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Abstract. The problem of non-localizability and the non-uniqueness of gravitational energy in general
relativity has been considered by many authors. Several gravitational pseudo-tensor prescriptions have
been proposed by physicists, such as Einstein, Tolman, Landau, Lifshitz, Papapetrou, Meller, and Weinberg.
We examine here the energy-momentum complex in higher-order theories of gravity applying the Noether
theorem for the invariance of gravitational action under rigid translations. This, in general, is not a tensor
quantity because it is not a covariant object but only an affine tensor, that is, a pseudo-tensor. Therefore we
propose a possible prescription of gravitational energy and momentum density for O gravity governed by
the gravitational Lagrangian L, = (R +agR* + Yr_, axRO*R) /=7 and generally for n-order gravity described
by the gravitational Lagrangian L = L (gm,, Guvyiv s Juviniar Juviivinins "+ Juvyiyinizin ) The extended pseudo-tensor
reduces to the one introduced by Einstein in the limit of general relativity where corrections vanish. Then,
we explicitly show a useful calculation, i.e., the power per unit solid angle Q) emitted by a massive system
and carried by a gravitational wave in the direction % for a fixed wave number k. We fix a suitable gauge,

by means of the average value of the pseudo-tensor over a spacetime domain and we verify that the local
pseudo-tensor conservation holds. The gravitational energy—momentum pseudo-tensor may be a useful

tool to search for possible further gravitational modes beyond the two standard ones of general relativity.
Their finding could be a possible observable signatures for alternative theories of gravity.

1. Introduction

The problem of gravitational energy density in curved spacetime has been debated for decades. Bondi
wrote “In relativity a non-localizable form of energy is inadmissible, because any form of energy contributes
to gravitation and so its location can in principle be found”. Several prescriptions for the pseudo-tensor
have been suggested by Einstein, Tolman, Landau and Lifshitz, Papapetrou, Moller, and Weinberg [1-11].
These prescriptions have been formulated thanks to the introduction of a super-potential or through the
expansion of Ricci tensor in the metric perturbation / or by manipulating the field equations. Thus, the
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geometric object describing the gravitational part of the energy—momentum density transforms as an affine
tensor not as a covariant tensor, i.e. a pseudo-tensor and its affine property makes the gravitational energy—
momentum density not localizable. However, the gravitational energy-momentum yields a four-vector,
if we integrate the density over a suitable fixed-time spatial region under asymptotically flat coordinate
transformations, that is, it becomes quasi independent of the coordinate system over the whole integration
space. A generalization of the Einstein pseudo-tensor to Extended Theories of Gravity [12-15] is proposed
by imposing the invariance of higher-order gravitational Lagrangian under an infinitesimal rigid translation
and by using the Noether theorem. An associated Noether current and Noether charge can be derived.
They correspond to the gravitational energy and momentum density and the gravitational energy and
momentum respectively, both of which locally conserved. In the weak-field limit, the metric tensor can be
weakly perturbed, and the perturbed pseudo-tensor of gravitational energy—-momentum can be obtained
for a Lagrangian of order n. Integrating over a suitable spacetime domain, we can calculate the power
emitted by an astrophysical source, carried away by gravitational waves.

For more details on the problem of the energy-momentum localization in modified or alternative theories
of curvature-based gravity, such as f(R), f(R,OR, ..., O*R), see [14, 17, 18], while, for teleparallel gravity and
its extended version f(T), see Ref. [19]. For a study of wavelike solutions in modified teleparallel gravity,
see references [20, 21].

The present paper is organized as follows. In Sec. 2, definitions of gravitational pseudo-tensors in
general relativity are reported. In Sec. 3, the gravitational energy-momentum pseudo-tensor for a n'* order
general Lagrangian is derived and it is shown how it transforms as a tensor under linear transformations
but not under diffeomorphisms. Therefore, it is a pseudo-tensor. Furthermore, the pseudo-tensor for the
Lagrangian L, = (E +agR? + ):Z:l aROR) y/—g is found. In Sec. 4, the weak-field limit is derived. Hence,
in Sec. 5, we show an application of pseudo-tensor to the calculation of gravitational radiation transported
power. Conclusions are summarized in Sec. 6. The metric signature of g,, is (+ ,— ,— ,—). The Ricci and

. . _ P a _ o .
Riemann tensors are defined as Ry, = R",,, and R fuv = rﬁwt + ..., respectively.

2. Definitions of gravitational energy—-momentum pseudo-tensor in general relativity

Below we list some of the most important definitions of gravitational energy—-momentum pseudo-tensor
in general relativity, for details see [11].

