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Abstract. The classical eigenproblem focuses on eigenvalues and eigenvectors of linear operators acting
on a vector space. The matrix representation of the problem has been extended towards multidimensional
arrays, with various applications. Another extension addresses invariant subspaces of multilinear operators
in Banach spaces. The generalization of the eigenproblem for tensors is still a challenging issue. We
investigate eigenproblems of supersymmetric tensors on Riemannian manifolds, emerging from the initial
proper definitions, with the proposed extensions.

1. Introduction

The classical eigenproblem Ax = λx concerns a real matrix An×n which stands for a linear operator,
its eigenvalues λ ∈ R(C) and the corresponding eigenvectors x ∈ Rn(Cn). The problem, extended toward
higher order tensors in various manners, provides notable and widespread applications. The tensors are
considered as:
• multidimensional data, i.e., hypermatrices - with focus on the data numerical analysis, decompositions

and approximations [4, 9, 12, 19, 21];
• multilinear operators in Eucledean vector spaces, whose associate multivariate homogeneous forms

are of great interest in image processing [5, 17, 24], Physics [3, 18] and in the stability study of nonlinear
autonomous systems [7, 15, 23]. The positive definiteness of multivariate homogeneous forms is a
notable feature, useful in applications [8].

The numerous effective algorithms for solving extended eigenproblems and analyzing their solution, espe-
cially for locating its eigenvalues, were successfully implemented [10, 11, 13, 22], underlining the richness
and importance of this topic.

The basic seminal works on the subject in higher order tensor spectral analysis (HOTSA) were done in
2005 by L. Qi [16] and by L.-H. Lim [14], independently. Though developed by different (algebraic and
variational) approaches, they assume that:
· the tensor is regarded as a multidimensional array which represents data organized as a multilinear

operator on the flat vector space;
· the tensor is real and supersymmetric.
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Both approaches produce compatible definitions of the extension, and emphasize two (the mostly used) Z-
eigenproblem and H-eigenproblem. Both these extensions have important properties within the particular
classical eigenproblem, providing homogeneity properties and geometrically meaningful eigenpairs (λ, x).

The spectral analysis for third- and fourth-order tensors associated to geometrical (non-Euclidean)
structures was developed in [1, 2, 20]. The extended eigenproblem adjusted to the non-Euclidean space
and the geometric relevance of the obtained spectral data, were provided.

The aim of the present work is to adjust the definition of the Z-eigenproblem in an appropriate way, to
keep its full geometrical meaning. The proposed adjustment is based on an idea from [6], where invariant
subspaces for nonlinear operators in infinite dimensional Banach spaces, are determined. A particular
homeomorphism has been used instead of the identical map in considering the spectral operator (A − λI),
for overcoming the disparity in homogeneity.

2. Eigenproblem for tensors - the algebraic viewpoint

The subjects presented in this section are based on the work initially stated in [16] and comprehensively
exposed in [18]. An m-th order totally symmetric covariant tensor A with components A = (Aii2···im )
determines a multilinear map on the flat n-dimensional real vector space Rn,

A : Rn
⊗ . . . ⊗Rn

→ R, (x1, x2, . . . , xm) 7→ Axm := Aii2···im xi
1xi2

2 · · · x
im
m .

Since the Euclidean metric ⟨x, y⟩δ = δi jyiy j is imposed, the components of vectors and of their corresponding
covectors are equated, xi = δi jx j = xi.

An incomplete action of the tensor A on a single vector x produces a one-dimensional tensor comparable

with the scaled vector Axm−1 := Aii2···im xi2 · · · xim λ
←→ xi. This comparison disregards the nature of the

objects (witch is acceptable within flat spaces) but has no homogeneity feature. Homogeneity is achieved

in the comparison with the componentwise appropriate power of the vector, Aii2···im xi2 · · · xim λ
←→ (xi)m−1,

where the vectorial character of the right-hand side is lost.
The exact definitions of the eigenproblem consider a scalar-vector pair (λ, x), where λ ∈ C and x =

(x1, . . . , xn) ∈ Cn.

Definition 2.1. If λ and x are real solutions of the following Z-eigenproblem{
Aii2···im xi2 · · · xim = λ xi

xTx = 1,
(1)

then λ is a Z-eigenvalue and x is a corresponding Z-eigenvector of the tensor A; briefly, (λ, x) is a Z-
eigenpair. If the solution vector of the problem is not a real vector, but x ∈ Cn, then the objects are labeled
as E-eigenvalue and E-eigenvector, respectively.

