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Abstract. A graph H has Hamiltonicity if it contains a cycle which covers each vertex of H. In graph the-
ory, Hamiltonicity is a classical and worth studying problem. In 1952, Dirac proved that any n-vertex graph
H with minimum degree at least ⌈ n

2 ⌉ has Hamiltonicity. In 2012, Lee and Sudakov proved that if p ≫ log n
n ,

then asympotically almost surely each n-vertex subgraph of random graph G(n, p) with minimum degree
at least (1/2 + o(1))np has Hamiltonicity. In this paper, we exend Dirac’s theorem to random 3-uniform
hypergraphs. The random 3-uniform hypergraph model H3(n, p) consists of all 3-uniform hypergraphs on
n vertices and every possible edge appears with probability p randomly and independently. We prove that
if p ≫ log n

n2 , then asympotically almost surely every n-vertex subgraph of H3(n, p) with minimum degree

at least ( 1
4 + o(1))(n

2)p has Berge Hamiltonicity. The value log n
n2 and constant 1/4 both are best possible.

1. Introduction

Given a graph H, if there is a cycle contains all vertices of H exactly once, then we say the cycle is
a Hamilton cycle and the graph H has Hamiltonicity. If the number of edges and vertices of a graph is
large enough, then find a Hamilton cycle is NP-complete [1]. So study its sufficient conditions is very
important. The one of classic conclusions is Dirac’s theorem [2], which stated that any graph on n vertices
with minimum degree at least ⌈n/2⌉ has Hamiltonicity in 1952. We mainly consider the applications of
Dirac type in random graphs. And we say that random graph asympotically almost surely has property P
if the probability tends to 1 as n goes to infinity. We used a ≫ b to indicate a

b = o(1). In 2012, Lee and

Sudakov [3] studied the application of Dirac’s theorem in random graphs, which stated that if p ≫ log n
n ,

then asympotically almost surely any subgraph of random graph G(n, p) with minimum degree at least
(1/2 + o(1))np has Hamiltonicity. And the value log n

n and 1/2 both are asymptotically tight.
A k-uniform hypergraph is a tuple (V, E), which V is a vertex set, E is an edge set and every edge of

E is a set of k distinct vertices. The random 3-uniform hypergraph model H3(n, p) consists of all 3-uniform
hypergraphs on n vertices and every possible hyperedge appears with probability p randomly and inde-
pendently. And Berge cycle is the first cycle defined in different cycle concepts of hypergraph [4]. A cycle
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v1e1v2e2 · · · vtet(vt+1 = v1) is called Berge cycle if vi , vj, ei , ej and {vj, vj+1} ⊂ ej for every i, j ∈ [t] and
i , j. We say a k-uniform hypergraph H has Berge Hamiltonicity if it contains a Berge Hamilton cycle which
covers all vertices of H.

One of the earlier results of Berge cycles on hypergraphs was obtained by Bermond, Germa and Hey-
demann [5] in 1976, they proved that for any integer k ≥ 3 and n ≥ k + 1, if k-uniform hypergraph H
has every vertex degree at least (n−2

k−1) + k − 1, then H contains a Berge cycle of length at least n. Follows
that, Clemens, Ehrenmüller and Person [6] extended the Dirac’s theorem to random k-uniform hypergraph

Hk(n, p) in 2020, and showed that for every integer k ≥ 3, if p ≫ log17k n
nk−1 , then asympotically almost surely

every subgraph of Hk(n, p) with minimum degree at least ( 1
2k−1 + o(1))(n−1

k−1)p has Berge Hamiltonicity.

The value 1
2k−1 is best possible and log17k n

nk−1 is best under some polylogarithmic factor. For other results of
Hamiltonicity in hypergraphs see [7, 8], and the results for Hamiltonicity of other types, see [9–14]. In
this paper, we give a generalization of Dirac’s theorem to Berge Hamiltonicity for random 3-uniform hy-
pergraphs by the similar method of Lee and Sudakov [3]. Furthermore, according to the introduction of
Clemens, Ehrenmüller and Person [6], the value log n

n2 and constant 1/4 in the following theorem (our main
result) are asymptotically tight.
Theorem 1.1. For every ε > 0, there exists a constant c > 0 such that if p ≥ c log n

n2 , then asympotically almost
surely each subgraph H ⊆ H3(n, p) with minimum degree at least ( 1

4 + ε)(n
2)p has Berge Hamiltonicity.

Notation: Given a 3-uniform hypergraph H, denote by V(H) the vertex set, denote by E(H) the edge set
and e(H) be the number of edges of H. Especially, given a Berge path P = a0e1a1 · · · elal , we define vertex
set V′(P) = {a0, a1, · · · , al} and denote by |P| the length of P. If V(P) ⊂ V(H), then we say P on vertex set
V(H).

For any disjoint subsets Y, M, S of V(H), we denote by eH(Y) the number of edges in H whose all
vertices are both in Y, and denote by eH((

Y
2), M) the number of edges in H, which contains two distinct

vertices of Y and one vertex of M, denote by eH(Y, M, S) the number of edges in H which intersects exactly
one vertex with each of Y, M and S.

