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The space of centered planes and generalized bilinear connection

Olga Belova®

*Immanuel Kant Baltic Federal University, Kaliningrad, Russia

Abstract. We continue to study the space of centered planes in n-dimension projective space. We use
E. Cartan’s method of external forms and the group-theoretical method of G. F. Laptev to study the space
of centered planes of the same dimension. These methods are successfully applied in physics.
In a generalized bundle, a bilinear connection associated with a space is given. The connection object
contains two simplest subtensors and subquasi-tensors (four simplest and three simple subquasi-tensors).
The object field of this connection defines the objects of torsion S, curvature-torsion T, and curvature

R. The curvature tensor contains six simplest and four simple subtensors, and curvature-torsion tensor
contains three simplest and two simple subtensors.

The canonical case of a generalized bilinear connection is considered.
We realize the strong Lumiste’s affine clothing (it is an analog of the strong Norde’s normalization of
the space of centered planes). Covariant differentials and covariant derivatives of the clothing quasi-tensor

are described. The covariant derivatives do not form a tensor. We present a geometrical characterization of
the generalized bilinear connection using mappings.

1. Introduction

The theory of connections is an important area of modern differential geometry [3, 4, 13, 14, 25, 28, 29, 36].
During its centuries-old history, it has gained popularity among geometers and successfully continues to
develop today (see, e.g. [10, 11, 16-18, 21, 23, 24, 37]).

In 1918, H. Weyl introduced an affine connection without a metric. The affine connection with the metric
was introduced by A. Einstein. Further, the theory was developed by such mathematicians as T. Levi-Civita
(1917) and C. Ehresmann (1941) and popularized by B. A. Rosenfeld in [31]. In 1923, E. Cartan gave
the general concept of an affine connection from the point of view of the theory of relativity. Then this
connection developed geometrically, no longer in connection with applications.

Generalized affine connections were considered in book [19], where a relation was shown between a
generalized affine connection and a linear connection.

We will use the method of external forms of E. Cartan [1, 2, 5, 22, 30, 32] and the theoretical-group
method of G.F. Laptev to study the space of centered planes of the same dimension.
Generalized affine connections (plane and normal) for the space of centered planes were introduced by

author in 2010 (see [6, 7]) and also considered in the paper [12]. In the present paper, we introduce a new
generalized bilinear connection.
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2. Analytical apparatus and object of research

Projective space P, can be represented as a quotient space L,+1/ ~ of a linear space L, with respect to
equivalence (collinearity) ~ of non-zero vectors, i.e.,

Py = Lyt \ {0}/ ~ .

Projective frame in the space P, is a system formed by points Ay, I’ =0, ...,n, and an unit point E. In linear
n
space L1 linearly independent vectors ey correspond to the points Ay, and a vector e = ), ey corresponds
=0

to the point E. Moreover, these vectors are determined in the space L,.+; with an accuracy up to a common
factor. The unit point is specified together with the basic points, although you do not have to mention it
every time.

We will use the method of a moving frame {4, A7}, [,... =1,..,n, the derivation formulae of the vertices
of which are (see, e.g., [9])

dA=0A+w'A,  dA = 0A1+ W Aj + wiA, (1)

where the form 0 acts as a proportionality factor, d is the symbol of ordinary differentiation in the space P,
and the structure forms o/, w}, w; of the projective group GP(n), effectively acting on the space P,, satisfy
the following Cartan equations:

Do’ = @ A w?,
Da)§ = a)f/\a)§<+6§a)1</\a)l<+a)]/\a)l, (2)
Dw; = a){ A wy,

where D is the symbol of exterior differentiation.

In the projective space P, a space II of all centered m-dimensional planes P}, is considered. Vertices A
and A;, a,..=1,..,m, of the moving frame are placed on the centered plane, where vertex A is fixed as a
centre. The forms o®, w® w§ (a,..=m+1,..,n)are the basic forms of the space I'l.

Remark 2.1. The space I is a differentiable manifold whose points are m-dimensional centered planes.

