Filomat 37:26 (2023), 9039–9050 https://doi.org/10.2298/FIL2326039C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Minimum degree condition of Berge Hamiltonicity in random 3-uniform hypergraphs

Ailian Chena, Liping Zhanga,*

^a School of Mathematics and Statistics, Fuzhou University, Fujian, 350108, P. R China

Abstract. A graph H has Hamiltonicity if it contains a cycle which covers each vertex of H. In graph theory, Hamiltonicity is a classical and worth studying problem. In 1952, Dirac proved that any n-vertex graph H with minimum degree at least $\lceil \frac{n}{2} \rceil$ has Hamiltonicity. In 2012, Lee and Sudakov proved that if $p \gg \frac{\log n}{n}$, then asymptoically almost surely each n-vertex subgraph of random graph G(n,p) with minimum degree at least (1/2+o(1))np has Hamiltonicity. In this paper, we exend Dirac's theorem to random 3-uniform hypergraphs. The random 3-uniform hypergraph model $H^3(n,p)$ consists of all 3-uniform hypergraphs on n vertices and every possible edge appears with probability p randomly and independently. We prove that if $p \gg \frac{\log n}{n^2}$, then asymptoically almost surely every n-vertex subgraph of $H^3(n,p)$ with minimum degree at least $(\frac{1}{4} + o(1))\binom{n}{2}p$ has Berge Hamiltonicity. The value $\frac{\log n}{n^2}$ and constant 1/4 both are best possible.

1. Introduction

Given a graph H, if there is a cycle contains all vertices of H exactly once, then we say the cycle is a Hamilton cycle and the graph H has Hamiltonicity. If the number of edges and vertices of a graph is large enough, then find a Hamilton cycle is NP-complete [1]. So study its sufficient conditions is very important. The one of classic conclusions is Dirac's theorem [2], which stated that any graph on n vertices with minimum degree at least $\lceil n/2 \rceil$ has Hamiltonicity in 1952. We mainly consider the applications of Dirac type in random graphs. And we say that random graph $asympotically almost surely has property <math>\mathcal{P}$ if the probability tends to 1 as n goes to infinity. We used $a\gg b$ to indicate $\frac{a}{b}=o(1)$. In 2012, Lee and Sudakov [3] studied the application of Dirac's theorem in random graphs, which stated that if $p\gg \frac{\log n}{n}$, then asympotically almost surely any subgraph of random graph G(n,p) with minimum degree at least (1/2+o(1))np has Hamiltonicity. And the value $\frac{\log n}{n}$ and 1/2 both are asymptotically tight. A k-uniform hypergraph is a tuple (V,E), which V is a vertex set, E is an edge set and every edge of

A k-uniform hypergraph is a tuple (V, E), which V is a vertex set, E is an edge set and every edge of E is a set of k distinct vertices. The E-random E-uniform hypergraph model E-random E-uniform hypergraphs on E-random E-random

2020 Mathematics Subject Classification. Primary 05C65,05C80; Secondary 05C45, 05C07.

Keywords. Dirac's theorem; Random hypergraph; Berge cycle; Hamilton cycle

Received: 13 December 2022; Accepted: 10 April 2023

Communicated by Paola Bonacini

Research supported by the National Natural Science Foundation of China(No.11401102, No.12171088).

* Corresponding author: Liping Zhang

Email addresses: elian1425@fzu.edu.cn (Ailian Chen), 1519036064@qq.com (Liping Zhang)

 $v_1e_1v_2e_2\cdots v_te_t(v_{t+1}=v_1)$ is called *Berge cycle* if $v_i\neq v_j$, $e_i\neq e_j$ and $\{v_j,v_{j+1}\}\subset e_j$ for every $i,j\in [t]$ and $i\neq j$. We say a k-uniform hypergraph H has *Berge Hamiltonicity* if it contains a Berge Hamilton cycle which covers all vertices of H.

