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Abstract. In this study, we consider Kn := circ (GN1,GN2, . . . ,GNn) circulant matrices whose entries are
the Gaussian Nickel Fibonacci numbers GN1,GN2, . . . ,GNn. Then, we compute determinants of Kn by
exploiting Chebyshev polynomials of the second kind. Moreover, we obtain Cassini’s identity and the
D’Ocagne identity for the Gaussian Nickel Fibonacci numbers.

1. Introduction

In linear algebra, a circulant matrix is a square matrix defined in [1], in which all row vectors are
composed of the same elements and each row vector is rotated one element to the right relative to the
preceding row vector and it is given as:

Cn =


c0 c1 . . . cn−2 cn−1

cn−1 c0 . . . cn−3 cn−2
...

...
. . .

...
...

c2 c3 . . . c0 c1
c1 c2 . . . cn−1 c0


. (1)

It is seen that any circulant matrix is a particular kind of Toeplitz matrix. The eigenvalues of Cn are well
known [2]:

λ j =

n−1∑
k=0

ckω
jk , j = 0, 1, . . . ,n − 1 ,

where ω = exp( 2πi
n ) and i =

√
−1. Therefore, we can write determinant of a non singular circulant matrix

as:

det Cn =

n−1∏
j=0

n−1∑
k=0

ckω
jk
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where k = 0, 1, . . . ,n − 1 (see e.g. [3]).
In the literature, matrix theory has important role in mathematics and applied sciences. Moreover, there

are many applications and studies of special matrices such as symmetric, orthogonal and circulant matrices.
Especially, the circulant matrices have many applications in many fields of science such as statistics. The
circulant matrices have many applications in many fields of science such as statistics, algebraic coding
theory, acoustics, periodic stochastic process, numerical analysis, number theory, graph theory and so on,
see [4–17]. Many researchers have been deal with the circulant matrices and examined their properties
such as their determinants and inverses associated with some integer sequences. In 1970, Lind gave a
determinant formula for F = circ(Fr,Fr+1, ...,Fr+n−1) (r ≥ 1), [18]. Then, Solak examined the matrix norms
of F = circ(F1,F2, ...,Fn) and L = circ(L1,L2, ...,Ln), where Fs and Ls are the Fibonacci and Lucas numbers,
respectively, [19]. In 2011, Shen et al. gave the following determinant formulae for circulant matrices F and
L

det(F) = (1 − Fn+1)n−1 + Fn−2
n

n−1∑
k=1

Fk

(1 − Fn+1

Fn

)k−1

,

det(L) = (1 − Ln+1)n−1 + (Ln − 2)n−2
n−1∑
k=1

(Lk+2 − 3Lk+1)
(1 − Ln+1

Ln − 2

)k−1

,

[19].
On this topic, Bozkurt and Tam, in [5] obtained analogues of the results with [20] for circulant matrices

associated with Jacobsthal and Jacobsthal Lucas numbers. Namely, they calculated the determinant of
W = circ(W1,W2, ...,Wn),where the sequence Wn is defined by the recurrence relation Wn = pWn−1 + qWn−2
(n ≥ 3) where W1 = a and W2 = b, (a, b, p, q ∈ Z). Then, Yazlık and Taşkara, in [10], generalized the
results of Bozkurt and Tam [21] for a circulant matrix whose entries are generalized k−Horadam numbers.
Further, generalizing above determinant results for a sequence {ak} of real numbers defined by an mth order
linear homogeneous recurrence relation (m ≥ 1) in [22]. In [23], Bozkurt and Yılmaz obtained formulas for
determinant and inverse of circulant matrices with Pell and Pell-Lucas numbers. Recently, Jiang, Xin and
Lu [7] have studied some types of circulant matrices whose entries are Gaussian Fibonacci numbers. It is
important to note that there are many number sequences in the literature such as Fibonacci, Lucas, and
Leonardo numbers. They also play important roles in number theories with their applications. Researchers
have studied them in different ways with different number systems, [24–29, 38].

The Nickel Fibonacci numbers create a sequence with initial values N0 = 1 and N1 = 1. The Nickel
Fibonacci sequence is created by adding 3 times the pre-two Nickel Fibonacci number to the previous
Nickel Fibonacci number. Thus, it is defined for every integer n > 2 as follows:

Nn+1 = Nn + 3Nn−1,

with initial condition N0 = 1 and N1 = 1. Also, this sequence

1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, 6160, 1429, 32689, 75316, ...

is given in OEIS with the code A006130, [30] and it is called the second order Nickel Fibonacci sequence or
(1, 3)−Fibonacci sequence in the literature. The characteristic equation of the second order Nickel Fibonacci
sequence is

x2
− x − 3 = 0.

