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Abstract. This study is devoted to a submanifold M of codimension 2 of an almost paracontact metric
manifold M, for which the Reeb vector field of the ambient manifold is normal. Some sufficient conditions
for the existence of M are given. When M is paracosymplectic, then some necessary and sufficient condi-
tions are established for M to fall in one of the following classes of almost paracontact metric manifolds
according to the classification given by S. Zamkovoy and G. Nakova: normal, paracontact metric, para-
Sasakian, K-paracontact, quasi-para-Sasakian, respectively. When in addition, M is para-Sasakian and M
is paracosymplectic, some characterization results are obtained for M to be totally umbilical, as well as a
nonexistence result for M to be totally geodesic is provided. The case when M is of a constant sectional
curvature is analysed and an example is constructed.

Dedicated to the memory of Prof. Kostadin Gribachev (1938 - 2022)

1. Introduction

The notion of paracontact manifold is a corresponding notion of the contact manifold [1], which is
applied in theoretical physics, mechanics, thermodynamics and so on.

In 1976, Sato [6, 7] introduced for the first time in literature, the concept of almost paracontact Riemannian
manifolds, where the metric is compatible with the structure (see also a recent paper [10]), which is a different
topic from the one considered by the present paper. In our paper here, we use the notion of an almost
paracontact metric manifold, introduced by Kaneyuki and Kozai in 1985, which is not equal to that of
Sato, since the almost paracontact structure is anti-compatible with a semi-Riemannian metric of signature
(n+ 1,n) [13]. For a more complete description of the comparison between compatible and anti-compatible
metrics with the above structure, see [4], which shows that in the compatibility (resp. anti-compatibility)
case, the ranks of the eigensubbundles corresponding to the eigenvalues +1 and −1 are arbitrary (resp.
equal).

It is worthwhile to note that almost paracontact metric manifolds are the odd-dimensional version of
the almost para-Hermitian manifolds, in the same way as the almost contact Riemannian manifolds are the
odd-dimensional version of the almost Hermitian manifolds.
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A classification of almost paracontact metric manifolds was obtained by Zamkovoy and the second
author in [15]. Among all the 12 classes of this classification, a special one is the class of paracosymplectic
manifolds, studied in this paper.

In literature, the theory of hypersurfaces of manifolds endowed with certain structures is very important,
but also the theory of submanifolds of codimension 2 in manifolds endowed with some structures is
intensively studied. This is the reason which motivates the investigation of the present paper. There is
a concern for the study of the submanifolds of codimension 2, as for instance, Kanemaki studied in [11]
submanifolds of codimension 2 in quasi-Sasakian manifolds, the second author and Gribachev studied in
[5] submanifolds of codimension 2 in almost contact manifolds with B-metric. When the submanifold is
degenerate, Duggal and Bejancu examined in [8] lightlike submanifolds of codimension 2 and then Duggal
alone or with other co-authors published several papers on this topic. Also, the first author studied in [3]
lightlike submanifolds of codimension 2 in almost para-Hermitian manifolds.

The main purpose of the present paper is to study codimension 2 submanifolds of almost paracontact
metric manifolds with normal Reeb vector field.

Section 2 contains some preliminaries, where the main notion of the paper, namely almost paracontact
metric manifold is recalled and also some characterization results of some special classes of almost para-
contact metric manifolds are cited from [15], in order to be used later on. In Section 3 an existence result for
an almost paracontact metric structure on a codimension 2 submanifold of an almost paracontact metric
manifold with normal Reeb vector field is obtained.

In Section 4, as a special case, some codimension 2 submanifolds of paracosymplectic manifolds with
normal Reeb vector field are studied. Some necessary and sufficient conditions for such a submanifold
to belong to a certain class are given. We obtain here a characterization theorem for a codimension 2
submanifold of a paracosymplectic manifold with normal Reeb vector field to fall in one of the following
classes of almost paracontact metric manifolds: normal, paracontact metric, para-Sasakian, K-paracontact,
quasi-para-Sasakian, respectively. In this context, some problems related to the Riemannian curvature are
also studied.

The last part of the paper represents Section 5, which is devoted to the codimension 2 para-Sasakian
submanifolds of paracosymplectic manifolds with normal Reeb vector field. In this context, some charac-
terization results are given for totally umbilical submanifolds, as well as a nonexistence result for a totally
geodesic submanifold is provided. Moreover, the case when the ambient manifold is of a constant sectional
curvature is analysed. An example of a para-Sasakian submanifold of codimension 2 with a normal Reeb
vector field in a paracosymplectic manifold of an arbitrary odd dimension is constructed. The obtained
submanifold is totally umbilical, parallel and it has a constant sectional curvature −1.

2. Preliminaries

A (2n+1)-dimensional smooth manifold M has an almost paracontact structure (φ, ξ, η) [12] if it admits a
tensor fieldφ of type (1, 1), a vector field ξ, called a Reeb vector field, and a 1-form η satisfying the following
conditions:

φ(ξ) = 0, η ◦ φ = 0, η(ξ) = 1; (1)

φ2X = X − η(X)ξ, X ∈ χ(M); (2)

the tensor field φ induces an almost paracomplex structure φ|D on the paracontact distribution
D = Ker η, that is, φ|D is an almost product structure (φ2

|D = I) and the eigensubbundles D +and
D −corresponding to the eigenvalues 1 and −1 of φ|D , respectively, have the same dimension.