We use the technique which is based on the Laptev — Lumiste method. This in turn requires knowledge
of calculating external differential forms.
We will use the following terminology [34]:

Definition 2.2. A substructure of a structure S is called simple if it is not a union of two substructures of the
structure S.
A simple substructure is called the simplest if it, in turn, does not have a substructure.

3. Generalized bilinear connection

Similarly to the generalized plane and normal affine connections [6, 7, 12] we consider a new generalized
connection.

Definition 3.1. A smooth manifold with structural equations
D" :a)h/\a)z+a)“/\a)i’x,
Dw* =a)/3/\a)g+a)”/\a)2‘,

Dw§ = a)i A (620}2 - 62‘(05) — 0" A wy,
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Dawj = wj, A w} — & A (6?60;7 + 6ch) = 0, N Wy + Wy A wy,
Da)g = a)z; A @l + cu;’3 Awy + 6gwu A"+ (5?&))/ + 6$wﬁ) A w”
is called a generalized bundle of bilinear frames [20] and denoted by A, o), where k = m(n — m).

Remark 3.2. The symbol k is bracketed in the notation A,z _y, (k) Since k forms w; are the basic and fibre forms. Let’s
call them basic-fibre forms (see [35]).

In the generalized bundle A,2_y.y we define a bilinear connection by the Laptev — Lumiste method

[15, 33] using the forms of planar @}, normal linear cf)g connections, and the forms @5

b b
@y = w, — Ggﬁa)ﬁ -G’ — G;"ﬁwf,

~1 _ 4 _ T4 & _ T4 ,.C_ Tac &

@) = wy =T} 0" =T} 0 =T wf, 3)
~a o Ta oy e raa, )
wg = wg =T @’ =Ty =Ty w,.

We find the exterior differentials of the connection forms and apply the Cartan — Laptev theorem [15]

AGg, = Go,wp + (G = 8500wy = Gl ! + Gl " + Goy )

ab™" B ap,y ap,y b’
AGY, = Gy g + G, o + G,
AGY = Gl o + Gip @ + Ggg;;wg’,
AT} = Ojwe — Ofwy = ch,awa + TZC,ea)E + T’;Zaa)’;,
ALY, = Tp . + T = 8w = T, gl + T4, o + rg;ﬁwf, 4)

ac c_.a _ yac ac (4 ace . f
AT + &af = rba,ﬁwﬁ + Ty o + T35,

AT, = 8fw, =T, @ + T4, o’ + T3 @)

pay Bay b’

a _ 10 ,.a aa N4 _ s _ T« u o a a,a I
AFM Fﬁaa)y + Fﬁya}u 6,3“’)/ Owp = Fﬁylpa) + Fﬁwa) + l"ﬁ%ya)a,
an _ sa 4 _ Tad u an b aab U

Al"ﬁy 6;/(‘),3 Tﬁ%yw + Tﬁ%b(u + l"ﬁ%ywb,

where the right-hand sides of the basic forms contain Pfaffian derivatives, and differential operator A acts

by the law AGY, = dGj, + Gl w — Gpw; — Gy

B
The object of a generalized bilinear connection I' = {G%,, G*,

b .
a7 G Gagr Toar Thor T Ty T Ty} associ-
ated with the space IT of centered planes contains

pa” =By

B
e two simplest subtensors GY, and G;"é’ of the simple subquasi-tensor {GZ‘ﬁ, Go, Ggg} of the connection I';
e four s-implest subquf;\si—tensors {ZC, HFZZ’,;C l"gu, FE‘; ; o
e two simple subquasi-tensors {I’bc, Iy I’ba} and {I’ﬁa, I’ﬁy, I’ﬁy .