2.1. The Einstein pseudo-tensor

In general relativity, for the principle of general covariance, the conservation of matter energy—-momentum
tensor T, given by

oTH
Frral (1)

is a relation not corresponding to any conservation law of physical quantities. It is
V. TH =0. 2)

Einstein formulated a conservation law where the sum of matter energy-momentum and gravitational
energy-momentum are conserved. So the total conservation is

70, 9

= = 30 (Va(T 1) =0, ®)

where t,” is the pseudo-tensor associated with the gravitational field, defined as

1 OL o
\/__gt,u - ﬁ(éyl‘ &gpa/vg ,p) : (4)
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with the following Lagrangian density which is a non-covariant scalar density
L= V_gg“v (an/rgp - FZpF’vJo) . (5)

The pseudo-tensoriality of tHV makes it dependent on coordinates and the gravitational energy becomes
non-localizable.

2.2. The Landau-Lifshitz energy—momentum pseudo-tensor

The gravitational energy—-momentum pseudo-tensor proposed by Landau and Lifshitz is (see Ref. [15]
for details)

1
l6m (_g) ¢ :g#v,[)gpg,o - gyp,pgva,o + nggpagpa,ﬁgﬁg,a

0

_ (gypgga gwx,ﬁg ﬁ,p + gvpg(mg#a,ﬁ QOﬁ,p) + gpagaﬁgﬂplagva P (6)

1 Vo v p0 a By
+ 3 (2947 g" — gt g* )(290439),/\ - gﬁyga/\) g A,PQM,U ’

where g"" = /[—gg"".

2.3. The Moller energy—momentum complex

In 1958, Mgller proposed an energy—momentum complex tensor Tyv =0 MV +S PV, where OF = T +
is the pseudo-tensor including matter plus gravity and S*" is a divergenceless quantity. To demonstrate this
property, it is worth noticing that S yv, such that 7, ", transforms as a tensor only for spatial transformations.
It is

v 1 vV .0
7o' = 5290 [ V0 (Guor = 90 797 7)
where the expression in square brackets is the antisymmetric super-potential Upr = —prv such that
T, =0. (8)

2.4. The Papapetrou energy—momentum pseudo-tensor

Papapetrou, in 1948, used the generalized Belifante method to derive his pseudo-tensor QO which can
be written as (see Ref. [15] for details)

1 &

wo— — UV 2P0 _ APV _ PO VO lp
O = o [V (60 = 90" = gy = g )] ©)

This geometric object is symmetric with respect to the first two indices p e v.

2.5. The Weinberg gravitational energy—momentum pseudo-tensor

Weinberg [22] derived the gravitational energy—momentum pseudo-tensor ¢, expanding the Ricci tensor
Ry in terms of powers of 1, up to second order, i.e. (see Ref. [15] for details)

1 1 1
- (__h‘LWR(l) + EU.LWUPURG)

1
= @ _ = po ?2) 3
b =523 RO = SR pg)+0(h), (10)

p
where

27,A
RO _ l[ azhAA Fh g 32hAv azhw ]

w2 oxtdx”  dxtox’ Ixtoak - oxtox,

(11)
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and
R(Z) =— 1hAP &ZhAp _ athP _ azh/\v azhyv
H 2 IxVoxH  Ixvax)  IxPIxH  IxPoxt
1( oW, on’ D\ (O one, Ol
' ‘1[2 S (W T o T 8xa) (12)

o A
1 (ahw L o _ 8hM)[9h w oot oh y]

4\ gt ox? ox° || dx, * ot 0x,

3. The gravitational energy-momentum pseudo-tensor in curvature-based gravity

3.1. The gravitational energy—momentum "tensor” of n'" order Lagrangian

First, let us analyze the energy—-momentum complex for a gravitational Lagrangian of fourth order,
i.e., depending up to the fourth derivative of the metric tensor g, as L = L(Guv, Guuv,0r Juv,prs Guv,pAr Tuvprco)-
The related field equations are of eighth order (see [23]), if we include in the gravitational action all
possible curvature invariants, not only the 0O operators. Then, it is possible to generalize the procedure
to a gravitational Lagrangian of n-th order, i.e., which depends up to n* derivatives of metric tensor. It
is then possible to derive the energy—-momentum tensor, using the Noether theorem and imposing that
gravitational action is invariant under global translations [1]. Let us vary the gravitational action both with
respect to metric g, and to coordinates x* [12]

I= f d*xL — 81 = f 'L - f d*xL = f d'x [5L + 9, (Lox")] , (13)
Q (04 Q Q

where 6 and§ stand for the local and total variation, respectively, the latter keeping the value of coordinate
x fixed. From the following infinitesimal transformations

Xt =axt+et(x), (14)
the total variation of the metric tensor reads
6gyv = !]ZW (x) - gyv (X) = _eaaagpv - gyaavea - !]ma;ﬁa . (15)