One of the earlier results of Berge cycles on hypergraphs was obtained by Bermond, Germa and Heydemann [5] in 1976, they proved that for any integer $k \geq 3$ and $n \geq k+1$, if k-uniform hypergraph H has every vertex degree at least $\binom{n-2}{k-1} + k - 1$, then H contains a Berge cycle of length at least n. Follows that, Clemens, Ehrenmüller and Person [6] extended the Dirac's theorem to random k-uniform hypergraph $H^k(n,p)$ in 2020, and showed that for every integer $k \geq 3$, if $p \gg \frac{\log^{17k} n}{n^{k-1}}$, then asymptoically almost surely every subgraph of $H^k(n,p)$ with minimum degree at least $(\frac{1}{2^{k-1}} + o(1))\binom{n-1}{k-1}p$ has Berge Hamiltonicity. The value $\frac{1}{2^{k-1}}$ is best possible and $\frac{\log^{17k} n}{n^{k-1}}$ is best under some polylogarithmic factor. For other results of Hamiltonicity in hypergraphs see [7, 8], and the results for Hamiltonicity of other types, see [9–14]. In this paper, we give a generalization of Dirac's theorem to Berge Hamiltonicity for random 3-uniform hypergraphs by the similar method of Lee and Sudakov [3]. Furthermore, according to the introduction of

Theorem 1.1. For every $\varepsilon > 0$, there exists a constant c > 0 such that if $p \ge \frac{c \log n}{n^2}$, then asymptoically almost surely each subgraph $H \subseteq H^3(n,p)$ with minimum degree at least $(\frac{1}{4} + \varepsilon)\binom{n}{2}p$ has Berge Hamiltonicity. **Notation**: Given a 3-uniform hypergraph H, denote by V(H) the vertex set, denote by E(H) the edge set and e(H) be the number of edges of H. Especially, given a Berge path $P = a_0e_1a_1 \cdots e_la_l$, we define vertex set $V'(P) = \{a_0, a_1, \cdots, a_l\}$ and denote by |P| the length of P. If $V(P) \subset V(H)$, then we say P on vertex set V(H).

Clemens, Ehrenmüller and Person [6], the value $\frac{\log n}{n^2}$ and constant 1/4 in the following theorem (our main

For any disjoint subsets Y, M, S of V(H), we denote by $e_H(Y)$ the number of edges in H whose all vertices are both in Y, and denote by $e_H({Y \choose 2}, M)$ the number of edges in H, which contains two distinct vertices of Y and one vertex of M, denote by $e_H(Y, M, S)$ the number of edges in H which intersects exactly one vertex with each of Y, M and S.

Given a vertex $a \in V(H)$, we define $d_H(a)$ as its number of edges incident to a in H and define $N_H(a)$ as its number of vertices adjacent to a in H. Define $N_H(Y)$ be the set of all vertices in $V \setminus Y$ whose adjacent to some vertices in Y. We denote by $\delta(H) := \min_{a \in V(H)} \{d_H(a)\}$, and denote by $\Delta(H) := \max_{a \in V(H)} \{d_H(a)\}$. We denote by $\omega(n)$ the arbitrary function which goes to infinity as n goes to infinity.

2. Tools

result) are asymptotically tight.

Now, we introduce a tool (Pósa rotation-extension technique, see [15]) that is important in proving the main theorem.

Let H be a connected 3-uniform hypergraph and let $P = a_0e_1a_1 \dots e_la_l$ be a Berge path on the vertex V(H). If there exists an edge $e_w \in E(H) \setminus E(P)$ satisfies $\{a_0, w\} \subset e_w$ for some $w \in V(H) \setminus V'(P)$, then $P_w = we_w a_0e_1a_1 \dots e_la_l$ is a longer Berge path than P in $H \cup P$. In this case, we say that the path P is extended.

On the other hand, if there exists an edge $e \in E(H) \setminus E(P)$ satisfies $\{a_0, a_i\} \subset e$ for same $i \in [l-1]$, then there is another Berge path $P' = a_{i-1}e_{i-1}a_{i-2}\dots a_0ea_i\dots e_la_l$ of length |P| in $H \cup P$ (see figure 2). In this case, we say that P' is obtained from P by a *rotation*. We call a_l the *fixed endpoint*, a_i the *pivot* and e_i the *broken edge* of the rotation.