Structure equations of the basic forms can be written as

Dw® = o A &% + P A (Dg + Sgya)ﬁ Aw” + S,‘;‘aw'8 Aw® + ng,wﬁ A w, + 8%’ A b+ Sggwa A wf,

a_ b ~0 a a a b a a b c ac b a
Do = 0’ A @y + 0% A @y + S 0" A + 5, 0” AN + S 0’ AW,
where the components of torsion object S are found according to the formulae

a (04 [ o o aa __ aa
Sy =Ty S =Tp =G Sy =T

o o
a7 g =Tg,  S3=6

[ab)”
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b _ b a _ 14 a _ 14 ac _ yac
Sgﬁ - Ggﬁ’ Sba - Fba’ Sbc - 1—‘[bc]’ Sba - Fba’
. L . 1
where square brackets mean antisymmetrization on extreme indexes. For example, Fl[lﬁyl = §< P

Components of torsion object S satisfy differential congruences modulo the basic forms

0 — b 0 b —
Asg}, + Sf;%/]wu - Ff}iaa);’/] =0, Asgﬂ - Sﬁ‘ﬁ wyp + G;bwﬁ =0,

ASgr— 8wy =0,  ASy =0,  ASY =0,
AS,, + Sy we — Ty wg = djwa =0, AS; =0,

ASp + 0ywy = 0.

24

By r)/ﬁ)‘

8458

The torsion object S is a geometric object (quasi-tensor) only in conjunction with the bilinear connection

B
object T
Taking into account the differential equations (4) in the structural equations of the connection forms (3),
we obtain ;
~a _ ~b ~ ~ ~ y b
D&y = @, N @y + @, A a)g + T;"ﬁya)ﬁ AN’ + Tgﬁbwﬁ Aw'+
b 4 b boaof be P Y
+T§‘ﬁywﬁ ANw, + Ty @’ A + T;"hcﬁa) A we + T;'ﬁ;a)b A wg,

~0 _ ~C ~a a B y a c a
Da)b—a)b/\a)C+Rhﬁya) AN’ + Ry 0 A+

8
@ AN wy + RISl A a)é,

a ﬁ a C e ae
0" Nw; + R} " A+ R hapc

ac
+R bee bea

bap

v
p

aa .y IS a b ab
+Rﬁ)/ya) ANw, + Rﬁﬂba) ANw” + Rﬁay
Curvature-torsion object T has the following components:

Da”)g =@, A (Z)‘V" + nga)y At + nga)y A 0"+

a V4 aab Y Iz
o' Awy + Rﬁwa)g A w).

Ta — G(X

_1b o _ M T
apy alpy] rﬂ[ﬁG Gl

byl alp” pyl

— 4
Top =2 (Gflﬁ,b] ~TopGan ~ Ga[ﬁrib])’

ab _ ~ab _ ~ab e ab ch ~a arb _ sbyra _ ~H ab b e
Toy, = Gan = Gov = TosGl + T Gl + 83T, — 0T — GhT + Gy T,
— B
Tgbc - Gg[b,c] - TZ[bG?C] - Ga[brgc]'

_ , ye 4
To, = 2GUe |+ T Gh, = T4,GA + Gl = G, T + 04T, — 65T, = 3Gl

b b, , \
T3kt = Gilys 1 - THAGE] - GLATys] - o Tlar] + o' )
The components of the curvature object R can be find

Ry, = FZ[C,E] - rg[crge]’
Ryea = Thoe = Thae + Toalee = TiLeas
R, =Ty, ~Tjt -+ T{TL ~ T3 1 - olry,,
ngaﬁ = FZ[a,ﬁ] - Fi[argﬁ]’

o d d
Rfoﬁ - FZa,ﬁ - ng,a + rbgrga - rbar%’

— FZ [C,d] _ rz [c l-ad RY ¢ | +T 17

acd —
R a,p aepls Bab — " Blab yla™ pb)’

bap
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Reye =Toya = Tpay + Fﬁ?/rgﬂ B Fﬁﬂl"gy,
Ryt =T, = Tiha + Tl ~TiTh, = Ol
Royu = Tty * F‘;D,l"gm,

Reyu = F/D;i?/,u] Doyt %TZZ B Ff;ﬁl“gy,
R = TiI41 + THTL

Differential congruences for R have the form

AR

bee

=0, AR}, -2R} &% +R%w;=0, AR} =0,

bea

ARZaﬁ + ch[aa);] + Rﬁaﬁ]wc =0,

AR, ~ 2Rgfjﬁw,;, - Rg;ﬁwg =0,

AR =0, ARy, =0,

bap — Bab —
b b — ab —
ARG +2R% b —R¥ w0, =0,  ARY =0,
@ a a aa —
AR;S’W - Rﬁ[wwy] + Rﬁ[wla)g =0,

b b — b —
ARg" — 2R3 w, — RY wf =0, ARYL =0.

