

...→ F′k−1

d′k−1
→ F′k

d′k
→ F′k+1 → ... or

...→ Fk
d′k−1
→ Fk+1

d′k
→ Fk+2 → ....

If β ∈ Lk+1 is a cycle, then it is singular and rk+1
(
β
)
= α ∈ d−1

k (ZSk+1) ∩ Fk ⊂ ZLk. One can see that
α comes from a cycle ⇐⇒ dk−1 (lk (α)) < Sk or lk (α) < d−1

k−1(ZSk) ∩ Fk−1, or lk (α) < d−1
k−1(ZSk) ∩ Fk−1 in

Fk−1/d−1
k−1(ZSk) ∩ Fk−1 � Fk. Exactly k elements in d−1

k (ZSk+1) ∩ Fk come from the same cycle, since the
composition dk−1lk, as already noted, produces a shift along cycle which has exactly k different elements.
The k-cocycle group is Zk = Imlk+1/d−1

k (ZSk+1)∩Fk < Fk/d−1
k (ZSk+1)∩Fk � Fk+1 (k = 0, 1, . . . ). It is a subgroup

of a free Abelian group, therefore free Abelian itself, of the rank less than or equal to rankFk+1 = ρk+1.
Obviously, Z0 = Iml1/Kerd0 � F1 � Zn since l1 : L1 → L0, d0 : L0 → L1 and Iml1 is the set of all vertices which
are in Imd0.

Definition 4. Zk is the k-th line cohomology group of the ring graph G(A).

The generators of Zk are exactly the paths which in the next step by extension d produce k-cycles. Its rank
is divisible by k. Consider the graded group Z = ⊕

k≥0
Zk. It is clear that Z0 = Zn and Zk = 0 for sufficiently

big k.

Definition 5. The graded group Z(A) = Z = ⊕
k≥0

Zk is the (total) line cohomology group of the ring graph G(A).

We calculate this group for particular rings A.

Proposition 3. For rings A = Zn, n = 2, ..., 6 one has the following:
A = Z2. Z0 = Z2, Z1 = 0, two generators of length 1 (there are 2 = 2/1 1-cycles);
A = Z3. Z0 = Z3,Z1 = 0, three generators of length 1 (there are 3 = 3/1 1-cycles);
A = Z4. Z0 = Z4, Z1 = Z2, Z2 = 0, four generators of length 1 (there are 4 = 4/1 1-cycles) and two generators

of length 2 (there is 1 = 2/2 2-cycle);
A = Z5. Z0 = Z5, Z1 = Z2 = Z3 = 0, Z4 = Z4, Z5 = 0, 5 generators of length 1 (there are 5 = 5/1 1-cycles,

there is 1 = 4/4 4-cycle);
A = Z6. Z0 = Z6,Z1 = 0, six generators of length 1 (there are 6 = 6/1 1-cycles).
The corresponding line cohomology graded groups are Z(Z2) = Z2, Z(Z3) = Z3, Z(Z4) = Z4

⊕ Z2, Z(Z5) =
Z5
⊕ 0 ⊕ 0 ⊕ 0 ⊕Z4, Z(Z6) = Z6.
The Hilbert-Poincare polynomials corresponding to graded groups Z(Zn) for n − 2, 3, 4, 5, 6 are PZ(Z2)(t) = 2,

PZ(Z3)(t) = 3, PZ(Z4)(t) = 4 + 2t, PZ(Z5)(t) = 5 + 4t4, PZ(Z6)(t) = 6.

Proof. Proof is by direct calculation.
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4. Additivity and functoriality

Every ring graph is a disjoint union of its connected components, which itself are functional graphs. It
is easy to see that there is certain additivity with respect to previous constructions.

Proposition 4. The regular and the singular path sequences of a functional graph G are direct sums of the corre-
sponding complexes of its components.

Proof. Proof follows directly from two easy observations. First, if a generating set L = L′ ∪ L′′ is a disjoint
union, thenZL = ZL′ ⊕ZL′′, and second, paths containing vertices in different components of a functional
graph form disjoint path subsets.

Example 1. The graph G(Z2) has two connected components: the A1-type loop · ⟲ and the A3-type graph · →
· → · ⟲. Corresponding graded regular path sequences are Z → 0 and Z3

→ Z2
→ Z → 0, and their sum is

Z4
→ Z2

→ Z→ 0.

Now, let’s consider functoriality. Let h : A → B be a ring homomorphism and let the corresponding
graphs be G(A) and G(B). Consider the functoriality of our constructions. Obviously, h induces homomor-
phism of graphs G(h) : G(A)→ G(B).

Proposition 5. The construction of regular and singular path sequences and the construction of line cohomology
group are functorial with respect to h : A→ B.

Proof. Proof is straightforward.

Further investigation of functoriality gives us also the result concerning the products of rings.

Proposition 6. The graph ring of products of rings is isomorphic to the product of corresponding graphs.

Proof. Proof is straightforward, based on the previous considerations.

In connection with classical Wedderburn-Artin theorem, we obtain further insight in ring graphs: every
ring graph is a product of ring graphs of matrix rings over finite fields. If we apply commutativity, we
obtain a product of ring graphs of finite fields (all matrix dimensions have to be = 1), which shows the
importance of the above results for Zn. This also suggests the importance of graphs of matrix rings over
finite fields, which should be more thoroughly investigated. It would be interesting to extend the notion
of ring graph to noncommutative rings. The first attempt, based on the map (x, y) → (x + y, xy − yx), has
already been considered in [5], but actually showed no great promises.