Based on these, there are some new definitions. Let Y be the set of endpoints obtained by some rotations of P. For each $y \in Y$, let P_y be the path obtained from P by some rotations. Denote by $N_H(v_1|P) = \{v | (v_1, v) \subset e \text{ for some } e \in E(H) \setminus E(P)\}$. $N_H(Y|P) = \bigcup_{y \in Y} N_H(y|P) \setminus Y$. Let $X \subset V \setminus Y$, denote by $E_H(Y, X|P) = \{e \in E(H) \setminus E(P_y) | y \in Y, y \in e, e \cap X \neq \emptyset\}$, and denote by $e_H(Y, X|P) = |E_H(Y, X|P)|$.

The proof of Theorem 1.1 mainly depends on the following results, which will be proven in detail later.

Definition 2.1. Let $\eta > 0$. A connected 3-uniform hypergraph H on n vertices is called has property $RE(\eta)$ if for every Berge path P on V(H), one of the following holds in 3-uniform hypergraph $H \cup P$:

Figure 1: P'

- (i) there is a Berge path longer than P,
- (ii) there is a subset $A \subseteq V(H)$ with $|A| \ge \eta n$ and for each vertex $a \in A$, there exists a set $B_a \subseteq V(H)$ with $|B_a| \ge \eta n$ such that for all $b \in B_a$, $H \cup P$ contains a Berge path T_{ab} between a and b with $|T_{ab}| = |P|$.

Theorem 2.2. For every $0 < \varepsilon < 1$, there are constants c > 0 and $\lambda > 0$ such that if $p \ge \frac{c \log n}{n^2}$, then the random 3-uniform hypergraph $H = H^3(n,p)$ asymptotically almost surely satisfies the following property. For all $H_1 \subseteq H$ with $\Delta(H_1) \le (\frac{3}{4} - 3\varepsilon)\binom{n}{2}p$, the hypergraph $H_2 := H - H_1$ contains a subgraph which has property $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$ and at most $\lambda n^3 p$ edges.

Definition 2.3. Let constant $\eta > 0$ and let H_0 be a n-vertex 3-uniform hypergraph with property $RE(\eta)$. A 3-uniform hypergraph H_2 on $V(H_0)$ is called complements H_0 if for every Berge path P in 3-uniform hypergraph H_0 , one of the following holds:

- (i) there is a Berge path longer than P in $H_0 \cup P$,
- (ii) there are two vertex sets A and B_a of $V(H_0)$ as in Definition 2.1 and exists vertices $a \in A$, $b \in B_a$ and edge $e \notin E(P_a)$ such that $\{a,b\} \subseteq e$ in $H_0 \cup H_2$.

Theorem 2.4. For every $0 < \varepsilon < 1$, there are constants c > 0 and $\lambda > 0$ such that if $p \ge \frac{c \log n}{n^2}$, then the random 3-uniform hypergraph $H = H^3(n,p)$ asymptoically almost surely satisfies the following property. For each subgraph $H_1 \subseteq H$ with $\Delta(H_1) \le (\frac{3}{4} - 2\varepsilon)\binom{n}{2}p$, let $H_2 := H - H_1$, then the hypergraph H_2 complements all subgraphs $H' \subseteq H$ which has property $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$ and at most $\lambda n^3 p$ edges.

Next, we introduce a modification of Proposition 3.4 in [3], and the proof is very similar to the original one.

Proposition 2.5. (Proposition 3.4 [3]) Let constant $\eta > 0$. For every 3-uniform hypergraph H_0 with $RE(\eta)$, if 3-uniform hypergraph H_2 on $V(H_0)$ complementing H_0 , then the 3-uniform hypergraph $H_0 \cup H_2$ has Berge Hamiltonicity.