From the previous congruences it can be seen that the curvature object R is a tensor containing

: : a ad acd a ab aab .
e six simplest subtensors Ry Ry Rbaﬁ, Rﬁuh, Rﬁay, Rﬁw’

; d d b b
« four simple subtensors {R? , R? , R |, {Rg; g Rich, R;;ﬁ}, {ng, RS, Rgay}, {Rg;”, Ry, Rggy}.

The result of a prolongation the differential equations (4)

AG?,

u o b u Mo I ab ab
o~ (6ngﬁ,b + ol ng,y) wh + ((5/3 Gy, + 04 Gy — 6;(;[1[5) W, + (G;M +GH

AGY,, =GB,y + Glywp + (G;j;b + 55Gi + 5;@35) we =0,

)wb EO,

b bH b u b Heb b b b _
AGY — (6;60% + 6 00GE, + 0L Gieh, — O 6CG§V) o, + (Gf;ﬁ - 626[,) wy +Gitwe =0,

. YV Y a, _
MGy = G + (G = 95Gly) @y + Gapp@e =0,
AGZ(b,c + <6ZG(clb + 6§;ch + 6§Gaab) w, =0,

ac asesV Y scna Yscra), e —
AGub,ﬁ - (6[566ng + 6ﬁ6aGeb + 6ﬁ5bGﬂe) a)), =0,

AGab _ Gab o + (6§Gab _ 6$GZ":) wy + GZ‘;’;@C =0,

aB,y apcy ay
AGH, + (0562 - 6!Gst) we = 0,
b, ¢ b =
AGays + (046 Gas + 005Gy — 6100Gl — 805Gt ), =

The components of the curvature-torsion object T satisfy the following differential congruences modulo
basic forms:

u b ab —
AT, + 01 To @y + Togy @b = 0,
ATZ,, + 278, oy — TS, =0,

ATy, = Tot,wp = Tartwe =0,

=0, AT, =0, AT =0.

ATy abp apy

abc

This imply the following Theorem.
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Theorem 3.3. The curvature-torsion object of the generalized bilinear connection is a tensor containing three simplest

subtensors T¢, , T"Z";ﬁ, TZ‘;; and two simple subtensors {Ts‘bc, lefﬁ, T;"ﬁb}, {Tﬂ"‘gﬁ, T;"g;, T;’;fy}.

4. The canonical case

Let’s consider the case when G, = 0 and ng = 0. From these conditions we have @ = w§ — G%wf and
the left-hand sides of the 2nd and the 3d equations (4) are identically vanishing, then the 1st equations (4)
will be simplified

00( a Oa Oa b Oab Y
AGaﬁ — 5ﬁwﬂ = Gaﬁ“yaﬂ + Guﬁ,ba) + Gaﬁ/},a)b.

In the canonical case, the quasi-tensor G of the generalized bilinear connection is reduced to the quasi-
tensor g}Z‘ﬁ, while the connection object is simplified 1;9 = {g;g‘ﬁ, 0,0, T;,, It I, l"gy, Fgﬂ, Fg;‘/ 1.
Substituting G, = 0, Ggg = ( into the expressions for the components of the curvature-torsion tensor
they will take the form
Oa :g;a —l"b g;a _g;# ™
apy algyl “alpPbyl  Malpt pyl

%a _g;a +rcg;a_g;)/l—'at
apb — “apb ab™~cp ap” yb’

%fz%hy e et Ty 0 G + 0y — 0L g;gﬁrgl;,
0, _ 0
abc 4
L = §°T¢ — &6T@ — 66&04
abp B~ ab a gb b~ap’

0
be _ [be [byac
T;’ﬁy = —(5331"”7,] + 0, FLLXﬁy .