The roots of this equation is found as α = 1+
√

13
2 and β = 1−

√
13

2 . The number α is called the Nickel Ratio
(or Nickel constant), [31]. The Nickel Fibonacci numbers are studied by some researchers in different areas
such as encryption / decryption algorithms and finance, (for details, see [32] and [33]). The nth Gaussian
Fibonacci number Gn is defined with G0 = i, G1 = 1 and Gn = Fn + iFn−1 for n ≥ 2. Similary, in [34], the nth

Gaussian Nickel Fibonacci number GNn is defined with GN0 =
i
3 , GN1 = 1 and

GNn+1 = GNn + 3GNn−1 (2)

for n ≥ 2. We give the first few terms of the Gaussian Nickel Fibonacci numbers in Table 1.
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n 0 1 2 3 4 5
GNn

i
3 1 1 + i 4 + i 7 + 4i 19 + 7i

Table 1: Some Gaussian Nickel Fibonacci Numbers

We remind that the Chebyshev polynomials of second kind satisfying {Un(x)}n⩾0, where each Un(x) is of
degree n, satisfy the three-term recurrence relations [35]:

Un+1(x) = 2xUn(x) −Un−1(x) , for all n = 1, 2, . . . ,

with initial conditions U0(x) = 1 and U1(x) = 2x, or, equivalently,

Un(x) =
sin(n + 1)θ

sinθ
, with x = cosθ (0 ⩽ θ < π),

for all n = 0, 1, 2 . . .. It is also standard (see e.g. [36]) that

det


a b

c
. . .

. . .
. . .

. . . b
c a


n×n

=
(√

bc
)n

Un

(
a

2
√

bc

)
.

In [37], if

Dn =



d1 d2 d3 · · · dn−1 dn
a b
c a b

c a
. . .

. . .
. . .

. . .
c a b


(3)

then

det Dn =

n∑
k=1

dkbn−k
(
−

√

bc
)k−1

Uk−1

(
a

2
√

bc

)
, (4)

where Uk(x) is the kth Chebyshev polynomial of second kind, [35].
In this paper, firstly, we deal with circulant matrices associated with Gaussian Nickel Fibonacci numbers.

Then we give well-known Cassini’s and D’Ocagne identities for these numbers.

2. Main results

In this section, we consider the n-square circulant matrix

Kn := circ (GN1,GN2, . . . ,GNn)

where GNn is the nth Gaussian Nickel Fibonacci number. Then, we obtain determinant formula for the
matrixKn by exploiting spectacular properties of Chebyshev polynomials of the second kind.
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Let us define n-square matrices Ln and Mn as below:

Ln =



1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
−3 0 0 · · · 0 1 −1
0 0 0 . . . . . . . . . −3
... . . . . . . . . . . . . . . . 0
... . . . . . . . . . . . . . . .

...
0 1 −1 −3 0 · · · 0


and

Mn =



1 0 0 . . . 0 0
0 0 0 . . . 1 1
0 0 0 . . . 1 0
0 0 0 0
...
...
... . . .

...
...

0 1 1 . . . 0 0
0 1 0 . . . 0 0


. (5)

Then, we have the following property.

Lemma 2.1.

det(Ln) = det(Mn) =


−1,

n ≡ 3(mod 4)
n ≡ 0(mod 4)

1,
n ≡ 1(mod 4)
n ≡ 2(mod 4)

.

Proof. By using Laplace expansion on the first row, the proof can be seen, clearly.

Theorem 2.2. For n ≥ 3; we have

det(Kn) = −GN3

n−1∑
k=1

(GNk+2 + GNk+1)Zk−1
(
−

√

ZX
)n−k−1

Un−k−1

(
Y

2
√

ZX

)

+GN2

n−1∑
k=2

(GNk+2 + GNk+1)Zk−2
(
−

√

ZX
)n−k

Un−k

(
Y

2
√

ZX

)
+

(
GN2

2 + GN2GNn+1

)
Zn−2U0

(
Y

2
√

ZX

)
where X = (GNn+2 − GNn+3) + (GN3 − GN2), Y = (GN3 − GNn+3), Z = (GN2 − GNn+2).