2.1. Properties of $H^3(n, p)$

Theorem 2.6. (Chernoff's inequatily, see [16][17]) Let $0 < \varepsilon < 1$. Suppose that $Y \sim Bi(n, p)$ is a binomial random variable with parameters n and p, then

$$\Pr(|Y - np| > \varepsilon np) < e^{-\frac{\varepsilon^2}{3}np}.$$

And if t > 2np, then

$$\Pr(Y \ge t) < e^{-\frac{3}{16}t}.$$

Proposition 2.7. For every $0 < \varepsilon < 1$, there exists a constant c > 0 such that if $p \ge \frac{c \log n}{n^2}$, then the random 3-uniform hypergraph $H = H^3(n, p)$ asymptoically almost surely has the following properties:

- (i) $(1-\varepsilon)\binom{n}{3}p \le e(H) \le (1+\varepsilon)\binom{n}{3}p$;
- (ii) for each $v \in V(H)$, $(1-\varepsilon)\binom{n}{2}p \le d_H(v) \le (1+\varepsilon)\binom{n}{2}p$;
- (iii) for any disjoint subsets Y, M, $S \subseteq V(H)$ with $|Y| \le \frac{n}{4}$, $|M| \le \frac{n}{4}$ and $|S| \le \frac{n}{\log n} (\log \log n)^{1/2} + 1$,

$$e_H(Y, M, S) = |Y||M||S|p + o(|Y||M||S|p + \omega(n)n),$$

and

$$e_H\left(\binom{Y}{2},S\right) = \frac{|Y|^2}{2}|S|p + o\left(\frac{|Y|^2}{2}|S|p + \omega(n)n\right).$$

Proof. (i) For $E(e(H)) = \binom{n}{3}p$ is sufficiently large, by Theorem 2.6 we have

$$\Pr\left[\left|e(H) - \binom{n}{3}p\right| > \varepsilon \binom{n}{3}p\right] \le e^{-\frac{\varepsilon^2}{3}\binom{n}{3}p} = o(1).$$

(ii) Since $E(d_H(v)) = \binom{n-1}{2} p$, by Theorem 2.6 we have

$$\sum_{v \in V(H)} \Pr\left(\left| d_H(v) - \binom{n}{2} p \right| > \varepsilon \binom{n}{2} p \right) \le n \cdot e^{-\frac{\varepsilon^2}{3} \binom{n}{2} p} = o(1),$$

in which the inequality holds for $c\varepsilon^2 > 7$.

(iii)Suppose that $|Y| \le \frac{n}{4}$, $|M| \le \frac{n}{4}$ and $|S| \le \frac{n}{\log n} (\log \log n)^{1/2} + 1$, then $\mathbb{E}(e_H(Y, M, S)) = |Y||M||S|p$. Theorem 2.6 states that if $\mathbb{E}[e_H(Y, M, S)] = o(\omega(n)n)$, then

$$2^{n} \cdot 2^{n} \cdot 2^{n} \cdot \Pr\left[|e_{H}(Y, M, S) - |Y||M||S|p\right] \ge \varepsilon(|Y||M||S|p + \omega(n)n) \le 2^{3n} \cdot e^{-\frac{3}{16}\omega(n)n} = o(1),$$

otherwise,

$$2^{n} \cdot 2^{n} \cdot 2^{n} \cdot \Pr\left[|e_{H}(Y, M, S) - |Y||M||S|p| \ge \varepsilon(|Y||M||S|p + \omega(n)n)\right]$$

$$\le 2^{3n} \cdot e^{-\frac{\varepsilon^{2}}{3} \operatorname{E}[e_{H}(Y, M, S)]} \le 2^{3n} \cdot e^{-\frac{\varepsilon^{2}}{3} \omega(n)n} = o(1).$$