The curvature-torsion tensor in the canonical case is not equal to zero, but it contains zero components

0
Ta

abc®

Theorem 4.1. The canonical generalized bilinear connection without curvature-torsion is characterized by the fol-
lowing properties:

0 0
1) alternating bilinear Pfaffian derivatives Gy 61 of the connection quasi-tensor Gog are formed by alternations of

0
convolutions of the quasi-tensor Ggy and subobjects T} , g, of the quasi-tensors {I'; , I'; , T'<} and {Fgﬂ, s, Fg; }

of the bilinear connection;

0 0
2) the Pfaffian derivatives Gjﬁ , Of the connection quasi-tensor Gyg are formed by convolutions of the quasi-tensor

0
Gag and the components of the simplest quasi-tensors I'; and T' 0

0 0
3) the Pfaffian derivatives Gfgf P of the connection quasi-tensor Gy are the algebraic sum of convolutions of the

0
quasi-tensor G itself with the simplest quasi-tensors I'};¢ and I and the components l"gﬁ and I

Proof. When the curvature-torsion tensor T vanishes we have
0 a _ I—'b éa + 8—;# ™
alyl = T alp™by] al™ myy

g;a _ _(O:’a e + &y I
apb — cB™ ab ap= yb’
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0 0 0
ab  _ ~a b H rab atb bra
Gay,ﬁ = Cﬁl"u), - Guﬁl"w + 6yl"aﬁ - 6uryﬁ.

O

5. The analog of Norden's strong normalization

Let us perform the analog of Norden'’s strong normalization [8, 26] of the space of centered planes under
consideration by fields of the following geometric patterns:

1) an (n —m—1)-plane C,_,,—1 having no common points with the
plane P;,;

2) an (m—1)-plane N,,_; contained in the plane P}, and not passing
through its center A

Cn—m—l

v

%
Pm

An analog of the Cartan’s plane C,_,,—1 can be defined by the points B, = A, + ALA,; + A,A; and the
normal of the second kind of Norden N,,_; can be defined by B, = A, + 1,A.

dB, = OB+ (wl = AL A g™ + Mg’ — AL w®)By+(Aaw® + %) By +(dAg — Ap@? + 0o + Aata@® = AaAp@” + e @®)A, (5)
where py = A,A% — Ay

dBy = OB, + (h + A + ALwh)By + (dAG + Abw] = Al + @l = MM + 00" = AAL@))B,+

(6)
(= Aa(@AL + A2 = Al + @h) + dAg = Apaf + Aoy + @ + Aaftpa’ — Ao + Al piga) JA.

a

A+ w, =0,
AN + @l =0, ANy + Afw, + we = 0.

)

Theorem 5.1. The clothing geometrical object A is a quasi-tensor.

Theorem 5.2. The clothing of the space of centered planes by fields of equipment planes allows to define the connection
in the associated fibering.

Proof.
01 01 01
TO = —5A —5Ay, D0 =6ua+A%, T =5A, ®)
o1 a (s 0 a o o 01 aa aa
Do ==Ophar Ty = Oppy =0Ag Tgy = =034, ©)
01 01

&= =05 @20, G%=0 (10)
ap prras ab 4 ap :
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Remark 5.3. For the plane and normal generalized connections [12] the clothing of the space of centered planes by

fields of equipment planes allows to define the connection

0111 Olﬂ a o ab Olﬂ a a Olﬂ a a u ac Cca
Cl=0, Cil=A, C%=0, T%=-0A—0N T8 =00u+A%  TE =57

Ola 010( aa 010{ o 010( o o Olaa aa
L&=0, L§=0, L§"=0, T§=-00A, T§ =04u,—00As T =-00A%