Given a vertex a ∈ V(H), we define dH(a) as its number of edges incident to a in H and define NH(a) as
its number of vertices adjacent to a in H. Define NH(Y) be the set of all vertices in V\Y whose adjacent to
some vertices in Y. We denote by δ(H) := mina∈V(H){dH(a)}, and denote by ∆(H) := maxa∈V(H){dH(a)}.
We denote by ω(n) the arbitrary function which goes to infinity as n goes to infinity.

2. Tools

Now, we introduce a tool (Pósa rotation-extension technique, see [15]) that is important in proving the
main theorem.

Let H be a connected 3-uniform hypergraph and let P = a0e1a1 . . . elal be a Berge path on the vertex
V(H). If there exists an edge ew ∈ E(H) \ E(P) satisfies {a0, w} ⊂ ew for some w ∈ V(H) \ V′(P), then
Pw = wewa0e1a1 . . . elal is a longer Berge path than P in H ∪ P. In this case, we say that the path P is
extended.

On the other hand, if there exists an edge e ∈ E(H) \ E(P) satisfies {a0, ai} ⊂ e for same i ∈ [l − 1],
then there is another Berge path P′ = ai−1ei−1ai−2 . . . a0eai . . . elal of length |P| in H ∪ P (see figure 2). In
this case, we say that P′ is obtained from P by a rotation. We call al the fixed endpoint, ai the pivot and ei the
broken edge of the rotation.

Based on these, there are some new definitions. Let Y be the set of endpoints obtained by some rotations
of P. For each y ∈ Y, let Py be the path obtained from P by some rotations. Denote by NH(v1|P) =
{v|(v1, v) ⊂ e f or some e ∈ E(H) \ E(P)}. NH(Y|P) = ∪y∈Y NH(y|P) \ Y. Let X ⊂ V \ Y, denote by
EH(Y, X|P) = {e ∈ E(H) \ E(Py)|y ∈ Y, y ∈ e, e ∩ X , ϕ}, and denote by eH(Y, X|P) = |EH(Y, X|P)|.

The proof of Theorem 1.1 mainly depends on the following results, which will be proven in detail later.

Definition 2.1. Let η > 0. A connected 3-uniform hypergraph H on n vertices is called has property RE(η) if for
every Berge path P on V(H), one of the following holds in 3-uniform hypergraph H ∪ P:
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a0 a1 a2 ai−1 ai ai+1 al−1 al

Figure 1: P′

(i) there is a Berge path longer than P,
(ii) there is a subset A ⊆ V(H) with |A| ≥ ηn and for each vertex a ∈ A, there exists a set Ba ⊆ V(H) with

|Ba| ≥ ηn such that for all b ∈ Ba, H ∪ P contains a Berge path Tab between a and b with |Tab| = |P|.

Theorem 2.2. For every 0 < ε < 1, there are constants c > 0 and λ > 0 such that if p ≥ c log n
n2 , then the random

3-uniform hypergraph H = H3(n, p) asympotically almost surely satisfies the following property. For all H1 ⊆ H
with ∆(H1) ≤ ( 3

4 − 3ε)(n
2)p, the hypergraph H2 := H − H1 contains a subgraph which has property RE( 1

2 + 2
3 ε)

and at most λn3 p edges.

Definition 2.3. Let constant η > 0 and let H0 be a n-vertex 3-uniform hypergraph with property RE(η). A 3-
uniform hypergraph H2 on V(H0) is called complements H0 if for every Berge path P in 3-uniform hypergraph H0,
one of the following holds:

(i) there is a Berge path longer than P in H0 ∪ P,
(ii) there are two vertex sets A and Ba of V(H0) as in Definition 2.1 and exists vertices a ∈ A, b ∈ Ba and edge

e < E(Pa) such that {a, b} ⊆ e in H0 ∪ H2.

Theorem 2.4. For every 0 < ε < 1, there are constants c > 0 and λ > 0 such that if p ≥ c log n
n2 , then the random

3-uniform hypergraph H = H3(n, p) asympotically almost surely satisfies the following property. For each subgraph
H1 ⊆ H with ∆(H1) ≤ ( 3

4 − 2ε)(n
2)p, let H2 := H − H1, then the hypergraph H2 complements all subgraphs

H′ ⊆ H which has property RE( 1
2 + 2

3 ε) and at most λn3 p edges.

Next, we introduce a modification of Proposition 3.4 in [3], and the proof is very similar to the original one.

Proposition 2.5. (Proposition 3.4 [3]) Let constant η > 0. For every 3-uniform hypergraph H0 with RE(η), if
3-uniform hypergraph H2 on V(H0) complementing H0, then the 3-uniform hypergraph H0 ∪ H2 has Berge Hamil-
tonicity.

2.1. Properties of H3(n, p)
Theorem 2.6. (Chernoff’s inequatily, see [16][17]) Let 0 < ε < 1. Suppose that Y ∼ Bi(n, p) is a binomial random
variable with parameters n and p, then

Pr(|Y − np| > εnp) < e−
ε2
3 np.

And if t > 2np, then

Pr(Y ≥ t) < e−
3
16 t.