Under the global transformation, d e = 0, the functional variation of the metric becomes 6g,, = —€*dag,y-
If we also require that the action is invariant under this transformation, that is, 81 = 0, from arbitrariness of
domain of integration ), we have

0= oL +3, (Loxt) = oL 5, 9,0,k 50,0,
Yy Wuv,p Wy Guvpre (16)
+8P9A85306—L)6gw +d, (2)( \/—_gTZ) ev,
agyv,p}téa

where the explicit expression of gravitational energy—-momentum tensor, that we will see being an affine
pseudo-tensor tensor, is

1 [( JdL JdL JdL JdL
ol = Cot 0. - 0006002 g0
2x =9\ 9Gpun OF v Gy " unnaco Jhne
JdL JdL JdL JdL JdL JdL
+ - ag + 8530—) v, +( - 80 ) vprat 3 Guv,pAE _5ZL] ’
(&g‘uv,p)] agw,pqg agyv,pi]éa Tuvap agyv,p}\r] agyv,p)\r]o Tuvp agyv,p}ma Tuvphta

(17)
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where x = 8nG/c* is the gravitational coupling constant. If the metric tensor g, satisfies the Euler-Lagrange
equations for our gravitational Lagrangian
oL JL JL JdL JdL JL

= —-d, +d,0 — 3,010 + 0,00 0s0g5— =0, (18)
69/,11/ agyv [ag;wp f A& * gag[m/p}lé poace agyv,p}léo

Guv,pA

for an arbitrary €, we get a local continuity equation for the Noether current

o ( \/—g’cg) =0. (19)
In a more compact form, the gravitational energy—momentum tensor takes the following form

3

_ )m( ) I,
[mZ agyvmg T ) ey Ko
2 3
1)]( ) g I+ m - 7]L]
ZO, Z]‘ agyv nio-in i WV ij1 i@

(20)

where we used the following notation

(),i1 if m=1
(),i] i lf m = 2

0a =W Oipi =14 e 0u=04
and so on

Let us now generalize the approach considering a general Lagrangian density depending up to n'" derivative
of Juvs thatis, L = L (%tw Juvivs Quvyinias Juviiviniss *** » v ,-21-3...in). The total variation of Lagrangian L and its
Euler-Lagrange equations yield

oL = Z&

Z( V" Gyt g =0, (22)

[JV i+~

69;11/10 I Z &gyvz y 10 -imégyv ’ (21)

,UV B0+ im

where 6 / 6gw is the functional derivative It is possible to exchange the variation 6 with the derivatives
0 uvig-in = Oig-i,0Fuv, because we are varying keeping x fixed. So, we can find the most general local
continuity equation which allows us to define the energy—-momentum pseudo-tensor (which is an affine
tensor as it will be proved later) for the gravitational field of 2n"" order gravity

Ta

-1
Sl s
X\/_ gyvqlg Ay o+

n-2 n-1

U
2 +o0[ ( 1)] (a ) Juvjija-ime — bolL] ’
]:O m:]+1 gyv WO I Jio l]

(23)
where O is the Heaviside function

1 if ne€la,+oof
®u 0o = . 24
vl (1) {O otherwise (24)
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If fields and their derivatives vanish on the boundary of the spatial region or rapidly decrease to the
spatial infinite on an infinity spacelike hypersurface, the gravitational energy—momentum tensor is totally
conserved and satisfies a general conservation law. An alternative way to obtain the tensor (23) is the
procedure developed by Landau [1]. For example, we can start by deriving the tensor (20), because its
generalization to higher order Lagrangians is the same. First of all, let us impose the stationary condition
and vary the action with respect to the metric to find the field equations under the hypothesis that both 6g,,
and the variation of derivative 6d"g vanish on the boundary of integration domain, canceling the surface
integrals. Hence, the following variation occurs:

ol =6 f(; d4XL (gyw Juv,pr Juv,pAs Juv,pAss gyv,p)\éo) =0, (25)
)

oL 5, 9.9, 5,000t +a,000:0,—2L— ~ 0. (26)
Yy Yuvp Y v, pic v, pico

Now, we perform the derivative of Lagrangian with respect to metric tensor and then we put it into the
field equations (25). We obtain

ox 39},,, axe 89!,%,3 Ixa 8gpr Ixa
&L agyv,pmﬁ i &L agyv,pAéa
agyv,p)\é axa agyv,p)\éa oxe
oL oL oL JL

=d, va — 0p0 va + 0,0 &r va — 0p010:0s =———— 0
EI 9# L P ET Ju pA ol 9# p?A 3gyv,pAg(r%

