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Modulus of continuity of normal derivative of a harmonic functions at
a boundary point

Milos Arsenovié?, Miodrag Mateljevié?

?Faculty of mathematics, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia

Abstract. We give sulfficient conditions which ensure that harmonic extension u = P[f] to the upper half
space {(x,y) | x € R",y > 0} of a function f € LP(IR") satisfies estimate g—;(x, y) < Cw(y)/y for every x in
E c R", where w is a majorant. The conditions are expressed in terms of behaviour of the Riesz transforms

R;f of f near points in E. We briefly investigate related questions for the cases of harmonic and hyperbolic
harmonic functions in the unit ball.

1. Introduction and preliminaries

It is easily seen that if the majorant of ¢(x) € C(R") N L'(R") is w, and if u(x, y) is the harmonic extension
of ¢ to the upper half space, then for each y > 0 the function ¢,(x) = u(x, y) has the same majorant as
@. This need not be true for functions ¢.(y) = u(x, y) defined on [0, +c0). For example, if ¢ is Lipschitz
continuous it is not necessarily true that u is also Lipschitz continuous. Therefore information on the vertical
derivative of u is of interest in obtaining results on modulus of continuity of u(x, y). We point out that in that
respect hyperbolic Laplacian has better properties regarding preservation of Lipschitz continuity, see [5].
In addition, information on behaviour of normal derivatives is relevant when studying mappings which
are at the same time harmonic and quasiconformal, see [4] for the case when the boundary is not flat.

In the case n = 1 important role is played by the harmonic conjugate of # and by the Hilbert transform
of @. In our general case the corresponding role is played by a conjugate system of harmonic functions, see
(4) and by the Riesz transforms R;, which are multi dimensional analogues of Hilbert transform.

We denote the upper half space by H"*! = {(x,y) | x € R",y > 0}, the boundary of H"*! is identified
with R". The surface measure of the unit sphere $"! = {x € R" : |x| = 1} is nw,, where w, is the volume of
the unit ball B" in IR”. The Poisson kernel for the upper half space is

_ _ Yy n
P(x/]/)—Py(X)—CnW, XG]R, y>0

where

+1 it
Cn =F(n2 )n‘Tl.
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The harmonic extension of a function ¢ on R" to H"*! is

3 y
Plel(x, y) = C”f @(t) (2 + x — ()02 dt

n

Let Rj, 1 < j < n, be the Riesz operators. They are defined by the following formula

iftx = 000 2 iz |y|n+1fx vy, f , <p .

These operators are bounded linear operators on L/(IR") for 1 < p < oo.
We say that a function w : [0, +o0) — R is a majorant if it is continuous, concave and increasing on
[0, +00), strictly positive on (0, +00) and w(0) = 0.

Lemma 1.1. Let w be a majorant. Set Mg = (B—1)"" + (B—2)"! , where p > 2. Then

f o) 4o o Ms(y),  y>0. (1)
1 s

Proof. Set, for C > 0and t > 0, wcs(x) = Cx if 0 < x < f and wcy(x) = Ctif x > t. Then wc; is a majorant and

we have
* wer(ys) , “ds  Ct 1
fl > ds_thl sﬁ_ﬁ—l_ﬁ—lw(y)' y>t.

If 0 < y < t, then we have

f “ wc(ys) o= ff/y wc(ys) g+ f “ wc(ys) s
L P . F P

~ 1 yh2 1yl
_Cyﬁ—Z(l_ tﬁz) Ctﬁ—l pra
1 1 yf?
SCyﬁ_z +Cyﬁ_1 pra,
1

We proved (1) for w = wcy, clearly (1) also holds for functions of the form wc, 1, + - + wc, +,, let us call them
polygonal majorants. For arbitrary majorant w there is a an increasing sequence w, of polygonal majorants
w, which converges pointwise to w. Then, by the Monotone Convergece Theorem and already proved
estimate (1) for polygonal majorants, we have

S,B n—oo S

O

The case § = 3 is the only one that we need below.
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2. An auxilliary result
Lemma 2.1. Let ¢ € LP(R") for some 1 < p < oo. Assume
lp() — () < w(lt =),  teR" )

for some x° € R" and some majorant w. Then the harmonic extension g = P[] of ¢ satisfies the following estimate:

w(y)