Proposition 2.7. For every 0 < ε < 1, there exists a constant c > 0 such that if p ≥ c log n
n2 , then the random

3-uniform hypergraph H = H3(n, p) asympotically almost surely has the following properties:
(i) (1 − ε)(n

3)p ≤ e(H) ≤ (1 + ε)(n
3)p;

(ii) for each v ∈ V(H), (1 − ε)(n
2)p ≤ dH(v) ≤ (1 + ε)(n

2)p;
(iii) for any disjoint subsets Y, M, S ⊆ V(H) with |Y| ≤ n

4 , |M| ≤ n
4 and |S| ≤ n

log n (log log n)1/2 + 1,

eH(Y, M, S) = |Y||M||S|p + o (|Y||M||S|p + ω(n)n) ,



A. L. Chen, L. P. Zhang / Filomat 37:26 (2023), 9039–9050 9042

and

eH

((
Y
2

)
, S
)
=

|Y|2
2

|S|p + o
(
|Y|2

2
|S|p + ω(n)n

)
.

Proof. (i) For E(e(H)) = (n
3)p is sufficiently large, by Theorem 2.6 we have

Pr
[∣∣∣∣e(H)−

(
n
3

)
p
∣∣∣∣ > ε

(
n
3

)
p
]
≤ e−

ε2
3 (n

3)p = o(1).

(ii) Since E(dH(v)) = (n−1
2 )p, by Theorem 2.6 we have

∑
v∈V(H)

Pr
(∣∣∣∣dH(v)−

(
n
2

)
p
∣∣∣∣ > ε

(
n
2

)
p
)
≤ n · e−

ε2
3 (n

2)p = o(1),

in which the inequality holds for cε2 > 7.
(iii)Suppose that |Y| ≤ n

4 , |M| ≤ n
4 and |S| ≤ n

log n (log log n)1/2 + 1, then E(eH(Y, M, S)) = |Y||M||S|p.
Theorem 2.6 states that if E[eH(Y, M, S)] = o(ω(n)n), then

2n · 2n · 2n · Pr [|eH(Y, M, S)− |Y||M||S|p| ≥ ε(|Y||M||S|p + ω(n)n)] ≤ 23n · e−
3
16 ω(n)n = o(1),

otherwise,
2n · 2n · 2n · Pr [|eH(Y, M, S)− |Y||M||S|p| ≥ ε(|Y||M||S|p + ω(n)n)]

≤ 23n · e−
ε2
3 E[eH(Y,M,S)] ≤ 23n · e−

ε2
3 ω(n)n = o(1).

Also, for E
(

eH

(
(Y

2), S
))

= (|Y|2 )|S|p, Theorem 2.6 states that if E
[
eH

(
(Y

2), S
)]

= o(ω(n)n), then

2n · 2n · Pr
[∣∣∣∣eH

((
Y
2

)
, S
)
− |Y|2

2
|S|p

∣∣∣∣ ≥ ε

(
|Y|2

2
|S|p + ω(n)n

)]
≤ 22n · e−

3
16 ω(n)n = o(1),

otherwise,

2n · 2n · Pr
[∣∣∣∣eH

((
Y
2

)
, S
)
− |Y|2

2
|S|p

∣∣∣∣ ≥ ε

(
|Y|2

2
|S|p + ω(n)n

)]
≤ 22n · e−

ε2
3 E[eH((Y

2),S)] ≤ 22n · e−
ε2
3 ω(n)n = o(1).

Proposition 2.8. For every 0 < ε < 1, there exists a constant c > 0 such that if p ≥ c log n
n2 , then the random

3-uniform hypergraph H = H3(n, p) asympotically almost surely has the following properties: for every Berge
path P on V(H), and suppose that Y is the set of endpoints obtained by taking some rotations of P in H, and let
S ⊂ V(P) \ Y,

(i) if |Y| ≤ (log n)−
1
4 (np)−1, then (1 − ε)|Y|(n

2)p ≤ eH(Y, V \ Y|P) and |NH(Y|P)| ≥ (2 − 3ε)|Y|(n
2)p;

(ii) if n(log n)−1/2 ≤ |Y| ≤ ε
6 n, |S| ≥ ( 1

2 − ε
3 )n, then

eH(Y, S|P) > |Y|
(

3
4
− ε

)(
n
2

)
p;

(iii) if |Y| ≤ n
4 , |S| ≤ n

4 , then

eH(Y, S|P) = |Y||S|
(

n − |Y|
2

− |S|
2

)
p + o

(
|Y||S|

(
n − |Y|

2
− |S|

2

)
p + ω(n)n

)
.
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Proof. For each y ∈ Y, let Py be the path obtained from P by some rotations, in which y is one of the
endpoints.

(i) Let s1 = (1 − ε)|Y|(n
2)p and s2 = (2 − 3ε)|Y|(n

2)p ≤ n(log n)−1/4. Assume that eH(Y, V \ Y|P) ≥ S1
and |NH(Y|P)| < s2, then there exists a subgraph of H induced by Y ∪ NH(Y|P) has at least s1 edges
adjacent to Y. Therefore

Pr({s1 ≤ eH(Y, V \ Y|P)} ∩ {|NH(Y|P)| < s2})

≤
(

n − |Y|
s2

)(
(|Y|+s2

3 )− (s2
3 )

s1

)
ps1 ≤

(
n − |Y|

s2

)(
|Y|s2

2
s1

)
ps1

≤
(

en
s2

)s2
(

e|Y|s2
2 p

s1

)s1

=

(
en
s2

)s2
(

es2
2

(1 − ε)(n
2)

)s1

≤
(

en
s2

)s2 ( es2

n

)2s1

=es2(1+log n
s2
)+2s1(1+log s2

n )
= e(1+o(1))(2s1−s2) log s2

n

≤e(1+o(1))ε|Y|(n
2)p(−1/4) log log n.