Also, for $\mathrm{E}\left(e_H\left(\binom{Y}{2},S\right)\right)=\binom{|Y|}{2}|S|p$, Theorem 2.6 states that if $\mathrm{E}\left[e_H\left(\binom{Y}{2},S\right)\right]=o(\omega(n)n)$, then

$$2^n \cdot 2^n \cdot \Pr\left[\left|e_H\left(\binom{Y}{2},S\right) - \frac{|Y|^2}{2}|S|p\right| \ge \varepsilon\left(\frac{|Y|^2}{2}|S|p + \omega(n)n\right)\right] \le 2^{2n} \cdot e^{-\frac{3}{16}\omega(n)n} = o(1),$$

otherwise,

$$2^{n} \cdot 2^{n} \cdot \Pr\left[\left|e_{H}\left(\binom{Y}{2}, S\right) - \frac{|Y|^{2}}{2}|S|p\right| \ge \varepsilon \left(\frac{|Y|^{2}}{2}|S|p + \omega(n)n\right)\right]$$

$$\le 2^{2n} \cdot e^{-\frac{\varepsilon^{2}}{3}\operatorname{E}\left[e_{H}\left(\binom{Y}{2}, S\right)\right]} \le 2^{2n} \cdot e^{-\frac{\varepsilon^{2}}{3}\omega(n)n} = o(1). \quad \Box$$

Proposition 2.8. For every $0 < \varepsilon < 1$, there exists a constant c > 0 such that if $p \ge \frac{c \log n}{n^2}$, then the random 3-uniform hypergraph $H = H^3(n, p)$ asymptoically almost surely has the following properties: for every Berge path P on V(H), and suppose that Y is the set of endpoints obtained by taking some rotations of P in H, and let $S \subset V(P) \setminus Y$,

(i) if
$$|Y| \le (\log n)^{-\frac{1}{4}} (np)^{-1}$$
, then $(1 - \varepsilon)|Y|\binom{n}{2}p \le e_H(Y, V \setminus Y|P)$ and $|N_H(Y|P)| \ge (2 - 3\varepsilon)|Y|\binom{n}{2}p$; (ii) if $n(\log n)^{-1/2} \le |Y| \le \frac{\varepsilon}{6}n$, $|S| \ge (\frac{1}{2} - \frac{\varepsilon}{3})n$, then

$$e_H(Y,S|P) > |Y| \left(\frac{3}{4} - \varepsilon\right) {n \choose 2} p;$$

(iii) if $|Y| \leq \frac{n}{4}$, $|S| \leq \frac{n}{4}$, then

$$e_H(Y, S|P) = |Y||S|\left(n - \frac{|Y|}{2} - \frac{|S|}{2}\right)p + o\left(|Y||S|\left(n - \frac{|Y|}{2} - \frac{|S|}{2}\right)p + \omega(n)n\right).$$

Proof. For each $y \in Y$, let P_y be the path obtained from P by some rotations, in which y is one of the

(i) Let $s_1 = (1 - \varepsilon)|Y|\binom{n}{2}p$ and $s_2 = (2 - 3\varepsilon)|Y|\binom{n}{2}p \le n(\log n)^{-1/4}$. Assume that $e_H(Y, V \setminus Y|P) \ge S_1$ and $|N_H(Y|P)| < s_2$, then there exists a subgraph of H induced by $Y \cup N_H(Y|P)$ has at least s_1 edges adjacent to Y. Therefore

$$\begin{split} & \Pr(\{s_1 \leq e_H(Y, V \setminus Y | P)\} \cap \{|N_H(Y | P)| < s_2\}) \\ & \leq \binom{n - |Y|}{s_2} \binom{\binom{|Y| + s_2}{3} - \binom{s_2}{3}}{s_1} p^{s_1} \leq \binom{n - |Y|}{s_2} \binom{|Y| s_2^2}{s_1} p^{s_1} \\ & \leq \left(\frac{en}{s_2}\right)^{s_2} \left(\frac{e|Y| s_2^2 p}{s_1}\right)^{s_1} = \left(\frac{en}{s_2}\right)^{s_2} \left(\frac{es_2^2}{(1 - \varepsilon)\binom{n}{2}}\right)^{s_1} \leq \left(\frac{en}{s_2}\right)^{s_2} \left(\frac{es_2}{n}\right)^{2s_1} \\ & = e^{s_2(1 + \log \frac{n}{s_2}) + 2s_1(1 + \log \frac{s_2}{n})} = e^{(1 + o(1))(2s_1 - s_2)\log \frac{s_2}{n}} \\ & \leq e^{(1 + o(1))\varepsilon|Y|\binom{n}{2}p(-1/4)\log\log n}. \end{split}$$