(3)

Everywhere here we will denote by F (M) and χ(M) the set of all smooth real functions and vector fields on
M, respectively. Also, X,Y,Z,W stand for vector fields belonging to χ(M).
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The manifold M endowed with an almost paracontact structure (φ, ξ, η) is called an almost paracontact
manifold. If an almost paracontact manifold (M, φ, ξ, η) admits a pseudo-Riemannian metric 1 such that

1(φX, φY) = −1(X,Y) + η(X)η(Y), (4)

then (M, φ, ξ, η, 1) is called an almost paracontact metric manifold (see [14]). The metric 1 is called compatible
metric and it is necessarily of signature (n+ 1,n). Setting Y = ξ, we have η(X) = 1(X, ξ). Also, using (1) and
(2) we obtain that the condition (4) is equivalent to

1(φX,Y) = −1(X, φY). (5)

Remark 2.1. The restriction 1|D of 1 on the paracontact distributionD is a para-Hermitian metric and (D, φ|D, 1|D)
is an almost para-Hermitian vector bundle. According to [13, Remark, p. 84], the eigensubbundlesD + andD − have
the same dimension since from (5), they are maximal totally isotropic with respect to 1|D.

The fundamental 2-form ϕ on (M, φ, ξ, η, 1) is given by ϕ(X,Y) = 1(φX,Y) and the structure tensor field
F of M is defined by

F(X,Y,Z) = (∇Xϕ)(Y,Z) = 1((∇Xφ)Y,Z),

where ∇ is the Levi-Civita connection on M. The tensor field F has the following properties:

F(X,Y,Z) = −F(X,Z,Y),
F(X, φY, φZ) = F(X,Y,Z) + η(Y)F(X,Z, ξ) − η(Z)F(X,Y, ξ).

(6)

The following 1-forms, called Lee forms, are associated with F:

θ(X) = 1i jF(ei, e j,X), θ ∗(X) = 1i jF(ei, φ e j,X), ω(X) = F(ξ, ξ,X), (7)

where {ei, ξ /i = 1, . . . , 2n} is a local basis of TM, and (1i j) is the inverse matrix of (1i j), with 1i j = 1(ei, e j).

The tangent space TpM at each point p in an almost paracontact metric manifold (M, φ, ξ, η, 1) is the
following orthogonal direct sum

TpM = Dp ⊕ spanR{ξ(p)}.

Hence, every vector x ∈ TpM can be decomposed uniquely in the following manner

x = hx + vx, where hx = φ2x ∈ Dp and vx = η(x).ξ(p) ∈ spanR{ξ(p)}. (8)

Let F be the subspace of the space ⊗0
3TpM of the tensors of type (0, 3) over TpM, defined by

F = {F ∈ ⊗0
3TpM : F(x, y, z) = −F(x, z, y) = F(x, φ y, φ z) − η(y)F(x, z, ξ) + η(z)F(x, y, ξ)}.

In [15] the spaceF has been decomposed into 12 mutually orthogonal and invariant (under the action of the
structure groupUπ(n)×{1}) subspaces. Based on this decomposition, 12 basic classes of almost paracontact
metric manifolds Gi (i = 1, . . . , 12) with respect to the tensor field F are obtained. First we recall the partial
decomposition of F in an orthogonal direct sum of its subspaces Wi (i = 1, 2, 3, 4), i.e.

F =W1 ⊕W2 ⊕W3 ⊕W4, (9)

where Wi (i = 1, 2, 3, 4) are defined by

W1 = {F ∈ F : F(x, y, z) = F(hx,hy,hz)},
W2 = {F ∈ F : F(x, y, z) = −η(y)F(hx,hz, ξ) + η(z)F(hx,hy, ξ)},
W3 = {F ∈ F : F(x, y, z) = η(x)F(ξ,hy,hz),
W4 = {F ∈ F : F(x, y, z) = η(x){η(y)F(ξ, ξ,hz) − η(z)F(ξ, ξ,hy)},

(10)
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for arbitrary vectors x, y, z ∈ TpM. The subspace W2 is an orthogonal direct sum of the following classes of
almost paracontact metric manifolds:

W2 = G5 ⊕G6 ⊕G7 ⊕G8 ⊕G9 ⊕G10 (11)

and W4 = G12. For later use we give the characteristic conditions of the classes Gi (i = 5, . . . , 10, 12):

G5 : F(X,Y,Z) =
θ(ξ)
2n
{η(Y)1(φX, φZ) − η(Z)1(φX, φY)}; (12)

G6 : F(X,Y,Z) = −
θ ∗(ξ)

2n
{η(Y)1(X, φZ) − η(Z)1(X, φY)}; (13)

G7 : F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ),

F(X,Y, ξ) = −F(Y,X, ξ) = −F(φX, φY, ξ), θ ∗(ξ) = 0;
(14)

G8 : F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ),

F(X,Y, ξ) = F(Y,X, ξ) = −F(φX, φY, ξ), θ(ξ) = 0;
(15)

G9 : F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ),

F(X,Y, ξ) = −F(Y,X, ξ) = F(φX, φY, ξ);
(16)

G10 : F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ),

F(X,Y, ξ) = F(Y,X, ξ) = F(φX, φY, ξ);
(17)

G12 : F(X,Y,Z) = η(X)
{
η(Y)F(ξ, ξ,Z) − η(Z)F(ξ, ξ,Y)

}
. (18)

Definition 2.2. [9] An almost paracontact metric manifold (M, φ, ξ, η, 1) is said to be paracosymplectic if ∇ϕ =
∇η = 0.

Remark 2.3. The above Definition 2.2 is introduced in [9], but the condition ∇ϕ = 0 is enough since the condition
∇η = 0 is a consequence of the previous one.

It is clear that paracosymplectic manifolds constitute the special class G0, determined by the condition
F(X,Y,Z) = 0. This class is the intersection of the basic twelve classes. Hence, G0 is the class of the almost
paracontact metric manifolds with parallel structures, i.e.

∇ϕ = ∇φ = ∇ ξ = ∇η = ∇1 = 0.

An almost paracontact metric manifold is called (see [12, 14])

• normal if N(X,Y) − 2dη(X,Y)ξ = 0, where N(X,Y) = φ2[X,Y] + [φX, φY] − φ[φX,Y] − φ[X, φY] is the
Nijenhuis torsion tensor of φ;

• paracontact metric if ϕ = dη;

• para-Sasakian if it is normal and paracontact metric;

• K-paracontact if it is paracontact and ξ is a Killing vector field;

• quasi-para-Sasakian if it is normal and dϕ = 0.
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The classes of normal, paracontact metric, para-Sasakian, K-paracontact and quasi-para-Sasakian manifolds
are determined in [15] . Here, we recall some results which we need.