Proof. For n ≥ 3; let us multiply the matrices Ln,Kn,Mn which is given above, as below:

Hn = LnKnMn
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Then, we have the following matrix

Hn =



GN2 GNn+1 + GNn GNn + GNn−1 · · · GN4 + GN3 GN3
GN3 GN2 + GNn+1 GNn+1 + GNn · · · GN4 + GN5 GN4

0 Y Z · · · 0 0

0 X Y
. . . 0

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 X Y Z


(6)

where Y = (GN3 −GNn+3), Z = (GN2 −GNn+2) and X = Y−Z. By adding the first column to the nth column,
we have

Hn =



GN2 GNn+1 + GNn GNn + GNn−1 · · · GN4 + GN3 GN3 + GN2
GN3 GN2 + GNn+1 GNn+1 + GNn · · · GN4 + GN5 GN4 + GN3

0 Y Z · · · 0 0

0 X Y
. . . 0

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 X Y Z


. (7)

Then, we have

det(Hn) = det(LnKnMn) = det(Ln)det(Kn)det(Mn).

By Lemma 2.1, it is seen that

det(Hn) = det(Kn).

Then, by Laplace expansion on the first column we have

det(Kn) = −GN3

n−1∑
k=1

(GNk+2 + GNk+1)Zk−1
(
−

√

ZX
)n−k−1

Un−k−1

(
Y

2
√

ZX

)

+GN2

n−1∑
k=2

(GNk+2 + GNk+1)Zk−2
(
−

√

ZX
)n−k

Un−k

(
Y

2
√

ZX

)
+

(
GN2

2 + GN2GNn+1

)
Zn−2U0

(
Y

2
√

ZX

)
where Uk(x) is the kth Chebyshev polynomial of second kind, the proof can be seen easily.

Example 2.3. For n = 5,

det(K5) = −GN3

4∑
k=1

(GNk+2 + GNk+1)Zk−1
(
−

√

ZX
)4−k

U4−k

(
Y

2
√

ZX

)

+GN2

4∑
k=2

(GNk+2 + GNk+1)Zk−2
(
−

√

ZX
)5−k

U5−k

(
Y

2
√

ZX

)
+

(
GN2

2 + GN2GN6

)
Z3U0

(
Y

2
√

ZX

)
= −9.2836 × 107 + 1.31492 × 108i = det(H5).

Note that the determinant of the matrix Kn can be obtained in another way as it presented in the
following theorem.
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Theorem 2.4. For n ≥ 3;

det(Kn) =


GN2 +

n−2∑
k=1

GNk+3

(
−X
Z

)n−(k+1)
 GN2 −

n−1∑
k=1

GNk+2

(
−X
Z

)n−(k+1)
 GN3

 Zn−2

where Y = (GN3 − GNn+3), Z = (GN2 − GNn+2) and X = Y − Z.

Proof. Clearly, det(K3) = 54 + 432i. For n > 3, if we multiply Kn with Q on the right and P on the left, we
obtain a special Hessenberg matrix that have nonzero entries only on first two rows, main diagonal and
subdiagonal. In other words:

P =



1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 1
−3 0 0 · · · 0 1 −1
0 0 0 . . . . . . . . . −3
... . . . . . . . . . . . . . . . 0
... . . . . . . . . . . . . . . .

...
0 1 −1 −3 0 · · · 0


(8)

and

Q =



1 0 0 · · · 0 0 0

0
(
−X
Z

)n−2
0 · · · 0 0 1

0
(
−X
Z

)n−3
0 · · · 0 1 0

0
(
−X
Z

)n−4
0 · · · . . . 0 0

...
...

... . . . . . .
...

0
(
−X
Z

)
1 . . . . . . . . . 0

0 1 0 0 0 · · · 0


. (9)

Notice that we obtain the following equality:

Hn = PKnQ

=



GN2 J′n GNn GNn−1 GNn−2 · · · GN3
GN3 Jn GNn+1 GNn GNn−1 · · · GN4

0 0 Z 0 0 · · · 0
0 0 X Z 0 0
...

...
. . .

. . .
. . .

...
. . . 0

0 0 · · · 0 X Z


where

J′n =

n−1∑
k=1

GNk+2

(
−X
Z

)n−(k+1)

,

Jn = GN2 +

n−2∑
k=1

GNk+3

(
−X
Z

)n−(k+1)

.
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We obtain

det(P)det(Hn)det(Q) = det(PHnQ)
= (JnGN2 − J′nGN3)Zn−2

=


GN2 +

n−2∑
k=1

GNk+3

(
−X
Z

)n−(k+1)
 GN2

−

n−1∑
k=1

GNk+2

(
−X
Z

)n−(k+1)
 GN3

 Zn−2.