JL oL 3gm " JL 8g,uv,p " JL agyv,p/\

JdL

+ —gyv pa ag gyv,pAa + Juv,préa + Juv,pAéoa

ag‘uv,p/\é agyv,p/\ég

( ) (oo
&gyv , Juv,a A &gyv,p/\ Juva A agpv,p/\ Juv,pa

oL )
b [910 va | + 1| =——— G pea
A 53 ,uvp "g!‘ ) A(ng/,p/\ég# P

JdL
o (‘” e R )

JL
agyv,p)\éa

JdL
agyv ‘DAg(T

+ g |00 wpa | -
( Aagyvp/\&f!h P )

+a/\

S5 9w, pan) (95 (8A gyv,poa)

(27)

Grouping together terms and renaming dumb indices, we obtain

2y (v=5tl) =0, 28)

that is, the pseudo-tensor is locally conserved, where 7/, is the tensor defined in (20).
The energy-momentum complex, instead, can be derived considering the material Lagrangian L,, =
2x \—g L with the stress—energy tensor given by

2 3(V=7Ln)

" =
V=9  OFn

(29)



S. Capozziello, M. Capriolo / Filomat 37:25 (2023), 8617-8634 8623
Thus, we can use the field equations in presence of matter, namely
P = x1*, (30)

where
1 0L

=T

By field equations (30), we obtain
(2)( \/__gTZ),n == \/__gppogpma ==X \/__ngagpa,a
= 20 V=gTiy — (20 V=3T3),

na _

(31)

(32)
Oy [V (eh+ )] = V=Thy (33)
being
5L + 3, (Lox*) = ~P*' \=Gdg,, + 3y (20 V7)) €

= [\/—_gPFV!]yv,a + 8,] (2)( \/__972)] =0,
(34)

and because the symmetry of tensor T}, one gets

4 1 D0
\/__gTZ;q = (\/—_ﬂi)’,, - Egpa,aT[ \/—_9 : (35)

The relation (33) tells us that the conservation law of energy—momentum complex, i.e., the sum of two
stress—energy tensors due to matter plus gravitational fields, is related to the covariant derivative of the
only matter part. From the contracted Bianchi identities, we get the total conservation law and conversely

Gl =0 Pl =06 Th =06 d,[v=7(d+Ti)|=0, (36)
where G™ = R™ — % g"R is the Einstein tensor and the locally conserved energy-momentum complex is
given by

Td = V=g (1 +Ti) - (37)

In a nutshell, the contracted Bianchi identities lead to the local conservation of energy—momentum complex
or, viceversa, the local conservation of matter and gravitational fields involves the contracted Bianchi
identities (see [24] for a detailed discussion on modified and extended gravity).

From the local continuity equation (36), it is possible to derive some conserved quantities, the Noether
charges, such as the total 4-momentum of matter plus gravitational field. If we require that the metric
tensor derivatives up to the n”" order vanish on the 3-dimensional space-domain L, the surface integrals
are zero over the boundary 0%, that is

o [[devmg(1 s o) = - [ doiymg(re ) =o, 8)
z Jx

where X is a slice of 4-dimensional manifold of spacetime at fixed f and X is its boundary. Such conditions
are fulfilled when we are in presence of localized objects, where we can take a spatial domain becoming flat
at infinity, i.e, an asymptotically flat spacetime. In this case, the energy and total momentum become [25]

Pt = f dx =g (T + T°) . (39)
X

These quantities are very useful for astrophysical applications [26].
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3.2. The non-covariance of gravitational energy—momentum tensor

Let us begin by proving that, in the case of n = 2, the quantity 7| is a non-covariant object but an affine
object, that is, it evolves like a tensor only under affine transformations [27], i.e., a pseudo-tensor, but not
under general transformations. The tensor (23) becomes

p 1 [( o, dL G + JL
a — —0OA w,a
2x V=7 [\ 99wy v ! v

It is possible to show that, while under a general diffeomorphism transformation x’ = x’ (x) the tensor
changes as

T Juvca — OpL| (40)

Ta () #1570 (v) (41)
with Jacobian matrix and determinant defined as
ox'M ox™ 1
T = -1t _ Q) — | = — 42
h=Gw Ti=gm  de(f)==r, (42)

under the following affine transformations

=AY T =AY Al #0, (43)
the tensor is transformed as

Ta () = AJATET () (44)

In general, the following identities occur

V-9 = -9 where g is a scalar density of weightw = -2,
L'=J"'L where L is a scalar density of weight w = -1 ,

T O) = THTT 8 G () + 0L [T g ()

ag/ /T 1 v v N 1a
ag;j - = 5[(656b+6a65)6311y1,@lr Je,

oL’ )
— =T =T —
ag‘uv,q ree 8g7 /T e ag)/PT

tensorial density (3,0) of weight w = -1,
T &) =TT T atea () + 92 [17T7E] g0 ()
+ 0, [T 7 gaba () + 9% [T 0075 ] e (),