Since |Y| = o(n), on the other hand, there is

E[eH(Y, V \ Y|P)] ≥ |Y|
[(

n − |Y|
2

)
− 3
]

p = (1 − o(1))|Y|
(

n
2

)
p.

Theorem 2.6 implies Pr [s1 > eH(Y, V \ Y|P)] ≤ e−
ε2
3 (|Y|(

n
2)p). Therefore

(log n)−
1
4 (np)−1

∑
|Y|=1

Pr({s1 > eH(Y, V \ Y|P)} ∪ {|NH(Y|P)| < s2})

=
(log n)−

1
4 (np)−1

∑
|Y|=1

Pr(s1 > eH(Y, V \ Y|P)) + Pr({s1 ≤ eH(Y, V \ Y|P)} ∩ {|NH(Y|P)| < s2})

≤
(log n)−

1
4 (np)−1

∑
|Y|=1

(
n
|Y|

)
e−

ε2
3 (|Y|(

n
2)p)e(1+o(1))ε|Y|(n

2)p(−1/4) log log n ≤
(log n)−

1
4 (np)−1

∑
|Y|=1

(
n
|Y|

)
n−c1|Y| = o(1),

in which the inequality holds for c1 = c1(c, ε) ≥ 2 by choosing the appropriate constant c.
(ii) Suppose that n(log n)−1/2 ≤ |Y| ≤ ε

6 n and |S| ≥ ( 1
2 − ε

3 ). For every y ∈ Y and s ∈ S, there are at
most three edges contains {y, s} in Py, since we have

E[eH(Y, S|P)] ≥ |Y|
[(

n − |Y|
2

)
−
(

n − |Y| − |S|
2

)
− 3
]

p

≥ |Y|
[(

n − ε
6 n

2

)
−
(

n − n(log n)−1/2 − ( 1
2 − ε

3 )n
2

)
− 3

]
p

= (1 − o(1))|Y|
[(

1 − ε

6

)2
−
(

1
2
+

ε

3
− (log n)−1/2

)2
](

n
2

)
p

= (1 − o(1))|Y|
(

3
4
− 5

6
ε

)(
n
2

)
p,

by Theorem 2.6 there is

2n · 2n · Pr
(

eH(Y, S|P) ≤ |Y|
(

3
4
− ε

)(
n
2

)
p
)
≤ 22n · Pr

(
eH(Y, S|P) ≤ |Y|

(
1 − ε

5

)
E[eH(Y, S|P)]

)
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≤ 22n · e−
ε2
75 E[eH(Y,S|P)] ≤ 22n · e−

ε2
75 cn(log n)1/2

= o(1).

(iii) Suppose that |Y| ≤ n
4 and |S| ≤ n

4 . For every y ∈ Y and s ∈ S, there are at most three edges contains
{y, s} in Py, thus

E[eH(Y, S|P)] ≥
(
|Y||S|n −

(
|Y|
2

)
|S| −

(
|S|
2

)
|Y| − 3|Y|

)
= (1 − o(1))|Y||S|

(
n − |Y|

2
− |S|

2

)
p.

Define τ := |Y||S|
(

n − |Y|
2 − |S|

2

)
. For eH(Y, S|P) is a binomial random variable, Theorem 2.6 implies that

if E[eH(Y, S)] = o(ω(n)n), then

2n · 2n · Pr [|eH(Y, S)− τ| ≥ ε (τ + ω(n)n)] ≤ 22n · e−
3
16 ω(n)n = o(1),

otherwise,

2n · 2n · Pr [|eH(Y, S)− τ| ≥ ε (τ + ω(n)n)] ≤ e−
ε2
3 E[eH(Y,S|P)] ≤ 22n · e−

ε2
3 ω(n)n = o(1).

Proposition 2.9. For every 0 < ε < 1, there exists a constant c > 0 such that if p ≥ c log n
n2 , then the random 3-

uniform hypergraph H = H3(n, p) asympotically almost surely satisfies the following properties. For each H1 ⊆ H
with ∆(H1) ≤ ( 3

4 − 2ε)(n
2)p, let H2 := H − H1. Let P be a Berge path on V(H2) and Y be the set of the endpoints

obtained by taking some rotations of P in H2,
(i) if |Y| ≤ (log n)−

1
4 (np)−1, then |NH2(Y|P)| ≥ ( 1

2 + ε)|Y|(n
2)p;

(ii) if n(log n)−1/2 ≤ |Y| ≤ ε
6 n, then |NH2(Y|P) ≥ ( 1

2 + ε
6 )n;

(iii) H2 is connected.

Proof. (i) Let |Y| ≤ (log n)−
1
4 (np)−1. By Proposition 2.8, we can get (1 − ε)|Y|(n

2)p ≤ eH(Y, V \ Y|P) and
|NH(Y|P)| ≥ (2 − 3ε)|Y|(n

2)p. Hence

|NH2(Y|P)| ≥ |NH(Y|P)| − |Y| · 2∆(H1)

≥ (2 − 3ε)|Y|
(

n
2

)
p − |Y| · 2

(
3
4
− 2ε

)(
n
2

)
p

≥
(

1
2
+ ε

)
|Y|
(

n
2

)
p.