5. The path algebra

Definition 6. The path algebra of the digraph G is the free Abelian group ZL generated by all paths, graded by
subgroups of paths of fixed length ZLk, ZL = ⊕

k≥0
ZLk.

For a ring digraph, all subgroups are isomorhic toZn2
. It is a graded algebra overZwith concatenation

d : ZLk × ZLm → ZLk+m (if two paths λ and µ are such that s(λ) , t(µ), set µλ = 0). The extension
homomorphism d : ZL→ ZL will also be denoted by d. It is graded of degree 1.

If one interprets digraph as quiver G = Q, this is the quiver integer path algebra ZQ. This quiver has
directed cycles and is wild, and the rank of the corresponding algebra is infinite. However, we could also
consider the regular path algebra F = ZR = ⊕

k≥0
ZRk = ⊕

k≥0
Fk where rankZRk = ρk.
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Proposition 7. Hilbert-Poincare polynomials PA(t) =
∑

k∈N0
ρk ·tk of corresponding graded algebras F for n = 2, ..., 9

are as follows:
PZ2 (t) = 4 + 2t + t2;
PZ3 (t) = 9 + 6t + 4t2 + 2t3 + t4;
PZ4 (t) = 16 + 12t + 6t2 + 2t3;
PZ5 (t) = 25 + 20t + 16t2 + 12t3 + 5t4 + 2t5;
PZ6 (t) = 36 + 30t + 21t2 + 8t3 + 4t4;
PZ7 (t) = 49 + 42t + 36t2 + 30t3 + 25t4 + 21t5 + 17t6 + 12t7 + 7t8;
PZ8 (t) = 64 + 56t + 40t2 + 28t3 + 16t4 + 8t5;
PZ9 (t) = 81 + 72t + 54t2 + 36t3 + 15t4 + 9t5.
All polynomials PA(t) have critical point in the interval [−1,−1/2) and the first three of them exactly at t = −1.

Proof. Proof is straightforward calculation.

Proposition 8. The Hilbert-Poincare polynomial is additive with respect to connected components of the graph.

Proof. Proof follows from the additivity of corresponding graded path sequences.

Example 2. The graph G(Z2) has two connected components: the A1-type loop · ⟲ and the A3-type graph · →
· → · ⟲. Corresponding Hilbert-Poincare polynomials are PA1 (t) = 1,PA3 (t) = 3 + 2t + t2 and the sum PZ2 (t) =
PA1 (t) + PA3 (t) = 4 + 2t + t2. Note that polynomials which correspond to components do not have t = −1 as critical
point.

6. Quiver representations

Let K be an algebraically closed field. All previous constructions remain valid if one replaces integers
Z with field K. Instead of free Abelian groups, one obtains K-vector spaces, instead of integer quiver
algebra ZQ, the quiver algebra KQ over the field K, the rank of free group is replaced by dimension of
K-vector space. A representation of a quiver Q is a functor from Q (as small category) to K-vector spaces, or
a Q-diagram in the category VectK. For more details see [6]. A few examples follow.

Example 3. 1) For the one-arrow A2-quiver · → ·, a representation is a pair of vector spaces together with a linear
mapping L : V1 → V2. Two representations L : V1 → V2 and M : W1 → W2 are isomorphic if and only if
dim V1 = dim W1, dim V2 = dim W2 and rankL = rankM.

2) For the A1-type loop quiver · ⟲ (one vertex and one arrow), a representation is an endomorphism L : V → V
and two such representations L : V → V and M : V → V are isomorphic if and only if L and M have the same Jordan
normal form.

A representation is trivial, if all corresponding vector spaces are O. It is reducible, if it is a sirect sum of
two nontrivial representations (as diagrams in VectK), and irreducible otherwise.

It would be interesting to find irreducible representations of ring quivers (i.e. ring graphs).
There are some other algebraic tools for the investigation of these quivers. Consider the asymmetric

Ringel (or Euler) form of the quiver Q given by
〈
x, y
〉

:=
∑

v∈Q0
xvyv −

∑
e∈Q1

xh(e)ys(e), (x, y ∈ ZQ0 ), the
symmetric Cartan form

(
α, β
)

:=
〈
α, β
〉
+
〈
β, α
〉
, and the corresponding Tits quadratic form qQ : ZQ0 → Z

qQ(x) :=
∑

v∈Q0
x2

v−
∑

e∈Q1
xh(e)xs(e) =

∑
v∈Q0

x2
α−
∑

v∈Q0
xφ(v)xv =

∑
v∈Q0

(
x2

v − xφ(v)xv

)
=
∑

v∈Q0
xv

(
xφ(v) − xv

)
where

φ is the base mapping v = (α, β) 7→ φ(v) = (α + β, αβ). For small components of G(A) (see [1]) this is
qQ(x) = 0 for the loop A1-quiver ·⟲,
qQ(x) = x2

1 − x1x2 for the A2-quiver · → ·⟲.
The Tits quadratic form is additive with respect to connected components of the graphs involved.

Since the quivers are wild, the corresponding Tits quadratic forms are not definite (by Gabriel’s theorem).
Componentwise additivity holds also for corresponding quadratic forms.



A. Lipkovski, J. Matović / Filomat 37:25 (2023), 8583–8589 8589

7. Conclusions

The present paper is an expanded version of the talk [7]. Some new methods are introduced and
developed. The authors do hope that the road marked by this paper would lead to some definite and
interesting results on ring graphs.
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