(° )<c()— 0<y<+co, 1<j<n. (©)

e

Proof. Forall (x,y) e H*'and all j = 1,...,n, we have

ag B d Y
a—xj(x, ]/) =Cy Ln (p(t)a_x] (yz + |x _ t|2)(n+1)/2 dt

= —(n+1)c, f oy —I g
n PR

_ oy
=~ 1, [ T =gy T

The last equality follows from the observation that x; — t; is an odd function of the variable x — . Therefore,
using spherical coordinates centered at x, we obtain

|x* — ¢
(2 + 0 — 1)+
. rdr
=n(n+ 1)c,,a)nyf w(r )—M
0

(2 +r2)z

=n(n+ 1)c,,a)n1 f w(L)smds
YJdo (1+s%)=

94 0
‘a—xj(x,y) S(n+1)cnyjﬂ;w(lx — 1)

Let us denote the above integral by I(y). Then we have
1 n 00 n
I(y) :f a)(L)sts+f w(L)SMdS
0 (1+s2)= 1 (1+s2)72

T w(y)s” w(ys)
Py d
Sj(: (1+52)7 S+.£ 2

< (1 + M3)w(y)

and this proves desired estimate (3). [

The proof shows that one can take C(n) = 5n(n + 1)c,w, /2.

3. Main result

We recall that a system of harmonic functions u;, 0 < j < n, on H"*! is called a conjugate system if it
satisfies the following system of equations

Z ouj _ % _ Jux (4)
oxj 0, dx  dxj’
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where xp = y, see [9]. When n = 2 this reduces to the classical Cauchy - Riemann equations. Given
a function ¢ = @(xo,x1,...,%,) harmonic in H™*! one gets a conjugate system by setting u; = dp/dx;,
0 < j < n. Conversely, given a conjugate system u;, 0 < j < n of harmonic functions in H"*!, there is a
(unique up to an additive constant) function ¢ on H"*! such that u; = dp/dx; for j=0,1,...,n

The above system allows one to infer estimates of dug/dxy = dug/dy from the estimates of du;/dx; for
1 < j < n, this is how one proves the following proposition.

Proposition 3.1. Let w be a majorant, E C R" = JH"" and let f;, 0 < j < n, be a system of conjugate functions on
H". Assume

w(y) .
ax](,)‘ xeE, y>0, 1<j<n

Then we have
f 0
dy

Theorem 3.2. Let f € LP(IR") for some 1 < p < oo and set f; = R;f for 1 < j < n. Let u = P[f] be the harmonic
extension of f to the upper half space H"*'. Let w be a majorant and let E be a subset of R" = JH"!. Assume

fi) - fil <w(t-xl), x€E, teR', 1<j<n )

y)‘ﬁn#, xeE, y>0.

Then there is a constant C = C(n) such that

San|scm®D,  yso, xeE ©

Proof. Letug = uand u; = P[f;]for1 < j < n. The system (u ]-);’:0 is a conjugate system of harmonic functions.
By Lemma 2.1 and our assumptions we have

< C(n) (y), y>0, x€E 1<j<n.

‘—%xw

Now the above propostion gives the desired estimate. [J

The proof shows that one can take C = 5n2(n + 1)c, @, /2.

4. The unit ball setting: furhter resluts and remarks

Let Pp denote harmonic Poisson kernel for the unit ball B” and also the corresponding extension operator
with the same kernel. Let A, denote the class of Holder continuous function with exponent 0 < @ < 1 and
set Lip = A;. Itis known that Pg maps A,($"7!) into A,(B") whenever 0 < a < 1. However if f € Lip(§"}),
then in general P[f] is not in Lip(IB").

It is natural to consider the corresponding question for the hyperbolic Poisson kernel P, for the unit ball
and the corresponding extension operator.

Problem 4.1. Are the partial derivatives of Py[ f] bounded for every f in Lip(§"~1)?

The answer is positive; see [1, 5]. More precisely, if f € Lip(§"™!), then P,[f] is in Lip(B"). This is not
true in the standard (euclidean) harmonic case.

Let us introduce needed terminology and notation. If xp € G C R" is not an isolated point of G and
0 < a <1 we introduce, for f : G —» R",

H, f(x0) = limsup |f(x) — f(xo)/Ix — xol*
Gax—xg
and write Lf(xo) instead of H; f(x9). We say that f : G — R™ is locally Holder (a -Holder) continuous at
xo € Gif Hy f(x0) < o0, for & = 1 we use term locally Lipschitz continuous at x.
The following results appears in [7]:
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Theorem 4.2 ([7]). Assume f : $"' — R" is locally Lipschitz continuous at xo € S, f € L¥($"!) and set
h = Pg[f]. Then

S1)
I’ (rx0)T) < M )

for every 0 < r < 1 and every unit vector T tangent to r$"~ at rxy, where M depends only on n, ||f|l and
L £ (xo).