Further we consider the subclass of the class G5, which consists of all (2n + 1)-dimensional almost
paracontact metric manifolds belonging to G5, such that θ(ξ) = 2n (see [15]). Here we denote this subclass
by G∗5. The characteristic condition of G∗5 is:

G∗5 : F(X,Y,Z) = η(Y)1(φX, φZ) − η(Z)1(φX, φY). (19)

Theorem 2.4. [15] A (2n + 1)-dimensional almost paracontact metric manifold (M, φ, ξ, η, 1) is:
(i) normal if and only if M belongs to one of the classes G1, G2, G5, G6, G7, G8 or to the classes which are their

direct sums;
(ii) paracontact metric if and only if M belongs to the class G∗5 or to the classes which are direct sums of G∗5 with

G4 or G10;
(iii) para-Sasakian if and only if M belongs to the class G∗5;
(iv) K-paracontact metric if and only if M belongs to the classes G∗5 or G∗5 ⊕G4;
(v) quasi-para-Sasakian if and only if M belongs to the classes G5, G8 or G5 ⊕G8.

3. Codimension 2 submanifolds of almost paracontact metric manifolds with normal Reeb vector field

Let (M, φ, ξ, η, 1) be a (2n+3)-dimensional almost paracontact metric manifold and let M be a submanifold
of codimension 2 embedded in M such that the normal vector fields N1 and N2 to M satisfy the conditions

1(N1,N1) = −1(N2,N2) = 1, 1(N1,N2) = 0. (20)

We assume that ξ is a normal vector field to M. Then for ξwe have

ξ = aN1 + bN2, (21)

where a and b are functions on M.
In what follows, we use the notation χ(M) for the set of all vector fields on M and X,Y,Z,W for arbitrary

vector fields belonging to χ(M).
From (21) we obtain η(X) = 0, a = η(N1), b = −η(N2) and

a2
− b2 = 1. (22)

The equality (22) implies that a , 0. Now, by using φξ = 0 and (21), we get φN1 = −
b
a
φN2. The vector field

φN2 ∈ χ(M) has the following unique decomposition

φN2 = ζ + cN1 + dN2,

where: ζ ∈ χ(M) is the tangent part of φN2; cN1 + dN2 is the normal part of φN2; c, d are functions on M.
From the latter equality, taking into account 1(φN2,N2) = 1(φN2, ξ) = 0, (21) and a , 0, we obtain c = d = 0.
Hence, for φN1 and φN2 the following equalities hold good

φN1 = −
b
a
ζ, φN2 = ζ, (23)

which means that both φN1 and φN2 are vector fields on M. The transform vector field φX has the unique
decomposition

φX = φX + α(X)N1 + β(X)N2,
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where φ is a (1, 1)-tensor field on M and α, β are 1-forms. From the above equality using (23) we get

α(X) =
b
a
β(X), β(X) = 1(X, ζ). (24)

Then φX becomes

φX = φX +
b
a
β(X)N1 + β(X)N2. (25)

Further, by straightforward computations, we obtain that the induced objects φ, β, ζ on the submanifold M
of M satisfy the following conditions:

• from φ2X = X, (25) and (22) we derive

φ2X = X −
1
a2 β(X)ζ, β(φX) = 0; (26)

• the equalities (2), (21), (23), (25) and (22) imply

φζ = 0, β(ζ) = a2; (27)

• by using (4) and (25) we get

1(φX, φY) = −1(X,Y) +
1
a2 β(X)β(Y). (28)

Now, we define a vector field ξ and a 1-form η on M by

ξ =
1
a
ζ, η(X) =

1
a
β(X). (29)

Taking into account (24), (26), (27) and (29), we verify that the following equalities hold good on M:

η(ξ) = 1, η(X) = 1(X, ξ), φξ = 0, η(φX) = 0, φ2X = X − η(X)ξ. (30)

We denote by 1 the restriction of the metric 1 on M. For 1, by virtue of (28) and (29), we have

1(φX, φY) = −1(X,Y) + η(X)η(Y). (31)

Theorem 3.1. Let (M, φ, ξ, η, 1) be a (2n + 3)-dimensional almost paracontact metric manifold and let M be a
(2n + 1)-dimensional submanifold of M such that ξ is a normal vector field to M satisfying (21). Then (M, φ, ξ, η, 1)
is an almost paracontact metric manifold with an almost paracontact structure (φ, ξ, η), where ξ and η are defined by
(29),

φX = φX − η(X)
(
bN1 + aN2

)
(32)

and 1 is the restriction of the metric 1 on M.

Proof. According to (30) and (31), for the structure (φ, ξ, η) the conditions (1), (2) are fulfilled and 1 is a
compatible metric on M.

We denote by D = Ker η and φ|D the paracontact distribution of M and the restriction of φ on D,
respectively. Now, we show that the eigensubbundlesD+ andD− corresponding to the eigenvalues 1 and
−1 of the almost product structure φ|D, respectively, have equal dimension n. From η(X) = 0 it follows that
the (2n+ 2)-dimensional paracontact distributionD of M contains the (2n+ 1)-dimensional tangent bundle
TM of M, i.e. TM ⊂ D. By using (30) and (32), we get φξ = bN1 + aN2. Hence, for any X ∈ TM we have
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1(X, φξ) = 0. The latter and φξ ∈ D imply that the vector bundle {φξ} spanned by φξ is the orthogonal
complement of TM in D, i.e. D = TM ⊕ span{φξ}. Since TM = D ⊕ span{ξ} (the sum ⊕ is orthogonal), we
obtain thatD is the following orthogonal direct sum

D = D ⊕W,

where W = span{ξ, φξ}. By virtue of (32) for any X ∈ D we get φX = φX, which means that φ|D = φ|D
and the subbundle D of D is invariant under the action of φ. By using η(ξ) = 0 it is easy to check that the
subbundleW ofD is also φ-invariant.