Definition 2.2. If λ and x are real solutions of the following H-eigenproblem

Aii2···im xi2 · · · xim = λ (xi)m−1,

then λ is an H-eigenvalue and x is corresponding H-eigenvector of the tensor A, i.e., (λ, x) is an H-eigenpair.
Optionally, if x is not a real solution, then (λ, x) is an N-eigenpair.

Though the H-eigenproblem is an algebraic genuine extension with notable algebraic flavor, we shall
further mainly consider the Z-eigenproblem, which is considerably more relevant to Geometry.

Definition 2.3. A univariate polynomial of λ is the E-characteristic polynomial of the tensor A if it is the
resultant of the following system

for m-even: Axm−1
− λ
(
xTx
) m−2

2 x = 0; for m-odd: Axm−1
− λtm−2x = 0, xTx = t2.
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The tensor A is regular if the system {Axm−1 = 0, xTx = 0} admits only the trivial complex solution.

Definition 2.4. The best rank one approximation of the tensor A is a rank one tensor B = αu ⊗ u ⊗ . . . ⊗ u =
α ⊗m u, such that

(α,u) ∈ argmin {||A − α ⊗m u||F : α ∈ R,u ∈ Rn, ||u||2 = 1} ,

where || · ||F denotes the Frobenius tensor norm.

The following Theorem is relevant for the main properties of Z-eigenvalues [18].

Theorem 2.1. Let A be a real totally symmetric tensor of order m in an n-dimensional flat space. Then:
1. When A is regular, a complex number is an E-eigenvalue of A if and only if it is a root of its E-characteristic

polynomial.
2. Z-eigenvalues always exist. An even order symmetric tensor is positive definite if and only if all of its

Z-eigenvalues are positive.
3. If A and B are orthogonally similar, then they have the same E-eigenvalues and Z-eigenvalues.
4. If λ is the Z-eigenvalue of A with the largest absolute value and x is a Z-eigenvector associated with it, then
λxm is the best rank-one approximation of A,

∥A − λxm
∥F =

√
∥A∥2F − λ

2 = min {||A − αum
||F : α ∈ R,u ∈ Rn, ||u||2 = 1} .

The tensor B = (bi1i2···im ) is orthogonally similar to A if there exists an orthogonal matrix P = (pi j)n×n

such that bi1i2···im =
n∑

j1, j2,··· , jm=1
pi1 j1 pi2 j2 · · · pim jm a j1 j2··· jm . The matrix P is associated to coordinate transformations

within flat spaces, hence the third statement of Theorem 2.1 implies that E-eigenvalues and Z-eigenvalues
are invariants of the tensor.

2.1. Eigenproblem for tensors - the variational viewpoint
The eigenvalues and eigenvalues of the higher order tensor A are regarded in [14] as critical values and

critical points of the tensorial Rayleigh quotient, and equivalently of the polynomial form constrained to
unit vectors,

(λ, x) − eigenpair ←→ max
|Axm
|

||x||mlp
←→ min [Axm

− λ(||x||lp − 1)] .

One readily notes that the l2-eigenvalues coincide with the Z-eigenvalues, while lm-eigenvalues are the
H-eigenvalues.

2.2. Invariant subspaces for multilinear operators
The invariant subspaces for a vectorial multilinear operator in an infinite dimensional Banach space

E T : E × E × . . . × E → E, were studied in [6]. Namely, the following m-homogeneous polynomial map
p : E → E is associated, p(x) = T(x, x, . . . , x). Then one may define the invariance/strong invariance, as
follows:

Definition 2.5. Let M be a closed linear subspace of E. If p(M) ⊂ M, then the subspace M is invariant for p
and it is also invariant for T. If T(M, . . . ,M) ⊂M, then M is strongly invariant for T.

The problem of finding the invariant subspaces for p is studied by using the eigenvalue problem for p,
i.e., the existence of nonzero vectors v ∈ E such that p(v) = λv. The motivation there is the generalization
of invariant subspace for nonlinear operators; however, this is not of interest in the present work. We shall
therefore present only the relevant achievements, especially for finite n-dimensional Banach spaces. In such
case (dimE = n), the multilinear operator can be regarded as a collection of n tensors of order m + 1, where
the very first index indicates the component of the resulting vector (and should be neglected in comparison
with the tensor A from above). Similary, p will appear as an array of n polynomials.
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To achieve the necessary homogeneity for invariant subspaces, the adjusted eigenproblem is proposed:
find 0 , v ∈ E and λ ∈ K, whereK = R orC, such that

p(v) = λJm(v), Jm(v) = ||v||m−1v. (2)

By choosing the homeomorphism Jm, the mapping λJm − p becomes homogeneous and appropriate for our
further developments for Banach spaces. We further give an account for the main results.