If we suppose in addition that h is K-quasireqular (shortly K-qr) mapping along [0, xo), where o denotes the
origin, then

S2)
[’ (rxo)l < KM 3)

forevery 0 <r < 1.

The above result extends to the case of more general moduli functions which include w(0) = 6* (0 < a <
1), and therefore includes earlier results on Holder continuity (see [8]).

Let us review some results from [7]. In the proof of the next theorem we use Poisson integral represen-
tation of harmonic functions (see formula (12) below) by the Poisson kernel on the unit ball B" which is
given by

1 — |x[?

_ x € B" e g1,
naylx —ni*”’ a

Pp(x,n) =

Let do denote positive Borel measure on $"~! invariant with respect to orthogonal group O(n) normalized
such that 6(S"!) = 1.
For convenience of the reader we prove the following proposition which appeared in [7].

Proposition 4.3 ([7]). Suppose that 0 < o < 1and x =re,, 0 <r < 1. Then

Ly(re,) =: f 0 =1 gey < —Con
S

1 |x =t (1—r)t-a’

Proof. Since the integral is a continuous function of 0 < r < 1, it sufices to prove the estimate under
additional assumption 1/2 < r < 1. The integrand depends only on the angle 0 = /(t,e,) so we can use
integration in polar coordinates on the sphere $"~!. This gives

g n-219|a
Iy (rey) < c,,f 101 lf' do < (7)
0 (1=17 + Z0Y"
00 Qa+n—2
C"f 7 do. (8)
0 (1-r2+ % 02)

Next using (1 + Zu?)™ < C(1+u?)™! for 3 < r < 1 and a change of variable 0 = (1 — r)u, we find

Lren) <C1—net [ 7 4 )
o (A+u?)n?
Since the above improper integral is convergent the proof is completed. O
If w is a majorant satisfying the following condition
o -2
fo mw(éu)du < Cw(9), 0<6<1, (10)

then one proves, by a similar argument, the following proposition.
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Proposition 4.4.

w(len — t) w(l-7)
= _ <c-— < .
I,(rey) LH I do(t) <c T 0<r<l1

Theorem 4.5. Let w be a majorant satisfying condition (10). Assume h is continuous on B", harmonic on B" and
let xg be a point in $"~1. In addition suppose the following estimate is valid:

h(x) = h(xo)l < Cw(lx = xol), ~ x€8". (11)
Then there is a constant M = M,, ,, such that

1 —
gl < Mc =D o<,

. . . . =h
Proof. Since h is harmonic on B" and continuous on B we have

h(x) = f Pg(x, nh(n)do(n), x € B". (12)
Sn—'l
Setd:=1—|x. By computation dy, Pg(x, t) = _(|x2—xtk|" +dn l;‘_kt_l,fiz). Sinced < 2(1 — |x|) < 2|t — x| for all t € §"~*
we obtain
|0, Pr(x, t)| < = — i eB", teS L (13)

We can assume xy = ¢,. Let x = re, and let 0 be the angle between t and e,. Note that s := |x — H? =
1 —2rcos 6 + r* depends only on 0 for fixed x. Next, since fSH dkPr(x, Hh(e,)do(t) = 0, we find

Ay h(x) = o P, t)((t) - hew))do(t). (14)

Hence by (13) and the hypothesis (11) we get

105, 1(x)| < ¢,C f Malo(t) (15)

gn-1 |x - tln

and the result follows from Propoistion 4.4. []

Remark 4.6. It is convenient to denote expressions that appear in formulae (7) and (8) without constants by A(r, o)
and B(r, ) respectively. Note that A(r, @) is finite for 0 < r < 1and 0 < a < 1 and that B(r,1) = +oo. In order to
estimate A(r, &) we used a change of variable O = (1 — r)u and transformed the integral over [0, 7] into integral over
[0, a(r)] with respect to u, where a(r) = w(1 — r)~L. Since a(r) — oo as r — 1, it is convenient to estimate integral
A(r, o) by integral B(r, ) over interval [0, oo).

Remark 4.7. The above proof breaks down for a = 1 because B(r,1) = oo. Moreover, for each n = 2, there is a
Lipschitz continuous map f : $"' — R" such that u = Pg[f] is not Lipschitz continuous. In the planar case,
consider f = u + iv such that zf’ = —log(1 — z). uy, is bounded while its harmonic conjugate ruy, is not bounded. In
the spatial case, consider U(x1, X2, ...Xn) = u(x1 + iX2, X3, ...Xp).
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