Let P be the matrix of φ|D in the basis {e1, . . . , e2n} of D and let Q be the matrix of φ|W in the basis
{e2n+1, e2n+2} of W, where both bases consist of eigenvectors of φ|D and φ|W, respectively. From a well
known algebraic result it follows that the matrix L of φ|D in the basis {e1, . . . , e2n, e2n+1, e2n+2} of D has the

form L =
(
P 0
0 Q

)
(P, Q are matrices of type (2n × 2n) and (2 × 2), respectively). Since for φ|D the condition

(3) is fulfilled, i.e. dimD
+
= dimD

−

= n + 1, L is a diagonal matrix and its main diagonal consists of 1 and

−1, the number of which is the same, equal to (n+ 1). Taking into account that Q =
(
1 0
0 −1

)
and φ|D = φ|D,

we conclude that dimD+ = dimD− = n, which completes the proof.

Let ∇ and ∇ be the Levi-Civita connections of the metrics 1 and 1 on M and M, respectively. Then the
Gauss-Weingarten formulas are:

∇XY = ∇XY + σ(X,Y),
∇XN1 = −AN1

X +DXN1,

∇XN2 = −AN2
X +DXN2.

(33)

Here, σ is the second fundamental form, ANi
is the shape operator with respect to Ni (i = 1, 2) and D is the

normal connection on the normal bundle TM⊥. For σ, ANi
(i = 1, 2) and D we obtain

σ(X,Y) = 1(AN1
X,Y)N1 − 1(AN2

X,Y)N2 = 1(X,AN1
Y)N1 − 1(X,AN2

Y)N2,

DXN1 = γ(X)N2, DXN2 = γ(X)N1,
(34)

where γ is a 1-form on M.

4. Codimension 2 submanifolds of paracosymplectic manifolds with normal Reeb vector field

From now on, (M, φ, ξ, η, 1) is a (2n+ 3)-dimensional paracosymplectic manifold and (M, φ, ξ, η, 1) is the
submanifold of codimension 2 of M which is considered in Section 3. From∇ ξ = 0, (21), (33), (34) we derive

AN1
X = −

b
a

AN2
X and

γ(X) = −
1
a

(Xb). (35)

Then the Gauss-Weingarten formulas become

∇XY = ∇XY − 1(AX,Y)
(

b
a

N1 +N2

)
,

∇XN1 =
b
a

AX + γ(X)N2,

∇XN2 = −AX + γ(X)N1,

(36)
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where we have denoted the shape operator AN2
by A for brevity. By using ∇φ = 0, (32) and (36), we obtain

(∇Xφ)Y =
1
a
{
η(Y)AX − 1(AX,Y)ξ

}
. (37)

According to Theorem 3.1, (M, φ, ξ, η, 1) is an almost paracontact metric manifold whoose fundamental
2-form we denote by ϕ, given by ϕ(X,Y) = 1(φX,Y). Then the structure tensor field F of M is defined by

F(X,Y,Z) = (∇Xϕ)(Y,Z) = 1((∇Xφ)Y,Z). (38)

By virtue of (37) and (38), for F we get

F(X,Y,Z) =
1
a
{
η(Y)1(AX,Z) − η(Z)1(AX,Y)

}
. (39)

Further, depending on the properties of the shape operator A, we determine the classes to which M
belongs according to the classification of almost paracontact metric manifolds given in [15].

In [15] it is shown that the decomposition (9) implies that the tensor F, given by (38), has a unique

representation in the form F(X,Y,Z) =
4∑

j=1
FW j (X,Y,Z), where FW j are the projections of F in the subspaces

W j ( j = 1, 2, 3, 4). Taking into account (6), (8) and (10), the projections FW j ( j = 1, 2, 3, 4) of F can be written
as follows:

FW1 (X,Y,Z) = F(φ2X, φ2Y, φ2Z),
FW2 (X,Y,Z) = −η(Y)F(φ2X, φ2Z, ξ) + η(Z)F(φ2X, φ2Y, ξ),
FW3 (X,Y,Z) = η(X)F(ξ, φY, φZ),
FW4 (X,Y,Z) = η(X){η(Y)F(ξ, ξ,Z) − η(Z)F(ξ, ξ,Y)}.

By using (39) for the projections of the structure tensor F of M, we obtain FW1 = FW3 = 0,

FW2 (X,Y,Z) =
1
a

{
η(Y)1(A(φ2X), φ2Z) − η(Z)1(A(φ2X), φ2Y)

}
, (40)

FW4 (X,Y,Z) =
1
a
η(X)

{
η(Y)1(Aξ, φ2Z) − η(Z)1(Aξ, φ2Y)

}
. (41)

Hence, for F we have

F(X,Y,Z) = FW2 (X,Y,Z) + FW4 (X,Y,Z). (42)

Thus, we proved the following proposition:

Proposition 4.1. The submanifold (M, φ, ξ, η, 1) of (M, φ, ξ, η, 1) belongs to the direct sum W2 ⊕W4.

By virtue of (12), (15) and (17), we obtain:

Lemma 4.2. The characteristic conditions of the classes G5 ⊕ G8 ⊕ G10 and G5 ⊕ G8 of almost paracontact metric
manifolds with respect to F are as follows:

(i) G5 ⊕G8 ⊕G10:

F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ), (43)

F(X,Y, ξ) = F(Y,X, ξ); (44)

(ii) G5 ⊕G8: the conditions (43), (44) and

F(X,Y, ξ) = −F(φX, φY, ξ). (45)
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Theorem 4.3. For the submanifold (M, φ, ξ, η, 1) of (M, φ, ξ, η, 1), the following assertions are equivalent:
(i) M ∈W2 ;
(ii) F is given by

F(X,Y,Z) =
1
a

{
η(Y)1(A(φ2X), φ2Z) − η(Z)1(A(φ2X), φ2Y)

}
(46)

and (46) can be written in the following equivalent form

F(X,Y,Z) = −η(Y)F(X,Z, ξ) + η(Z)F(X,Y, ξ), (47)

where

F(X,Y, ξ) = −
1
a
1(A(φ2X), φ2Y); (48)

(iii) A satisfies

Aξ = η(Aξ)ξ; (49)

(iv) M ∈ G5 ⊕G8 ⊕G10.