(ii) If not, assume that |NH2(Y|P)| < ( 1
2 +

ε
6 )n, then |V(H) \ (Y∪ NH2(Y))| ≥ ( 1

2 −
ε
3 )n and eH2(Y, V(H) \

(Y ∪ NH2(Y))|P) = 0. Thus

eH(Y, V(H) \ (Y ∪ NH2(Y))|P) ≤ |Y|∆(H1) = |Y|
(

3
4
− 2ε

)(
n
2

)
p,

which contradicts Proposition 2.8.
(iii) If H2 is not connected. Let H′ be the minimum connected component of H2, which implies |NH2(V(H′))| =

|V(H′)|. Since
(

1
2 + ε

)
(n

2)p > 1, following the result of (i), we have

|V(H′)| ≥
(

1
2
+ ε

)
(log n)−1/4(np)−1

(
n
2

)
p > n(log n)−1/2.

By (ii), we can get |V(H′)| ≥ ( 1
2 + ε

6 )n that contradicts the facts.
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2.2. Proof of Theorem 2.2.

Before proving Theorem 2.2, we prove the following Lemma 2.10.

Lemma 2.10. For every real 0 < ε < 1, there exists a constant c > 0 such that if p ≥ c log n
n2 , then the random

3-uniform hypergraph H = H3(n, p) asympotically almost surely has the following properties: for each H1 ⊂ H
with ∆(H1) ≤ ( 3

4 − 2ε)(n
2)p, the 3-uniform hypergraph H2 := H − H1 has RE( 1

2 + 2
3 ε).

Proof. Let P := a0e1a1 · · · al be a Berge path on V(H2). If there is a Berge path longer than P in H2 ∪ P, then
we are done.

So we suppose that P is the longest Berge path in H2 ∪ P. In the following, we will consider an endpoint
set obtained by taking some rotations of P with fixed endpoint al in H2, and give a lower bound ( 1

2 + 2
3 ε)n

on the number of those endpoints. The endpoint set will be constructed by iterative method. We use Yt to
denote the endpoint set obtained by the tth rotation of P with fixed enpoint vl in H2, especially, Y0 = {a0}.
Since P is the longest Berge path in H2 ∪ P, note that for every t ∈ [n] we must have NH2(Yt|P) ⊆ V(P).

Claim 1. |Yt+1| ≥ 1
2 (|NH2(Yt|P)| − 3|Yt|).

Proof. For any a ∈ Yt, if w ∈ NH2(a|P), then there exists an endpoint by a rotation of Pa using v as pivot
point. Let Y+

t = {ai+1|ai ∈ Yt}, Y−
t = {ai−1|ai ∈ Yt}. Hence, if a vertex v ∈ NH2(Yt|P) does not belong

to Yt ∪ Y−
t ∪ Y+

t , then the edges in P incident with v were not broken in the previous rotations. We can
get a new endpoint v− or v+ (see Figure 2 and Figure 3), and at most two such pivot points can obtain
the same endpoint since the order for unbroken interval either the same as or reverse to P. Therefore,
|Yt+1| ≥ 1

2
(
|NH2(Yt|P)− 3|Yt|

)
. This completes the proof of Claim 1.

a v− v v+ al

Figure 2: same order

a v+ v v− al

Figure 3: reverse order

Suppose that |Yt| =
(

n2 p
25

)t
≥ 1 for some integer t ≥ 0. Since

δ(H2) ≥ (1 − ε)

(
n
2

)
p − ∆(H1) ≥

(
1
4
+ ε

)(
n
2

)
p,

by Claim 2 together with Proposition 2.9 (i), we have

|Yt+1| ≥
1
2
(|NH2(Yt|P)| − 3|Yt|) ≥

1
2

((
1
4
+ ε

)
|Yt|
(

n
2

)
p − 3|Yt|

)
≥ 1

2

((
1
4
+ ε

)(
n2 p
25

)t (n
2

)
p − 3|Yt|

)
≥
(

n2 p
25

)t+1

.
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Let
(

n2 p
25

)s
= (log n)−1/4(np)−1, it follows that there is an integer s ≤ log n

log log n such that |Ys| =

(log n)−1/4(np)−1 if c ≥ 25. Repeat the same argument as above to |Ys|, there is

|Ys+1| ≥
(

n2 p
25

)
(log n)−1/4(np)−1 ≥ n

25(log n)1/4 >
n

(log n)1/2 .

Agian, repeat the same argument as above to subset with size
n

(log n)1/2 of Ys+1 , and combine with Propo-

sition 2.9, there is

|Ys+2| ≥
1
2
(|NH(Ys+1|P)| − 3|Ys+1|) ≥

1
2

((
1
2
+

1
6

ε

)
n − 3

n
(log n)1/2

)
≥ n

4
.

Finally, we give a proof of |Ys+3| ≥ ( 1
2 + 2

3 ε)n. Let S := Ys+3 and Y ⊆ Ys+2 be any subset with size n
4 .