Since |Y| = o(n), on the other hand, there is

$$E[e_H(Y, V \setminus Y|P)] \ge |Y| \left[\binom{n-|Y|}{2} - 3 \right] p = (1 - o(1))|Y| \binom{n}{2} p.$$

Theorem 2.6 implies $\Pr\left[s_1>e_H(Y,V\setminus Y|P)\right]\leq e^{-\frac{\varepsilon^2}{3}\left(|Y|\binom{n}{2}p\right)}$. Therefore

$$\sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(np)^{-1}} \Pr(\{s_1 > e_H(Y, V \setminus Y|P)\} \cup \{|N_H(Y|P)| < s_2\})$$

$$= \sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(np)^{-1}} \Pr(s_1 > e_H(Y, V \setminus Y|P)) + \Pr(\{s_1 \le e_H(Y, V \setminus Y|P)\} \cap \{|N_H(Y|P)| < s_2\})$$

$$\le \sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(np)^{-1}} \binom{n}{|Y|} e^{-\frac{\varepsilon^2}{3}(|Y|\binom{n}{2}p)} e^{(1+o(1))\varepsilon|Y|\binom{n}{2}p(-1/4)\log\log n} \le \sum_{|Y|=1}^{(\log n)^{-\frac{1}{4}}(np)^{-1}} \binom{n}{|Y|} n^{-c_1|Y|} = o(1),$$

in which the inequality holds for $c_1=c_1(c,\varepsilon)\geq 2$ by choosing the appropriate constant c. (ii) Suppose that $n(\log n)^{-1/2}\leq |Y|\leq \frac{\varepsilon}{6}n$ and $|S|\geq (\frac{1}{2}-\frac{\varepsilon}{3})$. For every $y\in Y$ and $s\in S$, there are at most three edges contains $\{y, s\}$ in P_y , since we have

$$\begin{split} \mathrm{E}[e_{H}(Y,S|P)] &\geq |Y| \left[\binom{n-|Y|}{2} - \binom{n-|Y|-|S|}{2} - 3 \right] p \\ &\geq |Y| \left[\binom{n-\frac{\varepsilon}{6}n}{2} - \binom{n-n(\log n)^{-1/2} - (\frac{1}{2} - \frac{\varepsilon}{3})n}{2} \right] - 3 \right] p \\ &= (1-o(1))|Y| \left[\left(1 - \frac{\varepsilon}{6} \right)^2 - \left(\frac{1}{2} + \frac{\varepsilon}{3} - (\log n)^{-1/2} \right)^2 \right] \binom{n}{2} p \\ &= (1-o(1))|Y| \left(\frac{3}{4} - \frac{5}{6}\varepsilon \right) \binom{n}{2} p, \end{split}$$

by Theorem 2.6 there is

$$2^{n} \cdot 2^{n} \cdot \Pr\left(e_{H}(Y, S|P) \leq |Y| \left(\frac{3}{4} - \varepsilon\right) \binom{n}{2} p\right) \leq 2^{2n} \cdot \Pr\left(e_{H}(Y, S|P) \leq |Y| \left(1 - \frac{\varepsilon}{5}\right) \operatorname{E}\left[e_{H}(Y, S|P)\right]\right)$$

$$\leq 2^{2n} \cdot e^{-\frac{\epsilon^2}{75} \mathrm{E}[e_H(Y,S|P)]} \leq 2^{2n} \cdot e^{-\frac{\epsilon^2}{75} cn(\log n)^{1/2}} = o(1).$$

(iii) Suppose that $|Y| \leq \frac{n}{4}$ and $|S| \leq \frac{n}{4}$. For every $y \in Y$ and $s \in S$, there are at most three edges contains $\{y,s\}$ in P_y , thus

$$E[e_{H}(Y,S|P)] \ge \left(|Y||S|n - {|Y| \choose 2}|S| - {|S| \choose 2}|Y| - 3|Y|\right)$$