Proof. (i) ⇒ (ii) If M ∈ W2, then F = FW2 . Having in mind (40), we see that (46) is fulfilled. Substituting Z
with ξ in (46), we get (48). Then (46) and (48) yield (47).

(ii)⇒ (i) This implication is obvious.
(ii)⇒ (iii) If (46) holds, then F = FW2 . Now, from (42) it follows that FW4 = 0. Substituting X and Z with

ξ in (41), we derive 1(Aξ, φ2Y) = 0. From the latter equality, by using (2) and (5), we obtain (49).
(iii)⇒ (ii) Conversely, let us assume that A satisfies (49). Thus, from (41) we get FW4 = 0, which together

with (42) implies F = FW2 , i.e. (46) is valid.
(i) ⇒ (iv) According to the proved assertion (i) ⇒ (ii), the tensor F satisfies (47) and (48). Since A is

self-adjoint with respect to 1, from (48) it follows that F(X,Y, ξ) = F(Y,X, ξ). Now, applying Lemma 4.2, we
conclude that M ∈ G5 ⊕G8 ⊕G10.

(iv)⇒ (i) This implication is an immediate consequence from (11).

Theorem 4.4. For the submanifold (M, φ, ξ, η, 1) of (M, φ, ξ, η, 1), the following assertions hold:
(i) M ∈ G5 ⊕G8 if and only if A ◦ φ = φ ◦ A. Moreover, if M ∈ G5 ⊕G8, then

θ(ξ) =
1
a
{
η(Aξ) − tr(A)

}
; (50)

(ii) M ∈ G10 if and only if A ◦ φ = −φ ◦ A;
(iii) M ∈ G5 if and only if

AX =
1

2n
{[

tr(A) − η(Aξ)
]

X +
[
(2n + 1)η(Aξ) − tr(A)

]
η(X)ξ

}
, tr(A) , η(Aξ); (51)

(iv) M ∈ G∗5 if and only if

AX = −aX + [a + η(Aξ)]η(X)ξ; (52)

(v) M ∈ G8 if and only if A ◦ φ = φ ◦ A and tr(A) = η(Aξ);
(vi) M ∈W4 = G12 if and only if

AX = η(X)Aξ +
{
η(AX) − η(X)η(Aξ)

}
ξ; (53)

(vii) M is a paracosymplectic manifold if and only if AX = η(X)η(Aξ)ξ.
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Proof. First, we note that the direct sum G5 ⊕ G8 ⊕ G10 contains the classes G5 ⊕ G8, G10, G5, G∗5 and G8.
Therefore, if M belongs to some of these classes, then the assertions (i) ÷ (iii) from Theorem 4.3 are valid.

(i) Let us assume that M ∈ G5 ⊕ G8. Then (45) and (48) imply − 1
a1(A(φ2X), φ2Y) = 1

a1(A(φX), φY).
Employing the latter equality, with the help of (1), (2), (5) and (49), we obtain A ◦ φ = φ ◦ A.

Conversely, by using A ◦ φ = φ ◦ A and φξ = 0, we get (49). According to Theorem 4.3, from (49) it
follows that M ∈ G5 ⊕G8 ⊕G10 and (48) holds. Now, by using (48) we check that F(X,Y, ξ) = −F(φX, φY, ξ).
Thus, in view of Lemma 4.2, we obtain that M ∈ G5 ⊕G8.

It is known [14] that there exists a local orthonormal basis (called a φ-basis) {e1, . . . , en, φe1, . . . , φen, ξ} on
M, such that 1(ei, ei) = −1(φei, φei) = 1 (i = 1, . . . ,n). Let us suppose that M ∈ G5 ⊕ G8. Hence, the equality
A ◦ φ = φ ◦ A is fulfilled. Then, by virtue of (4), (7) and (48), we find

θ(ξ) =
n∑

i=1

{
F(ei, ei, ξ) − F(φei, φei, ξ)

}
=

1
a

n∑
i=1

{
−1(A(φ2ei), φ2ei) + 1(A(φei), φei)

}
= −

2
a

n∑
i=1

1(Aei, ei),

tr(A) =
n∑

i=1

{
1(Aei, ei) − 1(A(φei), φei)

}
+ 1(Aξ, ξ) = 2

n∑
i=1

1(Aei, ei) + η(Aξ).

Thus, from the expressions for θ(ξ) and tr(A) we obtain (50).
(ii) We omit the proof of (ii), because by using (17), we can prove it in a similar way as (i). Note that if

M ∈ G10, then θ(ξ) = 0 and tr(A) = η(Aξ).
(iii) If M ∈ G5, then from (i) it follows that A ◦ φ = φ ◦ A. By using the latter, (4), (48) and (49), we get

F(X,Y, ξ) =
1
a
{
−1(AX,Y) + η(Aξ)η(X)η(Y)

}
. (54)

On the other hand, from (12) we have

F(X,Y, ξ) = −
θ(ξ)
2n
1(φX, φY), (55)

where θ(ξ) is given by (50). Equating the right sides of (54) and (55) we obtain (51).
Conversely, let the shape operator A satisfies (51). Then we have A ◦ φ = φ ◦ A. Hence M ∈ G5 ⊕ G8,

which implies that (47), (48) and (50) hold good. Since tr(A) , η(Aξ), from (50) it follows that θ(ξ) , 0.
Substituting (51) in (48) and having in mind (47) we obtain (12), which completes the proof of (iii).