We partition P into r := log n
(log log n)1/2 vertex disjoint intervals, such that the length of each interval are either

⌊ |P|r ⌋ or ⌈ |P|r ⌉. For each i ∈ [r], let Ỹi ⊆ Y be a vertex subset, in which all those vertices are obtained by
some rotations with some broken edges of Pi in the previous rotations. Let Yi,+ and Yi,− be the collections
of all those vertices of Y obtained by some rotations such that Pi is unbroken in the previous rotations, and
the path from every vertex of Yi,+ and Yi,− to vl traverses Pi in the same and reverse order as P, expectively.
Thus Y = Ỹi ∪ Yi,+ ∪ Yi,− for all i ∈ [r].

Let J = {i ∈ [r] : |Ỹi| ≥ (log log n)−1/4|Y|}. We claim the first fact that |J| = o(r). Indeed, since every
vertex in Y is obtained by at most 2 log n

log log n rotations of P. Let Ẽ denote the number of edges that broken in
the previous rotations for obtain Y. There is

|Y| 2 log n
(log log n)

≥ Ẽ ≥ (log log n)−1/4|Y||J|,

which implies |J| = o(r).
Next, we define V := V(H), P := V′(P), Pi := V′(Pi) for any i ∈ [r], and show the second fact that

eH(Y, V \ P|P) + ∑
i∈[r]

∑
±∈{+,−}

{eH(Yi,±, (Pi ∩ P±
i ) \ S±|P)− eH(Yi,±, (Pi ∩ P±

i ) \ S±, V \ P|P)}

≤ eH1(Y, V). (1)

For P is the longest Berge path and by applying Proposition 2.9 to Y, we can get eH2(Y, V \ P|P) = 0 and
|V \ P| ≤ n

4 . For each i ∈ [r], if there exists vertices x ∈ Yi,+, aj ∈ Pi and an edge e < E(Py) contains {aj, x}
in H2, then aj−1 ∈ S and aj ∈ S+, therefore eH2(Yi,+, (Pi ∩ P+

i ) \ S+|P) = 0(similarly, eH2(Yi,−, (Pi ∩ P−
i ) \

S−|P) = 0). On the other hand, for every edge e ∈ EH(Yi,+, (Pi ∩ P+
i ) \ S+|P) ∪ EH(Yi,−, (Pi ∩ P−

i ) \ S−|P),
if e ∩ (V \ P) , ϕ, then e will be counted repeatedly. This completes the proof of (1), Now we estimate the
left inequality of (1).

By definition, we know |Pi| ≤ ⌈ |P|r ⌉ ≤ n
log n (log log n)1/2 + 1. Thus by Proposition 2.7 and Proposition

2.8, we can get the lower bound of the left inequality of (1) is as follows

|Y||V \ P|
[

n − |Y|
2

− |V \ P|
2

]
p + o(w(n)n)

+ ∑
i∈[r]

∑
±∈{+,−}

(
|Yi,±||(Pi ∩ P±

i ) \ S±|
[

n − |Yi,±|
2

−
|(Pi ∩ P±

i ) \ S±|
2

]
p + o

(
n2 |P|

r
p
))

− ∑
i∈[r]

∑
±∈{+,−}

[(1 + o(1))|Yi,±||V \ P||(Pi ∩ P±
i ) \ S±|p + o(w(n)n)]. (2)
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Due to ||(Pi ∩ P+
i ) \ S+| − |Pi \ S|| ≤ 2(similar for (Pi ∩ P−

i ) \ S−), the second line in the inequality (2) is at
least

∑
i∈[r]

∑
±∈{+,−}

(
|Yi,±||Pi \ S|

[
n − |Yi,±|

2
−

|(Pi ∩ P±
i ) \ S±|
2

]
p + o

(
n3

r
p
)
− o

(
2

n2

r
p
))

≥ ∑
i∈[r]

∑
±∈{+,−}

|Yi,±||Pi \ S|
[

n − |Yi,±|
2

− |Pi \ S|
2

]
p − o(n3 p)

≥ ∑
i∈[r]

 ∑
±∈{+,−}

|Yi,±||Pi \ S|
(

n − |Pi \ S|
2

)
− |Yi,+|2 + |Yi,−|2

2
|Pi \ S|

 p − o(n3 p)

≥ ∑
i∈[r]

(
|Y \ Ỹi||Pi \ S|

(
n − |Pi \ S|

2

)
− (|Yi,+|+ |Yi,−|)2

2
|Pi \ S|

)
p − o(n3 p)

≥ ∑
i∈[r]

|Y \ Ỹi||Pi \ S|
(

n − |Pi \ S|
2

)
p − |Y|2

2
|P \ S|p − o(n3 p).

Since J = o(r), there is |Y \ Ỹi| = (1 − o(1))|Y| for i ∈ [r] \ J. The inequality above is

≥ ∑
i∈[r]\J

(1 − o(1))|Y||Pi \ S|
(

n − |Pi \ S|
2

)
p − |Y|2

2
|P \ S|p − o(n3 p)

≥ ∑
i∈[r]

(1 − o(1))|Y||Pi \ S|
(

n − |Pi \ S|
2

)
p − o(r)(1 − o(1))|Y| |P|

r
np − |Y|2

2
|P \ S|p − o(n3 p)

≥ ∑
i∈[r]

|Y||Pi \ S|
(

n − |Pi \ S|
2

)
p − |Y|2

2
|P \ S|p − o(n3 p)

≥|Y||P \ S|n − |Y|2
2

|P \ S|p − o(n3 p).