Gy p e Y 9\ va b c V) e(nE

o= (62”6;62”63)1),1*,;1713 = I
gyv né
8L/ _ ( —17H &L

,—=]1L,”]]]e =" BITE
Juvne l ‘9 Gypze T gy re

tensorial density (4 0) of weightw = -1,
Jar’ JdL
Iy 5 =T I 05— + 3, [T T2
Aagyv,i]/\ (9 7’P T€ [ ] a )/P €

and by symmetry of B, i.e., Baﬁ = Bpa, it follows that A®)B,g = A*B,s. Then we have

oL’
ag uvn

gyva _] Jn]_l gVPTf(x) ox’a [J M] 1h]‘qab (JC)] ] ]]T& )/PT
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’ L’ ’ N _ 1-1117-1c ’ NyA | o2 |y—1lap-1b
%3, i O =TT 05 wgama T 20 [y g ) 5=
_ &L / — T —la —lc L
T 50 [ gw + 9 IR g e
}/P, ) p,T€
L’ JL
S Tea ) =TT 5=y () + 702, [T0T 7| 9o (O Ty TpTeNe
agpv,r]é e g)’Pr " ta [ ] rre 99 Yp,T€
IO gava ORI 5=+ TR0 [ e (0 5
Fyp e
Finally, taking into account the previous relations, we get
mo, o ?*x Px
() = T (x) + {terms containing EL W} . (45)

Extra terms that include derivatives of order equal to or greater than two vanish for each non-singular
affine transformation but not for generic difffomorphisms. This proves that gravitational stress—energy
tensor is a non-covariant but an affine object, that is, it is invariant under affine transformations due to
non-covariance of the derivatives of the metric tensor g,,, that make it at least affine. Generalizing to n-th
order Lagrangian, the metric tensor derivatives change as

Aayp-1p7-1j
=7

/ ~1jmy=1
g;w,il...ima (x ) ] ,-m] ;gaﬁ,jl-"jmt (x)

aZx am+2
+ Contammg terms — 8x’2' .- 'W ,

(46)
and the Lagrangian derivatives as

oL’ ;
S =] ]”“']Z-”‘

——— tensorial density (m+3,0) of weightw = -1,
Jm ag)’P/le"'jyn

gyv,niou-im
so that the non-covariance of tensor TZ is clear. On the other hand, we obtain, for affine transformations,

Px I
o2 T gpmt2

Ta () = AJATETI ()

that is, the energy—-momentum tensor of gravitational field is a pseudo-tensor. This result generalizes
the result in [1] to Extended Theories of Gravity . The affine character of the stress—energy tensor T,
exhibits the non-localizability of gravitational energy density. Specifically, the gravitational energy in a
finite-dimensional space, at a given time, depends on the choice of coordinate system [25, 28]. It is worth

highlighting that the existence of particular Lagrangians for which extra terms in Eq. (46) Vanish cannot be
anx+2x

excluded a priori. This is because terms depending on derivatives in the bracket (45), such as gx,z Y7

can cancel each other out. Consequently, the energy-momentum pseudo-tensor 7, becomes a covariant
tensor. However, due to the structure of (45), in general, 7, is a pseudo-tensor.

3.3. The gravitational energy—momentum pseudo-tensor of higher-order gravity
Let us now investigate theories of gravity of order higher than fourth considering O* operators. Hence,
we introduce the linear and quadratic part of the Ricci scalar R, the first R depends only on first derivative
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of metric tensor g,, and the second R* depends linearly on second derivative of metric tensor, as follows
[1,22,27]

R=R*+R, (47)
* =g (T, = Thos) (48)
=g (errﬁp - rﬁorgp) . (49)

Hence, we want to derive the energy-momentum pseudo-tensor 7, for a gravitational Lagrangian given by
_ 4
L, = (R+apR> + Z aROFR) V=7 . (50)
k=1

Therefore, with the purpose to derive the pseudo-tensor 7., we have to calculate derivatives present into
Eq. (23), namely

oL dR - JR = _JOR
= = +[2a0R + E aOfR + E ;R
&g‘uv,n g 8gyv,r] =1 ag‘uvﬂ = &g‘u%n

14
[ZaOR + Z akaR] ] , (52)
k=1

, (51)