6. Covariant differentials and derivatives
The differential congruences of the object A can be represented as equations

Mg+ @g = g 0@® + Ay’ + A0,

a a _ ya B a b ab P
AAa + Wy = Aa,ﬁw + /\a,bw + /\a,ﬁwh’

Ao+ Awq + @a = Aap? + Aaa@” + AL

We have the following congruences modulo basic forms
Mo = Aap@’ + Aoy + Ao =0, Adgp + Agwp + My, =0, ALY, — 88406 + 8Pw, =0,
AN g = AL + AT+ Mwa =0, AAL, = GiAfwe = Sjwa =0, AAL+ Al + A =0,
Ao = Aaa@h + (Afly + A3 )0 + Ao + Agwa =0, Alag + Ag,0p + lawa =0,
ANy + Apal + Ay + Ay = 0.
Covariant differentials

VAg=dA = M@l + @, VAL =dAS + ASa - A%k +

Vg = dAy — A + A + @,

Covariant derivatives

Voda = Aap 4+ ATS,  Vada = doa + Mll,  ViA = A0 + AT,

b b

VpAl = A%, — AGTY, + Agrib, VpAG = A% - Agrgﬁ + AT, ViAL = Ay = AT + AT
Vida = daa+ Aglha,  Vpha = dap+ AT, Vide = A+ A0

AVada = Vpdaol + (ViA, + T )wp =0, AVpA, + T =0, AVEA, + 8bws + T w, = 0,

AV AG = Thwf + Th o = Sfwa =0, AVpAL = ViA§w) + ViAiw, — Tl + T, =0,
b
AVAG = T, + Dyl =0,

AV Ay + (VaAL + AST2 )y + T =0, AVgA, — Valawf + (ViAo + VAL + AZFZﬁ)wa + rgﬁa)y =0,
AVEA, + (VEAG + ATy + Afwy + [hwy = 0.

(11)

(12)

(13)

(14)

Since covariant derivatives are not tensors, it is impossible to consider parallel displacements (cf. [27])

of the equipping planes C,,_,—1 and Nj,_1.
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7. The central projections

We give an geometrical interpretation of the generalized bilinear connection using central projections.

BO1 00 o1 ol BO1
Theorem 7.1. The simple subobject T 1 ={T'} , T}, Ty} of connection object T is characterized by the central

projection of the plane Ny,_1 + dN,,_1 adjacent to the equipping plane N,,_1 onto the initial plane Ny_1 from the
first-kind normal Ny,_, = [C—m—1, A] (the center of projection), i.e.,

BO1 Ny,
Iriq: Npy—1 +dNy—1 — Ny (15)

Proof. The plane N,,_; is determined by the points B, = A, + A,A, whose displacements are determined by
the expression

01 01
dB, = 9B, + @ By + (A® + w®)Ba + [V Ag = AadpAl® + Aadpa” + (Shpta — AaAL)wl]A,

where 8 = 0 + 0" — A0

. . . Nﬂ—”l .
This means that the projection Ny,—1 + dN,—.1 —— N1 is performed. [

BO1
g T par ﬁy} of connection object T is characterized by the central
rojection of the plane C,_,,_1 + dC,_,—1 adjacent to the equipping plane C,,_,,_1 onto the initial plane C,_,,_1 from
proj p ] quippmng p p
the generating plane P, (the center of projection), i.e.,

, . Bl o o1 o0l
Theorem 7.2. The simple subobject T , ={T'% , T, I'%"

B01 P,
Ia2: Chrom1+dChom1 —  Cuom (16)

Proof. The plane C,_—1 is determined by the points B, = A, + A%A, + A,A, whose displacements are
determined by the expression

0~1ﬁ A e aya B a ayb P a B a
dB, = 9B, + @ Bg + (VA + )\ﬁ/\a/\bw — Ua@” + /\ﬁ)\aa)h)Ag + (V Ay = Aqppa? + AgAqa”)A.

P
This means that the projection C,—y—1 + dCp—m—1 —> Cp_p1 is performed. O
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