The inequality (2) can be expressed as

≥|Y||V \ P|
[

n − |Y|
2

− |V \ P|
2

]
p + o(w(n)n) + |Y||P \ S|np − |Y|2

2
|P \ S|p − o(n3 p)

− ∑
i∈[r]

|Y \ Ỹi||V \ P||Pi \ S|p − o(w(n)n)

≥|Y||V \ P|
[

n − |Y|
2

− |V \ P|
2

]
p + |Y||P \ S|np − |Y|2

2
|P \ S|p − |Y||V \ P||P \ S|p − o(n3 p)

≥|Y|(|V \ P|+ |P \ S|)np − |Y|2
2

(|V \ P|+ |P \ S|)p − |Y||V \ P|
(
|V \ P|

2
+ |P \ S|

)
p − o(n3 p)

≥|Y||V \ S|np − |Y|2
2

|V \ S|p − |Y||V \ P||V \ S|p − o(n3 p)

≥3
4

n|Y||V \ S|p − |Y|2
2

|V \ S|p − o(n3 p).

Therefore inequality (1) implies 3
4 n|Y||V \ S|p − |Y|2

2 |V \ S|p − o(n3 p) ≤ eH1(Y, V).
On the other hand, eH1(Y, V) + eH1((

Y
2), V) ≤ |Y|∆H1(Y), thus following Proposition 2.7 we can get

3
4

n|Y||V \ S|p − o(n3 p) ≤ |Y|
(

3
4
− 2ε

)(
n
2

)
p ≤ |Y|

(
3
8
− ε

2

)
n2 p.
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It’s easy to check |S| ≥
(

1
2 + 2

3 ε
)

n by |V \ S| ≤
(( 3

8 − ε
2
)

n + o(n2)
) 4

3 ≤
(

1
2 − 2

3 ε
)

n.

Hence, we can get an endpoint set S of size at least ( 1
2 + 2

3 ε)n, in which for every y ∈ S, there is a Berge
path of length |P| in H2 ∪ P with endpoints al and y. Similarly, for such Berge path we can fixed y to obtain
an endpoint set Sy ⊆ V(H) of size at least ( 1

2 + 2
3 ε)n such that, for every s ∈ Sy, there is a Berge path of

length |P| in H2 ∪ P from s to y.
Proof of Theorem 2.2. Let p′ = λp and let H′ be the 3-uniform hypergraph obtained by taking each edge of
H3(n, p) independently with probability λ. Thus H′ has the same distribution with H3(n, p′). By Lemma
2.10 and Proposition 2.7, we can get

Pr
[

H′ ∈ RE
(

1
2
+

2
3

ε

)
with at most λn3 p edges

]
= 1 − o(1). (3)

Now, we define that a 3-uniform hypergraph H is good: if for each H1 ⊆ H with ∆(H1) ≤ ( 3
4 − 2ε)(n

2)p′,
the 3-uniform hypergraph H − H1 has at most n3 p′ = λn3 p edges and is RE( 1

2 + 2
3 ε). Otherwise call H is

bad. Under this definition, (3) means Pr[H′ is good] = 1 − o(1).
Let H be the collection of all 3-uniform hypergraphs H satifies Pr(H′ is good|H = H3(n, p)) ≥ 5

6 , in
other words, Pr(H′ is good|H < H) < 5

6 , following this, there is

o(1) = Pr(H′ is bad) ≥ Pr(H′ is bad|H3(n, p) < H) · Pr(H3(n, p) < H) ≥ 1
6

Pr(H3(n, p) < H).

Hence Pr(H3(n, p) < H) = o(1), that means Pr(H3(n, p) ∈ H) = 1 − o(1).
Next, let H1 ⊆ H be any subgraph with ∆(H1) ≤ ( 3

4 − 3ε)(n
2)p. By Theorem 2.6, there is

∑
v∈V(H′)

Pr
(

dH′∩H1
(v) ≥

(
3
4
− 2ε

)(
n
2

)
p′
)
≤ ∑

v∈V(H′)

Pr
(

dH′∩H1
(v) ≥ (1 + ε)

(
3
4
− 3ε

)(
n
2

)
p′
)
= o(1).

Hence, there exists a subgraph H′ ⊂ H that is good and the maximum degree of H′ ∩ H1 at most
( 3

4 − 2ε)(n
2)p′. For such H′, by the definition of good, the hypergraph H′ − (H′ ∩ H1) ⊆ H − H1 which has

RE( 1
2 + 2

3 ε) and |E(H′ − (H′ ∩ H1))| ≤ λn3 p.

2.3. Proof of Theorem 2.4.

Proof of Theorem 2.4. Let H2 be the collection of all subgraphs H − H1, which satisfy ∆(H1) ≤ ( 3
4 − 2ε)(n

2)p.

Pr

 ⋃
H′∈RE( 1

2+
2
3 ε),|E(H′)|≤λn3 p

({H′ ⊆ H} ∩ {exists H2 ∈ H2 does not complement H′})


≤ ∑

H′∈RE( 1
2+

2
3 ε),|E(H′)|≤λn3 p

Pr(H′ ⊆ H) · Pr(exists H2 ∈ H2 does not complement H′|H′ ⊆ H)

≤
λn3 p

∑
m=1

(
(n

3)

m

)
pm · Pr(exists H2 ∈ H2 does not complement H′|H′ ⊆ H), (4)

where the H′ ⊆ H of last line of inequality (4) are taken over all labeled 3-uniform hypergraphs with
RE( 1

2 + 2
3 ε) and m edges.