G

n-1 n-1 p
JL &DkR
(—1)m( ) -1)" 9jy.i,, [\/ gakR—]
m=2 agﬂwlio"-im Jig in mZ:;; o 8gw,10 im
p 2p+3
m &DkR
= Z (_1) 81'0...,;" [\/—gakRaf]
k=1 m=2 T pv,nio- i
P 2k+1
m <9|:|kR
= Z (_1) aiou.im [ V_gakRg—] ,
k=1 m=2 Guv,nig--im
(53)
where A =iy, n =2p +4 and
k
ooR =0 if m>2k+1. (54)
agpv Nio*im
Then, after algebraic manipulations, one have
n-2 n-1
Y 1 (—& oL )
j=0 m=j+1 gHV/Tllo“'lm Jig-++ij
p 2p+2 2p+3
; o0'R
VY Y covEmRg o]
h=1 j=0 m=j+1 Guv,nio-in Jioij
(55)

n=2 n-1 ) oL P 2h 2h+1 0 hR
0D M W YD M Vv NS
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By inserting these expressions into (23), we obtain the gravitational energy-momentum pseudo-tensor for
the Lagrangian (50)

JdR JdR
a=1 V=79|2a0R o'R ” .
= TalGR+2X \/_{ [ o Z i ] ‘99yv n 9;4 o aghv,fl/\ gy ,Aa]
JdR
— | V=9|2a0R + ) a0'R .
/\[ !][ 0 Z k ]lenng'a
2h+1 O'R
1 +o0[ (P) Z{Z 1) azo zq[ V gﬂhRa ]gpv,a , (56)
G v, nioig
2h 2h+1
Jo'"R
. (1) 0| gahR—]gW-ﬂ--W}
]ZO m;_1 ! &gyv Nio* "im !
4
_y [aORZ +Y akRDkR] \/_—g}
k=1
where the notation d;, = Iis the identity operator and Tzl cr indicates the energy—momentum pseudo-tensor
of general relativity [28] defined as
JR =
n n
TalGr = 2)( (aghvngwa 6aR) . 7

Given that only R contributes to the field equations, we can replace the scalar density —gR with
V=gR,which is not a scalar density.

4. The weak-field limit of energy-momentum pseudo-tensor

The low energy pseudo-tensor (56) related to Lagrangian (50) can be obtained by weakly perturbing
spacetime metric g, around the Minkowski metric 1, as

Juv = N + hHV being |hw| <1, (58)

where h = n#"h, is the trace of perturbation. Thus, we expand the energy-momentum pseudo-tensor
to lower order in h, namely, retaining terms up to h?. Let us see what becomes the weakly perturbed
pseudo-tensor (57) in harmonic coordinates where g*'T}, = 0. The quadratic part of the Ricci scalar R
yields

R=—g" (I7,I3,), (59)
that is
R= _}Igwgmgpe (gey,o + Jeou — !ho,e) (gAv,p + Iy — gvp,/\) . (60)

Keeping terms up to second order in h?, we have

= @
JR M n
apy - B
(%ﬁ,y) (70p0) " (30 s = 1 P (61)

according to
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JR
9Gapy

Japo = _31{(9#5 gmx gey + gHV gaa gﬁe _ gHa g(i)/ gﬁe) ( Fewo + Geoyt — _‘70#,6)

+ (gﬁv gyA g+ g gﬁA g — ga/\ ng gp)/) (g Avp + Gapy — gvp,;\)}gaﬁ,é , (62)

and also

@ _ _loa, » AP
R = 4 (ha,ph/\o, 217 ph A g) : (63)
Hence, when we put these terms into (57), the stress—energy pseudo-tensor, in general relativity, up to order

K2 takes the form

171 1
n — v, sV U Ay P A 1P
TaGrR = E [Ehy thv,a —h hyv,a - Zéa (ho,ph}\g 2K° Ph A (r)] : (64)

Therefore, the corrections of the pseudo-tensor (56), due to extended gravity terms, are obtained expanding
it to the second order in /. We get the following expansions to lower order in h

aR (O) 1 n V. VT v (0) ]' v, VT V_,T
(agyvﬂ/\) = E (grL ]g A + g‘u/\g 1 _ 29/’ gr’/\) = E (TI‘ur’rI A + ny}\n 1 _ 217“ nV\) ,
(65)
R _\" O _an N (g _ i) R8s Lo
2 ) =0, )= ), 2, 2
(0)
dR @ /2 2
(agww) (gwa) = (W7 =" h),a , (67)
0) (0) ()
( o0"R ) _ ( Jo'"R ) _ ( do'R ) — nizia .. T]fzhizhu (17#1'1 nWl - n}“’q’lil) 4.
agyv,nio---im 39;11/,111'0"-1'.4 agyv,nio"-izm
(68)
Hence, retaining only terms up to 4 in harmonic gauge, one gets
: IR e 1 1
2R+ Y O R| e = | Y @ R |K", + <agh™ 0N, (69)
hZ
hg. A A
— | V=9|2a0R + a0 wa = aoOh (R —nTh
[ [ ’ Z ‘ ]aguvm I ’ ,A( 1 )’a
1<
3L (-,
k=1 ’
(70)

hz
— 'R hg 1 v , ) 0
(=17 &iO'"lﬁ [ _gahRa_‘]w Rio-~i, ] Juva = 2 hZ‘ ahuhﬂh’/\ <h - n]Ah),a * (Ap)a !
) =1
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(71)
P 2h 2h+1 ) W2 p
Jo'"R hg 1
ZZ Z (=1)/ 9. z}[ gahR&f]gyv,immima = ZZahDhth’”a
h=1 j=0 m=j+1 Guv,nio-im =