= $(1 - o(1))|Y||S| \left(n - \frac{|Y|}{2} - \frac{|S|}{2}\right)p.$

Define $\tau := |Y||S|\left(n - \frac{|Y|}{2} - \frac{|S|}{2}\right)$. For $e_H(Y, S|P)$ is a binomial random variable, Theorem 2.6 implies that if $E[e_H(Y,S)] = o(\hat{\omega}(n)n)$, then

$$2^n \cdot 2^n \cdot \Pr\left[|e_H(Y,S) - \tau| \ge \varepsilon \left(\tau + \omega(n)n\right)\right] \le 2^{2n} \cdot e^{-\frac{3}{16}\omega(n)n} = o(1),$$

otherwise,

$$2^n \cdot 2^n \cdot \Pr\left[|e_H(Y,S) - \tau| \ge \varepsilon \left(\tau + \omega(n)n\right)\right] \le e^{-\frac{\varepsilon^2}{3} \mathbb{E}\left[e_H(Y,S|P)\right]} \le 2^{2n} \cdot e^{-\frac{\varepsilon^2}{3}\omega(n)n} = o(1). \quad \Box$$

Proposition 2.9. For every $0 < \varepsilon < 1$, there exists a constant c > 0 such that if $p \ge \frac{c \log n}{n^2}$, then the random 3uniform hypergraph $H = H^3(n, p)$ asymptoically almost surely satisfies the following properties. For each $H_1 \subseteq H$ with $\Delta(H_1) \leq (\frac{3}{4} - 2\varepsilon)\binom{n}{2}p$, let $H_2 := H - H_1$. Let P be a Berge path on $V(H_2)$ and Y be the set of the endpoints obtained by taking some rotations of P in H_2 ,

- (i) if $|Y| \le (\log n)^{-\frac{1}{4}} (np)^{-1}$, then $|N_{H_2}(Y|P)| \ge (\frac{1}{2} + \varepsilon)|Y|(\frac{n}{2})p$; (ii) if $n(\log n)^{-1/2} \le |Y| \le \frac{\varepsilon}{6}n$, then $|N_{H_2}(Y|P) \ge (\frac{1}{2} + \frac{\varepsilon}{6})n$;
- (iii) H₂ is connected.

Proof. (i) Let $|Y| \leq (\log n)^{-\frac{1}{4}} (np)^{-1}$. By Proposition 2.8, we can get $(1 - \varepsilon)|Y|\binom{n}{2}p \leq e_H(Y, V \setminus Y|P)$ and $|N_H(Y|P)| \geq (2 - 3\varepsilon)|Y|\binom{n}{2}p$. Hence

$$|N_{H_2}(Y|P)| \ge |N_H(Y|P)| - |Y| \cdot 2\Delta(H_1)$$

$$\ge (2 - 3\varepsilon)|Y| \binom{n}{2} p - |Y| \cdot 2\left(\frac{3}{4} - 2\varepsilon\right) \binom{n}{2} p$$

$$\ge \left(\frac{1}{2} + \varepsilon\right)|Y| \binom{n}{2} p.$$

(ii) If not, assume that $|N_{H_2}(Y|P)| < (\frac{1}{2} + \frac{\varepsilon}{6})n$, then $|V(H) \setminus (Y \cup N_{H_2}(Y))| \ge (\frac{1}{2} - \frac{\varepsilon}{3})n$ and $e_{H_2}(Y, V(H) \setminus (Y \cup N_{H_2}(Y))) \le (\frac{1}{2} - \frac{\varepsilon}{3})n$ $(Y \cup N_{H_2}(Y))|P) = 0$. Thus

$$e_H(Y,V(H)\setminus (Y\cup N_{H_2}(Y))|P)\leq |Y|\Delta(H_1)=|Y|\left(\frac{3}{4}-2\varepsilon\right)\binom{n}{2}p,$$

which contradicts Proposition 2.8.