Next we consider Pr(exists H2 ∈ H2 does not complement H′|H′ ⊆ H). Let P be a fixed Berge path on
V(H′). Recall the definition of complement. If H2 does not complement H′, then there is not Berge path
longer than P in H′ ∪ P. On the one hand, since H′ ∈ RE( 1

2 + 2
3 ε), we can find an endpoint set A ⊆ V(H)

which |A| ≥ ( 1
2 + 2

3 ε)n and for every a ∈ A, there is an endpoint set Ba of V(H′) with |Ba| ≥ ( 1
2 + 2

3 ε)n
satisfies for all b ∈ Ba, the 3-uniform hypergraph H′ ∪ P contains a Berge path Tab between a and b with
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|Tab| = |P|. On the other hand, since H2 does not complement H′, for every such Tab, there is not edge
e < Tab contains {a, b} in H2. By the maximum degree of H1 at most ( 3

4 − 2ε)(n
2)p, there is

eH(a, Ba|P) ≤
(

3
4
− 2ε

)(
n
2

)
p.

Since

E[eH(a, Ba|P)] ≥
[(

n − 1
2

)
−
(

n − 1 − |Ba|
2

)
− 3
]

p

≥
((

n − 1
2

)
−
(

n − 1 − ( 1
2 − ε

3 )n
2

)
− 3

)
p

= (1 − o(1))

(
1 −

(
1
2
+

ε

3

)2
)(

n
2

)
p

≥
(

3
4
− ε

2

)(
n
2

)
p.

Theorem 2.6 implies that the probability of eH(a, Ba|P) ≤
( 3

4 − 2ε
)
(n

2)p is at most e−
ε2
3 (n2 p). Therefore,

Pr

[⋂
a∈A

(
eH(a, Ba|P) ≤

(
3
4
− 2ε

)(
n
2

)
p
)]

≤ e−
ε2
3 (n3 p).

Note that there are at most n choices for the length of Berge path P. For each j ∈ [n], there are at most
n − 2 choices for the edges of any two vertices of V′(P) in H, thus there are at most n

(j−1)! (n − 2)j Berge
path of length j. Based on this, the third line of inequality (4)

λn3 p

∑
m=1

(
(n

3)

m

)
pm · Pr(exists H2 ∈ H2 does not complement H′|H′ ⊆ H)

≤
λn3 p

∑
m=1

(
(n

3)

m

)
pm · n · n!

(j − 1)!
(n − 2)j · e−

ε2
3 (n3 p)

≤e−
ε2
3 (n3 p)

λn3 p

∑
m=1

(
(n

3)

m

)
pm

≤e−
ε2
3 (n3 p)

λn3 p

∑
m=1

(
en3 p

m

)m

≤e−
ε2
3 (n3 p)(λn3 p)

( e
λ

)λn3 p

=e−
ε2
3 (n3 p)eO(λ log( 1

λ )n
3 p) = o(1),

which the inequality holds for
(

en3 p
m

)m
is monotone increasing in the range 1 ≤ m ≤ λn3 p and λ = λ(ε) is

sufficiently small.

3. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let 0 < ε < 1. Let c = c(ε) > 0 and λ = λ(ε) > 0 be constants such that for p ≥ c log n
n2 ,

the 3-uniform hypergraph H = H3(n, p) asympotically almost surely holds for Proposition 2.7, Theorem
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2.2 and Theorem 2.4, especially, Proposition 2.7 hold with 2ε instead of ε. That means, dH(v) ≥ (1− 2ε)(n
2)p

for every vertex v ∈ V(H). Therefore, for any 3-uniform hypergraph H2 with minimum degree at least
( 1

4 + ε)(n
2)p can be obtained by the following way: exists a subgraph H1 ⊆ H with maximum degree at

most ( 3
4 − 3ε)(n

2)p such that H2 = H − H1. Next we will show that H − H1 is Berge Hamiltonian.
On the one hand, by Theorem 2.2, there exists a subgraph H∗ ⊆ H − H1 which has property RE( 1

2 +
2
3 ε)

and |E(H∗)| ≤ λn3 p. On the other hand, by Theorem 2.4 and the fact that ( 3
4 − 3ε)(n

2)p ≤ ( 3
4 − 2ε)(n

2)p,
there is H − H1 complement H∗. Therefore, Proposition 2.5 implies that H − H1 is Berge Hamiltonian.

References

[1] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, New York: Plenum. (1972)
85–103.

[2] G. A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society. 3 (1952) 69–81.
[3] C. Lee, B. Sudakov, Dirac’s theorem for random graphs, Random Structures Algorithms. 41 (2012) 293–305.
[4] C. Berge, Graphs and Hypergraph, (2rd edition), North-Holland, Amsterdam, 1976.
[5] J. C. Bermond, A. Germa, M. C. Heydemann, D. Sotteau, Hypergraphes Hamiltoniens, problèmes combinatoires et thèorie des
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