1
AX LY e -, o (5) 2

In Egs. (71), (72) and (68), we have disregarded the index permutations (uv) and (1i; - - - iz44+1) because (AP)Z

and (B ) terms vanish if averaged on a suitable spacetime region, according to the appendices in the

papers [14, 15]. Then inserting the equalities (69) (70), (71) and (72) into (56), we find the extra term of
pseudo-tensor 7/, at second order, that we call 7, i.e.

0 e %{41_1 [Z a |:|k+1h] Z:)‘ t+1h hq/\ _ U”Ah),a
v v | |
AT E S ) oo
h=0 j=h m=j iy ,

P
#1201, = 0hL) o + Ot () [(4)] + (BP)Z]} -

1=0

where conventions used are
(),aio = (),a h/)\lo = h,A .

Summing up, we can split the gravitational energy—-momentum pseudo-tensor in general relativity and
extended gravity part, i.e.

w2 -
) = TZIGR + 7). (74)

For p equal to 0 and 1, we can derive the simplest corrections to the pseudo-tensor 7. For p = 0, i.e.

L, = (ﬁ + aoRz) \—g, we get

2
nk =1
Ta = Tyer + Ta s
with

W) £ 20 (oh+ Y i a0~ £ OR5]) 7
2)( ' 4

While forp=1,ie. L, = (E +aoR? + alRDR) \/~—7g, we find

2
i =1
Ta = Tycr + Ta s

where corrections are

7l = %{411 (ZaODh +aq Dzh) W+ % <2a0|:|h,,\ +aq Dzh,A) (hn/\ - WnAh)

pes
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1 A A 1 A A 2 1 A A ¢
+ 5mD (h1h =gy h)/a Ol + S (W1t = h)/a Dy = 50 (Wt = h)m oh 7
+ }Lal ok oh — 411‘52 a0 (@h) + ay (0%h)| Oh + (A1) + (Bl)Z} . (76)
Possible applications of the above results are the following.

5. Emitted power carried away by gravitational waves

In order to calculate the power emitted by an isolated self-gravitating system, we have to average
the pseudo-tensor over a suitable space-time domain considering its local conservation (28). The wave
solutions of the linearized field equations in vacuum, associated to the Lagrangian (50), can be expressed

s [33]

p+2

dsk 7 Q
OEDY f = (B (1) e 1 ., (77)
m=

where c.c. stands for the complex conjugate and

Cuv (k) for m=1

U
Bm k = T m m)y 4
(Bin) (k) %[% L& ;(g(k ) ]Am (k) for m=>2

(m)

(78)

with Cuv (k) the polarization tensor in TT—gauge, A, (k) the amplitude of the wave at a fixed value k and

= (wm, k) the wave vector with k2, = @2, — [k|* = M? where ki = 0and k;, # 0 for m > 2.Now, let us
calculate the trace of tensor (78). We obtam

CH (k) for m=
Byt (k) =4 * , 79
(Bu () {Am(k) for m>?2 79)
If we keep k fixed, we find the following relations
p+2
h,! =2Re Z(—n( ). (k) At (80)

p+2
~1"i Y (k (kz) A (81)
]=1

+

of (1" = "h)  =2Red (- 1)% (koa( ) [y - o <Bl>5]efkl"}, (82)

+
N

j=

+
N

of (1" —n"h)  =2Red (- 1)f'+1 Y k), k), () [BO™ = (Bz)g]eik’x}, (84)

+

(-D)"

o"h 7 —2Re{( )" 1 -A(kj)”(ka.)’”Ajefkfx ) (83)

(k2 Areik'x} . (85)

1=1
r=2
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Let us choose a spacetime domain €3 such that |Q] > % (see [22]). We can average the gravitational energy—

. . . . il fe: =k : 3 .
momentum pseudo-tensor 7, over our region and all integrals, including terms such as ¢(57k).%" | vanish

thanks to the following identities

1 1
Re{f}Relg} = ERe{fg} + ERe{fg‘} , (86)
)
ka8~ ] = -, )
In the harmonic gauge, after averaging and performing some algebraic manipulations, we get (see Ref. [14])
A A m+q+1 v \(m+a) o
(e (= h) ) =1y Y o e () 1A,
1=2
p+2