Thus, the proof is complete.

Example 2.5. For n=5,

det(K5) =


GN2 +

3∑
k=1

GNk+3

(
−X
Z

)4−k
 GN2

−

 4∑
k=1

GNk+2

(
−X
Z

)4−k
 GN3

 Z3

=

((
GN2 + GN4

(
−

X
Z

)3

+ GN5

(
−

X
Z

)2

+ GN6

(
−

X
Z

))
GN2

−

(
GN3

(
−

X
Z

)3

+ GN4

(
−

X
Z

)2

+ GN5

(
−

X
Z

)
+ GN6

)
GN3

)
Z3

= −9.2836 × 107 + 1.31492 × 108i = det(H5).

Note that the results of Example 2.3 and 2.5 are the same as we expected.

Proposition 2.6. (Cassini’s identity) For n > 0, the following identity holds

GNn−1GNn+1 − (GNn)2 = (−1)n(4 − i)3n−2. (10)

Proof. Consider the matrix

V1 =

(
GN0 GN1
GN1 GN2

)
=

(
i
3 1
1 1 + i

)
.

We construct V2 from V1 by adding the second row of V1 to the first row of V2 and then interchanging the
two rows. Continuing this process for n times, we have

Vn =

(
GNn−1 GNn
GNn GNn+1

)
, (11)

which can be easily proved by induction. The first one of above elementary matrix row operation does not
affect the determinant and the second changes only the sign. Therefore, det Vn = (−1)n−1 det V1. Thus, we
have

GNn−1GNn+1 − (GNn)2 = (−1)n(4 − i)3n−2. (12)

We call the last equality Cassini’s identity for Gaussian Nickel Fibonacci numbers.
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Example 2.7. For n=3,

GN2GN4 − (GN3)2 = (1 + i)(7 + 4i) − (4 + i)2

= (−1)3(4 − i)3
= 3(i − 4)
= 3i − 12.

Proposition 2.8. (D’Ocagne’s identity) For n ≥ m ≥ 0, the following property is true

GNmGNn+1 − GNnGNm+1 = (4 − i)Nn−m (13)

where Nn is nth Nickel Fibonacci number.

Proof. Let us consider the following matrix:

M0 =

(
GNn GNn

GNn+1 GNn+1

)
.

Then, by multiplying the first column of Vn by 3, given by (11), and by adding the first column of it to M0,
obviously, we get

M1 =

(
GNn+1 GNn
GNn+2 GNn+1

)
.

Then, it is clear that M1 = det Vn = (−1)n(4 − i). Then, by multiplying the first column of M0 by 3, adding
the first column of M0 to that of M1 gives us

M2 =

(
GNn+2 GNn
GNn+3 GNn+1

)
.

By induction, we can see that

Ms =

(
GNn+s GNn

GNn+s+1 GNn+1

)
.

Using the sum property of determinant, we have det Ms = det Ms−1 +det Ms−2 which shows that {det Ms} is
a generalized Nickel sequence. Therefore, we have

det Ms = Ns−1 det M0 +Ns det M1.

Since, det M0 = 0 and

det Ms = Ns det M1 = (4 − i)Ns

we get

GNn+sGNn+1 − GNn+s+1GNn = (4 − i)Ns.

Substituting m = n + s gives us

GNmGNn+1 − GNm+1GNn = (4 − i)Nn−m.

So is the proof completed.

Example 2.9. For n = 5, m = 1,

GN1GN6 − GN2GN5 = 1(40 + 19i) − (1 + i)(19 + 7i)
= (4 − i)N4 = (4 − i)7
= 28 − 7i.
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3. Conclusion

In this paper, we examine circulant matrices with Gaussian Nickel Fibonacci number entries. We give a
formula for calculating the determinant of these matrices by exploiting the Chebyshev polynomials of the
second kind. Also, we give Cassini’s and D’Ocagne’s identities for Gaussian Nickel Fibonacci numbers.
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[38] S. Yamaç Akbıyık, M. Akbıyık, S. Yüce, On metallic ratio in Zp, Mathematical Methods in the Applied Sciences, 42, (2019), 5535 -

5550.