Lemma 2.2. Let p be associated to the given bounded operator T, where dimE ≥ 2. If for some λ ∈ K, 0 , v ∈ E we
have p(v) = λJm(v), then lin{v} is invariant for p.

Theorem 2.3. Let E be real and p be compact. Then for m ∈ {2k − 1 : k ∈ N} and λ , 0, if p(v) = λJm(v) has
nontrivial solutions for v, then λ is an eigenvalue of p.

3. Eigenproblem for tensors - the geometrical viewpoint

In [1] were studied the Z and H-spectral data for tensors attached to the relativistic metrics (Berwald-
Moor, Chernov and Bogoslovsky), in locally Minkowski Finsler geometric structures of m-th root type. The
geometric relevance of the spectral data of the structural tensors was pointed out, and relations between
spectra, polyangles and Riesz-type associated 1-forms of the corresponding geometric models, as well as
the best rank-one approximation, were derived.

In [20], the Z- and H-spectra were studied in low dimensions for Finsler structures of Randers type,
for the associated Cartan tensor, and it was emphasized that the Z-eigendata produces global information,
while the H-eigendata exhibits a strong local character.

A selection of illustrative applications and formal coordinate-free Finslerian extensions of the Z and
H−spectral problems, were also covered in the survey [2].

4. The geometrical adjustment of the Z-eigenproblem

The Z-eigendata are close to the geometry, but lack homogeneity and independence on the local represen-
tation. Hence, the following adjustment of the Z-eigenproblem attempts to compensate these drawbacks.

For better comparison with previous considerations of the eigenproblem, we shall consider for now
only totally symmetric covariant tensors.

Throughout this section, the following is implied:
• (M, 1) is an n-dimensional differentiable manifold with regular positive definite metric structure 1 (a

Riemannian manifold);
• the metric 1 ∈ T 0

2 (M) is a covariant tensor field defining a collection of symmetric bilinear forms
1x : TxM × TxM → R, ⟨z, v⟩1 = 1x(z, v) determined by the matrix

(
1i j(x)

)
of inverse 1−1

∈ T
2
0 with

components
(
1i j(x)

)
;

• we denote by z, v ∈ TxM two tangent vectors on M at some point x ∈M, and the norm of a vector z is
||z|| =

√
⟨z, z⟩1;

• A ∈ T 0
m(M) is a totally symmetric tensor field on M;

• the metric tensor field will be used for raising and lowering indexes, i.e., to sharpen and flatten indices
of tensors, particularly A♯ = 1−1A and z♭ = 1z;

• locally, A has the components Ax =
(
Aii2···im (x)

)
and defines an m-homogeneous polynomial map

Ax : TxM → R, Axzm = Ax(z, z, . . . , z) = Aii2···im (x)zizi2 · · · zim and an endomorphism A♯x : TxM →

TxM, A♯x(z) = Axzm−1 = Aii2···im (x)zi2 · zim1i j; if the tangent space TxM is obvious or irrelevant, the
subscript x will be omitted;

• globally, the tensor field A and a vector field (or a contravariant tensor field of order one in the case
of a non-smooth section) z ∈ T 1

0 provide a scalar field Azm
∈ T

0
0 (M) and the first order tensor fields

A♯zm−1
∈ T

1
0 (M) and Azm−1

∈ T
0
1 (M).
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Definition 4.1. The geometrical eigenproblem (G-eigenproblem) for A consists of solving the system

A♯zm−1 = λ||z||m−2z, (3)

which locally writes as the vectorial / covectorial equation

1i jAii2···im zi2 · · · zim = λ||z||m−2z j, j = 1, . . . ,n ⇔ Aii2···im zi2 · · · zim = λ||z||m−2z j1i j, i = 1, . . . ,n. (4)

The real solutions λ and z of the G-eigenproblem at the point x ∈ M are respectively called G-eigenvalue
and associated G-eigenvector, while (λ, z) is called G-eigenpair at x.

The announced adjustment of this definition was inspired by both the work presented in Subsection 2.2
and the homogeneity of the mappings Azm−1 and ||z||m−2z.

First of all, it is important to check the invariant character of the definition.