(iv) If M ∈ G∗5, then from the definition of G∗5 it follows that M is a manifold from the class G5 for
which θ(ξ) = 2n. This enables us to apply (iii). Hence, (50) and (51) are fulfilled and from (50) we get
tr(A) = −2na + η(Aξ). Substituting the latter in (51) we derive (52).

Conversely, suppose (52) is satisfied. Then we have A ◦ φ = φ ◦ A, which implies that M ∈ G5 ⊕ G8.
Hence, (47) and (48) are valid. By virtue of (48) and (52) we obtain (19), i.e. M ∈ G∗5.

(v) From (15) and Lemma 4.2 it follows that M ∈ G8 if and only if M ∈ G5 ⊕G8 and θ(ξ) = 0. Therefore,
the truth of (v) one can easily establish by using (i).

(vi) M ∈W4 if and only if F = FW4 . From (42) it follows that M ∈W4 if and only if FW2 = 0. Having in mind
(40), the vanishing of the projection FW2 is equivalent to 1(A(φ2X), φ2Z) = 0. After standard computations,
by using (2) and (5), we obtain that the latter condition is equivalent to (53).

(vii) M is paracosymplectic if and only if F = 0, which is equivalent to FW2 = FW4 = 0. Considering the
proofs of (ii)⇒ (iii) of Theorem 4.3 and (vi) of Theorem 4.4, we infer that F = 0 if and only if both (49) and
(53) hold. Now, the equivalence of the condition AX = η(X)η(Aξ)ξwith (49) and (53) is easily seen.

As an immediate consequence of Theorem 2.4 and Theorem 4.4, we state

Theorem 4.5. For the submanifold (M, φ, ξ, η, 1) of (M, φ, ξ, η, 1) the following statements are equivalent:
(i) M is normal;
(ii) M is quasi-para-Sasakian;
(iii) one of the following conditions is fulfilled: (51), A ◦ φ = φ ◦ A.
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Furthermore, the statements given below are also equivalent:
(iv) M is paracontact metric;
(v) M is para-Sasakian;
(vi) M is K-paracontact metric;
(vii) A satisfies (52).

Let R and R be the Riemannian curvature tensor fields of M and M given by R(X,Y)Z = ∇X∇YZ −
∇Y∇XZ − ∇[X,Y]Z and R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, respectively. The corresponding to R and R
tensor fields of type (0, 4) are defined by

R(X,Y,Z,W) = 1(R(X,Y)Z,W) and R(X,Y,Z,W) = 1(R(X,Y)Z,W),

respectively. From the conditions ∇φ = ∇ ξ = 0 and (4) it follows that R has the property

R(X,Y, φZ, φW) = −R(X,Y,Z,W). (56)

By using (36), for the second fundamental form σ of M and (∇Xσ)Y we have

σ(X,Y) = −1(AX,Y)
(

b
a

N1 +N2

)
,

(∇Xσ)(Y,Z) = DXσ(Y,Z) − σ(∇XY,Z) − σ(Y,∇XZ)

=

{
−1((∇XA)Y,Z) −

b
a
γ(X)1(AY,Z)

}{
b
a

N1 +N2

}
.

(57)

Then we obtain the equations of Gauss and Codazzi

R(X,Y,Z,W) = R(X,Y,Z,W) + 1(σ(X,Z), σ(Y,W)) − 1(σ(Y,Z), σ(X,W))

= R(X,Y,Z,W) +
1
a2π1(AX,AY,Z,W),

(58)

where the tensor π1 is defined by π1(X,Y,Z,W) = 1(Y,Z)1(X,W) − 1(X,Z)1(Y,W) and

(R(X,Y)Z)⊥ = (∇Xσ)(Y,Z) − (∇Yσ)(X,Z)

=

{
1((∇YA)X,Z) − 1((∇XA)Y,Z) +

b
a

[γ(Y)1(AX,Z) − γ(X)1(AY,Z)]
}{

b
a

N1 +N2

}
,

(59)

respectively.

Proposition 4.6. For the curvature tensor R of (M, φ, ξ, η, 1) the following equality holds

R(X,Y, φZ, φW) = −R(X,Y,Z,W) −
1
a2π1(AX,AY,Z,W) −

1
a2π1(AX,AY, φZ, φW)

+
1
a
η(W)

{
1((∇YA)X, φZ) − 1((∇XA)Y, φZ) +

b
a

[γ(Y)1(AX, φZ) − γ(X)1(AY, φZ)]
}

−
1
a
η(Z)

{
1((∇YA)X, φW) − 1((∇XA)Y, φW) +

b
a

[γ(Y)1(AX, φW) − γ(X)1(AY, φW)]
}
.

(60)

Proof. With the help of (32) we get

R(X,Y, φZ, φW) = R(X,Y, φZ, φW) + η(W)[bR(X,Y, φZ,N1) + aR(X,Y, φZ,N2)]

+η(Z)[bR(X,Y,N1, φW) + aR(X,Y,N2, φW)].
(61)
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From R(X,Y, ξ) = 0 and (21) we deduce R(X,Y,Z,N1) = −
b
a

R(X,Y,Z,N2). Hence, (61) becomes

R(X,Y, φZ, φW) = R(X,Y, φZ, φW) +
1
a
η(W)R(X,Y, φZ,N2) −

1
a
η(Z)R(X,Y, φW,N2). (62)

On the other hand, R satisfies (56). Equating the right sides of (62) and (56), we derive

R(X,Y, φZ, φW) +
1
a
η(W)R(X,Y, φZ,N2) −

1
a
η(Z)R(X,Y, φW,N2) = −R(X,Y,Z,W). (63)

By virtue of (59) we have

R(X,Y, φZ,N2) =
{
1((∇YA)X, φZ) − 1((∇XA)Y, φZ) +

b
a

[γ(Y)1(AX, φZ) − γ(X)1(AY, φZ)]
}
. (64)

Finally, by using (58), (63) and (64), we obtain (60).