1
<Dmh,j\fuq (hr]/\ _ 171]/\h),(m> — (_1)m+q+1 Z (k),, (kp)" (klz)(m+q)+ |Al|2 ,
1=2

p+2

(@) =2 -1 Y ), k) ()" 1A,
o
@"hohy =2(-1"" Y ()" A,
=2
(Ap) =((B,) =0. (88)

A basis of polarization tensors is explicitly shown in Ref. [33]. Hence, we calculate the average value of the
energy-momentum pseudo-tensor taking into account the equalities (88)

<TZ> = % [(h)n (k1) (C“VCLV - %|C2A\|2)]
p+2

)3 () (), - et

=2

(
S eae0a Y (6 (), 6 ]

(89)

In the momentum space, the first mode k; and the residual modes k;, are express in TT-gauge and harmonic
gauge respectively, i.e.,
ki), C*"=0 A Cl=0 if =1
( 1)H w 1 /\A 1 " . (90)
(km)y (B = 3 Bm)y k" if m>2

Let us now consider a gravitational wave propagating along +z-direction at k fixed, with 4-wave vector
givenby k' = (w,0,0,k.), where ] = k2if k} = 0, and k3, = m? = w?, — k2 otherwise for k. > 0. Consequently,
the averaged time-space tensorial component ,which can be seen as the flux of gravitational energy along
the z axis through the surface delimiting the QO domain, reads
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() soget(6h 8 g4 Bttarts Lo oo ad] . on

Finally, we can calculate the emitted power per unit solid angle €, radiated by the localized sources, in
a direction £ at fixed k. Choosing a suitable gauge, for the local conservation of the energy—-momentum
pseudo-tensor (28), the power can be written as

0- % <70> . (92)
By ranging the index p of the pseudo-tensor (91) over {0, 1, 2}, we obtain the following three cases
for p=0

4 2 4
(72 = i[c2 + O]+ —— {(—l)wzlAﬂzk +2a0a)2m2|A2|2k} (93)
0/ G L7121 16nG W\ 6 : e

()= 576 66 bl + {5 omaa i)

+ 200 [(w2rmd|AoP + w3m|AsPP) k] = 3ay [(wamsl Ao + wsmdlAsP )k]} (94)

and for p=2

4 2
(@)= o [Chy+ ] + 5 6; G{(—%) (021l + walAal® + wslAsP) k.
+ 20 [(w2m3|AoP + wsmlAsl + wam3|AsP) k.|

= 3a; [(w2m3lAal + wsmilAsP + wamlAlR) k.|
+ 4a, [(wzmglA2|2 + a)3m2|A3|2 + w4m4|A4|2)]}
(95)

By Egs. (93), (94) and (95), the first term returns the result of general relativity while the corrections strongly
depends on the value p. In any context where corrections to general relativity can be studied, this approach
could constitute a paradigm for searching for higher-order effects.

6. Conclusions

In view of solving incongruences of general relativity at ultraviolet and infrared scales (e.g. quantum
gravity, dark matter and dark energy issues, etc.), many proposals have been formulated to extend or
modify the Einstein theory by improving the geometric structure by curvature, torsion and non-metricity
invariants [34—43]. In this context, the present paper is devoted to the generalization of the gravitational
energy-momentum pseudo-tensor 7, to higher-order theories where, in particular, terms like O*are present
into the gravitational Lagrangian, such as L, = (R + aoR? + ZZ:1 axRO*R) y/=g. We have found that, in
the framework of these theories, the local conservation of energy-momentum complex holds. It has been
shown that 7] is an affine and non-covariant object because it evolves like a tensor only under linear
transformations but not under general coordinate transformations. The second-order perturbed pseudo-
tensor, in /%, of higher-order gravity has been obtained and, thanks to its average over a four-dimensional
domain, under a given gauge, and its local conservation, the power emitted by a radiant gravitational
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source can be calculated. Hence, from the modified gravitational wave (77) it is possible to express the
average emitted power in terms of the amplitudes A,, (k), C11 (k) and Cy; (k), and the free parameters a,,.
In the cases discussed here, i.e. p =0, 1, 2, clearly the corrections to the general relativity are evident.

In conclusion, the gravitational energy-momentum pseudo-tensor is a fundamental tool to seek for
further gravitational wave polarizations and corrections to the quadrupole formula. In this context, it
could be useful to fix the features of theories of gravity eventually extending or modifying general relativity
[44]. Forthcoming astrophysical observations, in particular the so called multimessenger astronomy, could
be extremely relevant in this debate.
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