Theorem 4.1. The geometrical eigenproblem is well defined.
Proof. The left hand side of (3) is a contravariant tensor of order one, obtained by the multiple contraction of an outer
product of three tensor fields; the same occurs with the right hand side, which is a product of vector field and two
scalar fields (λ and ||z||m−2). Both sides changes by the same rule under a change of local coordinates.

As a direct consequence, we have the following analogue of Theorem 2.1, 3:

Corollary 4.2. The eigendata of the tensor A are invariants.

Theorem 4.3. If the tensor order is even (m = 2k) then the geometrical eigenproblem is homogeneous. Otherwise
(for m = 2k + 1), the geometrical eigenproblem is positively homogeneous.
Proof. Substituting αz = (αz1, αz2, . . . , αzn) into (4), it is obvious that the scalar factor in the left hand side is αm−1,
while in the right hand side this is |αm−2

| · α. The analysis of this relation for even / odd cases and positive / negative
α, confirms the statement.

Having in mind the homogeneity, it is important to emphasize the following result.

Corollary 4.4. If (λ, z) is a G-eigenpair of the even order G-eigenproblem, then for any α ∈ R, (λ, αz) is a G-eigenpair,
too. If (λ, z) is a G-eigenpair of the odd order G-eigenproblem, then for any positive α ∈ R, (λ, αz) is a G-eigenpair,
too.

We note a technical relief in the solving procedure: instead of answering the problem (4), the following
system can be solved{

1i jAii2···im zi2 · · · zim = λ||z||m−2z j, j = 1, . . . ,n
||z|| = 1

(5)

and then the previous corollary can be applied on the solutions.
The collections of G-eigenvectors corresponding to a G-eigevalue can be also characterized as follows.

Definition 4.2. Let (λ, z) be a G-eigenpair for the tensor A at the point x ∈ M. If m is even, then the
set span{z} = {αz : α ∈ R} ⊂ TxM is the invariant subspace generated by z. If m is odd, then the set
ray{z} = {αz : α ∈ R, α ≥ 0} ⊂ TxM is the invariant ray generated by z.

The G-eigenproblem is a proper extension of the original Z-eigenproblem, due to the system (5) and
to the fact that in a flat space, raising and lowering indices is redundant (1i j = δi j), so zi = 1iaza = zi and
A♯x = Ax. Moreover, the following theorem is straightforward.

Theorem 4.5. A pair (λ, z) is an Z-eigenpair of the tensor A considered in a flat real vector space if and only if it is a
unit length solution of the G-eigenproblem (5) considered locally in a tangent space TxM at some point x ∈ M, with
the local coordinates chosen such that 1i j = δi j.
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This theorem actually confirms the existence of the G-eigendata for tensors; however, it should be
noted that within a tangent vector space TxM, the relation Azm−1 = λ||z||m−2

1 z is an optimality condition
for minimizing and maximizing continuous function f (z) = Azm on the compact feasible set of unit length
vectors {z : ||z||1 = 1}. The global extrema always exist, and hence (5) always admits real solutions.

Theorem 4.6. (analogous to the statement 4 of Theorem 2.1)
If (λ, z) is a G-eigenpair of the tensor A and z is of unit length, then

Azm = λ and ||A − λ(z♭)m
||

2
F = ||A||

2
F − λ

2
≥ 0,

where the Frobenius norm of tensor Ti1···im at point is defined by the relation ||T||2F = 1
i1 j1 · · · 1im jm Ti1···im T j1··· jm .

Moreover, if λ is the G-eigenvalue with the largest absolute value and z is a corresponding unit length G-eigenvector,
then λ(z♭)m is the best rank-one approximation of A,

∥A − λ(z♭)m
∥F = min

{
∥A − α(u♭)m

∥F |α ∈ R,u ∈ TxM, ∥u∥1 = 1
}
.

Proof. The proof relies on locally expressing the geometric objects of the Riemannian G-eigenproblem (5), in
(Gaussian) Riemannian normal coordinates where the metric is flattened. This locally reduces the G-eigenproblem to
the Z-Euclidean framework.

We conclude by pointing out several features of extending the Z-eigenproblem to the G-eigenproblem:
· invariance and homogeneity;
· both sides of the equation have the same tensor types;
· invariance of the sets spanned by Z-eigenvectors;
· versatile for all tensor types, mod the canonical isomorphism;
· it emphasizes the analogy between the metric tensor and unit matrix/identity mapping in flat space:
1i jz j = 1 · ||z||01iaza; all such vectors are G-eigenvectors corresponding to the G-eigenvalue 1.
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