Definition 4.7. Let S be a submanifold in a (semi-) Riemannian manifold (N, h). The normal connection D on the
normal bundle TS⊥ is called flat if R⊥(X,Y)V = 0, where the curvature tensor field R⊥ is defined by

R⊥(X,Y)V = DXDYV −DYDXV −D[X,Y]V,

for any X,Y ∈ χ(S) and any V ∈ TS⊥.

Proposition 4.8. The normal connection D of the submanifold (M, φ, ξ, η, 1) of (M, φ, ξ, η, 1) is flat if and only if
the 1-form γ is closed.

Proof. To prove R⊥(X,Y)V = 0 for any V ∈ TM⊥, it is sufficient to prove that R⊥(X,Y)N1 = R⊥(X,Y)N2 =

0. Employing (36), we get R⊥(X,Y)N1 = dγ(X,Y)N2 and R⊥(X,Y)N2 = dγ(X,Y)N1. The vanishing of
R⊥(X,Y)N1 and R⊥(X,Y)N2 is equivalent to dγ(X,Y) = 0, which completes the proof.

5. Codimension 2 para-Sasakian submanifolds of paracosymplectic manifolds with normal Reeb vector
field

In this section we deal with curvature properties of para-Sasakian submanifolds of paracosymplectic
manifolds. Also, we construct an example of a para-Sasakian submanifold of the considered type in the
present paper.

Definition 5.1. [2] A submanifold S in a (semi-) Riemannian manifold (N, h) is said to be:
(i) totally geodesic if its shape operator vanishes identically, that is, A = 0 or equivalently the second fundamental

form σ vanishes identically;
(ii) umbilical with respect to the normal vector field V to S if AV = f I (I is the identity transformation) for some

function f ;
(iii) totally umbilical if S is umbilical with respect to every normal vector field to S;
(iv) parallel if ∇σ = 0.

Remark 5.2. We note that if (M, φ, ξ, η, 1) is a para-Sasakian submanifold of (M, φ, ξ, η, 1), then from Theorem 4.5
it follows that A satisfies (52). Therefore, we have tr(A) = −2na + η(Aξ).

Proposition 5.3. There exist no totally geodesic para-Sasakian submanifolds of paracosymplectic manifolds.

Proof. Let us assume that there exists a totally geodesic para-Sasakian submanifold (M, φ, ξ, η, 1) of a
paracosymplectic manifold (M, φ, ξ, η, 1). Taking into account Definition 5.1, we have AX = 0 for any

X ∈ χ(M). Then from (52) we get X =
[a + η(Aξ)]

a
η(X)ξ. Since dim M = 2n + 1 ≥ 3, the latter equality leads

to a contradiction.
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Theorem 5.4. Let (M, φ, ξ, η, 1) be a para-Sasakian submanifold of (M, φ, ξ, η, 1). Then the following assertions are
equivalent:

(i) M is parallel;
(ii) η(Aξ) = −a;
(iii) M is totally umbilical.

Proof. (i) ⇒ (ii) Let M be parallel. According to Definition 5.1, (∇Xσ)(Y,Z) = 0 for any X,Y,Z ∈ χ(M). By
virtue of (52) and (57), we obtain

(∇Xσ)(Y,Z)

=

{[
−

b
a
γ(X)η(Aξ) − (Xη(Aξ))

]
η(Y)η(Z) − [a + η(Aξ)][η(Y)1(φX,Z) + η(Z)1(φX,Y)]

}{
b
a

N1 +N2

}
= 0.

In the above equality we replace Y and Z with φY and ξ, respectively. Thus, we get

[a + η(Aξ)]1(φX, φY)
{

b
a

N1 +N2

}
= 0.

Now, the linear independence of N1 and N2 implies [a + η(Aξ)]1(φX, φY) = 0 for any X,Y ∈ χ(M). Hence,
η(Aξ) = −a holds good.

(ii) ⇒ (i) Let us assume that η(Aξ) = −a. By using the obtained expression for (∇Xσ)(Y,Z) above we
directly verify that (∇Xσ)(Y,Z) = 0, i.e. M is parallel.

(ii)⇒ (iii) If η(Aξ) = −a, then from (52) we have AX = −aX, which means that M is umbilical with respect

to N2. From AN1
X = −

b
a

AN2
X = −

b
a

AX it follows that M is also umbilical with respect to N1. Therefore, M
is totally umbilical.

(iii) ⇒ (ii) Let us suppose that M is totally umbilical. Then AX = f X, where f ∈ F (M). According to
Remark 5.2, we have 2n f + η(Aξ) = −2na + η(Aξ). Hence, we get f = −a. Thus, the left-hand side of (52)
becomes −aX, which implies η(Aξ) = −a.

Theorem 5.5. Let (M, φ, ξ, η, 1) be of a constant sectional curvature K and let (M, φ, ξ, η, 1) be a para-Sasakian
submanifold of M. Then M is of a constant sectional curvature (K − 1) if and only if M is totally umbilical.

Proof. With the help of (52) and (58) we obtain

R(X,Y,Z,W) = R(X,Y,Z,W) + π1(X,Y,Z,W)

+
[a + η(Aξ)]

a
{
1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(Y,Z)η(X)η(W) − 1(X,W)η(Y)η(Z)

}
,

(65)

which is the equation of Gauss for a para-Sasakian submanifold M of M. Since M is of a constant sectional
curvature, the curvature tensor R of M has the form R(X,Y,Z,W) = Kπ1(X,Y,Z,W). Taking into account
that the restriction of 1 on M is 1, we have π1(X,Y,Z,W) = 1(Y,Z)1(X,W) − 1(X,Z)1(Y,W) = π1(X,Y,Z,W).
Hence, (65) becomes

Kπ1(X,Y,Z,W) = R(X,Y,Z,W) + π1(X,Y,Z,W)

+
[a + η(Aξ)]

a
{
1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(Y,Z)η(X)η(W) − 1(X,W)η(Y)η(Z)

}
.

(66)

Now, let us suppose that M is of a constant sectional curvature (K − 1). Substituting R(X,Y,Z,W) with
(K − 1)π1(X,Y,Z,W) in (66), we get

[a + η(Aξ)]
a

{
1(X,Z)η(Y)η(W) + 1(Y,W)η(X)η(Z) − 1(Y,Z)η(X)η(W) − 1(X,W)η(Y)η(Z)

}
= 0



C.-L. Bejan, G. Nakova / Filomat 37:25 (2023), 8693–8707 8706

for any X,Y,Z,W ∈ χ(M). From the latter equality we derive η(Aξ) = −a. Applying Theorem 5.4 we
conclude that M is totally umbilical.

Conversely, let M be totally umbilical. Then the conditionη(Aξ) = −a and (66) imply (K−1)π1(X,Y,Z,W) =
R(X,Y,Z,W). Thus, for the sectional curvature K of a non-degenerate section α = span {X,Y} in M we obtain

K =
R(X,Y,Y,X)
π1(X,Y,Y,X)

= K − 1.

Example 5.6. Let M = R2n+3
n+1 = {u = (x1, . . . , xn+1, y1, . . . , yn+1, t) | xi, yi, t ∈ R}. We define an almost paracontact

metric structure (φ, ξ, η, 1) on R2n+3
n+1 in the following way:

φ

(
∂

∂xi

)
=
∂

∂yi , φ

(
∂

∂yi

)
=
∂

∂xi , φ

(
∂
∂t

)
= 0, i = 1, . . . ,n + 1; ξ =

∂
∂t

; η = dt;

and 1 is a pseudo-Euclidean scalar product, given by

⟨u,u⟩ =
n+1∑
i=1

{
(xi)2

− (yi)2
}
+ t2.

Since the components 1i j of the matrix of 1 with respect to the local basis
{
∂

∂xi ,
∂

∂yi ,
∂
∂t

}
, (i = 1, . . . ,n + 1) are

constants, the Levi-Civita connection ∇ of 1 is flat. Now, it is easy to see that ∇φ = 0. Hence, M = (R2n+3
n+1 , φ, ξ, η, 1)

is a paracosymplectic manifold.
Let us consider the submanifold M = {u = (x1, . . . , xn+1, y1, . . . , yn+1, 0) ∈M | ⟨u,u⟩ = −1} of M, which is given

locally by the following immersion:

i
(
x1, . . . , xn+1, y1, . . . , yn

)
=

(
x1, . . . , xn+1, y1, . . . , yn, yn+1 =

√
(x1)2 + . . . + (xn+1)2 − (y1)2 − . . . − (yn)2 + 1, 0

)
.

(67)

Identifying a point p in M with its position vector Z, we obtain

TM = span
{
∂Z
∂xi =

∂

∂xi +
∂yn+1

∂xi ,
∂Z
∂y j =

∂

∂y j +
∂yn+1

∂y j

}
, i = 1, . . . ,n + 1; j = 1, . . . ,n.

The vector fields ξ and Z are normal to M and 1(Z,Z) = −1. From 1(ξ, φZ) = 1(Z, φZ) = 0 it follows that
φZ ∈ χ(M). Moreover, we have 1(φZ, φZ) = 1.

Now, we determine an almost paracontact metric structure (φ, ξ, η, 1) on M by

ξ = φZ, φX = φX − η(X)Z, X ∈ χ(M), (68)

where 1 is the restriction of 1 on M and η(X) = 1(X, ξ). Hence, (M, φ, ξ, η, 1) is an almost paracontact metric
manifold, which is a submanifold of codimension 2 of M such that ξ is normal to M and satisfies (21). We note that
we put N1 = ξ, N2 = Z, for which the conditions in (20) hold. Then a = 1 and b = 0 in (21). Since ∇ is flat, we have
∇XZ = X for any X ∈ χ(M), which means that A = −I. Thus, the Gauss-Weingarten formulas are

∇XY = ∇XY + 1(X,Y)N2,
∇XN2 = X.

(69)

By using (68) and (69), we find (∇Xφ)Y = 1(X,Y)ξ − η(Y)X. From the latter equality we obtain

F(X,Y,Z) = η(Y)1(φX, φZ) − η(Z)1(φX, φY). (70)

Let R and R be the curvature tensors of M and M, respectively. By virtue of (69) and R = 0, we get

R(X,Y,Z,W) = −π1(X,Y,Z,W). (71)
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Theorem 5.7. Let (M, φ, ξ, η, 1) be the submanifold of M = (R2n+3
n+1 , φ, ξ, η, 1), defined by (67). Then we have:

(i) M is a para-Sasakian manifold;
(ii) M is parallel;
(iii) M is totally umbilical;
(iv) M is of constant sectional curvature −1.

Proof. (i) Taking into account (70), (19) and Theorem 2.4, we conclude that M is para-Sasakian.
(ii) By direct calculations, using (69), we obtain (∇Xσ)(Y,Z) = 0 for any X,Y,Z ∈ χ(M). Then, according to

Definition 5.1, M is parallel.
(iii) The truth of this assertion follows from A = −I and Definition 5.1.
(iv) It is an immediate consequence of (71).

In conclusion, we remark that for the shape operator A of M we have Aξ = −ξ, which implies η(Aξ) = −1.
This means that the condition η(Aξ) = −a holds. Therefore, the constructed example confirms the results
obtained in Theorem 4.5, Theorem 5.4 and Theorem 5.5.

Acknowledgement. Both authors are deeply indebted to the unknown referee for reading very carefully
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Stuttgart, 1983.

[3] C. L. Bejan, 2-codimensional lightlike submanifolds of almost para-Hermitian manifolds, Diff. Geom. Appl. Brno 1995, Masaryk Univ.
Brno (1996), 7–17.
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