(iii) If H_2 is not connected. Let H' be the minimum connected component of H_2 , which implies $|N_{H_2}(V(H'))| =$ |V(H')|. Since $(\frac{1}{2} + \varepsilon)(\binom{n}{2}p > 1$, following the result of (i), we have

$$|V(H')| \ge \left(\frac{1}{2} + \varepsilon\right) (\log n)^{-1/4} (np)^{-1} \binom{n}{2} p > n(\log n)^{-1/2}.$$

By (ii), we can get $|V(H')| \ge (\frac{1}{2} + \frac{\varepsilon}{6})n$ that contradicts the facts. \square

2.2. Proof of Theorem 2.2.

Before proving Theorem 2.2, we prove the following Lemma 2.10.

Lemma 2.10. For every real $0 < \varepsilon < 1$, there exists a constant c > 0 such that if $p \ge \frac{c \log n}{n^2}$, then the random 3-uniform hypergraph $H = H^3(n, p)$ asymptoically almost surely has the following properties: for each $H_1 \subset H$ with $\Delta(H_1) \leq (\frac{3}{4} - 2\varepsilon)\binom{n}{2}p$, the 3-uniform hypergraph $H_2 := H - H_1$ has $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$.

Proof. Let $P := a_0 e_1 a_1 \cdots a_l$ be a Berge path on $V(H_2)$. If there is a Berge path longer than P in $H_2 \cup P$, then we are done.

So we suppose that P is the longest Berge path in $H_2 \cup P$. In the following, we will consider an endpoint set obtained by taking some rotations of P with fixed endpoint a_l in H_2 , and give a lower bound $(\frac{1}{2} + \frac{2}{3}\varepsilon)n$ on the number of those endpoints. The endpoint set will be constructed by iterative method. We use Y_t to denote the endpoint set obtained by the tth rotation of P with fixed enpoint v_l in H_2 , especially, $Y_0 = \{a_0\}$. Since *P* is the longest Berge path in $H_2 \cup P$, note that for every $t \in [n]$ we must have $N_{H_2}(Y_t|P) \subseteq V(P)$.

Claim 1.
$$|Y_{t+1}| \ge \frac{1}{2}(|N_{H_2}(Y_t|P)| - 3|Y_t|).$$

Claim 1. $|Y_{t+1}| \ge \frac{1}{2}(|N_{H_2}(Y_t|P)| - 3|Y_t|)$. Proof. For any $a \in Y_t$, if $w \in N_{H_2}(a|P)$, then there exists an endpoint by a rotation of P_a using v as pivot point. Let $Y_t^+ = \{a_{i+1}|a_i \in Y_t\}$, $Y_t^- = \{a_{i-1}|a_i \in Y_t\}$. Hence, if a vertex $v \in N_{H_2}(Y_t|P)$ does not belong to $Y_t \cup Y_t^- \cup Y_t^+$, then the edges in P incident with v were not broken in the previous rotations. We can get a new endpoint v^- or v^+ (see Figure 2 and Figure 3), and at most two such pivot points can obtain the same endpoint since the order for unbroken interval either the same as or reverse to P. Therefore, $|Y_{t+1}| \ge \frac{1}{2} (|N_{H_2}(Y_t|P) - 3|Y_t|)$. This completes the proof of Claim 1.

Figure 2: same order

Figure 3: reverse order

Suppose that $|Y_t| = \left(\frac{n^2p}{2^5}\right)^t \ge 1$ for some integer $t \ge 0$. Since

$$\delta(H_2) \ge (1-\varepsilon)\binom{n}{2}p - \Delta(H_1) \ge \left(\frac{1}{4} + \varepsilon\right)\binom{n}{2}p,$$

by Claim 2 together with Proposition 2.9 (i), we have

$$\begin{split} |Y_{t+1}| &\geq \frac{1}{2}(|N_{H_2}(Y_t|P)| - 3|Y_t|) \geq \frac{1}{2}\left(\left(\frac{1}{4} + \varepsilon\right)|Y_t|\binom{n}{2}p - 3|Y_t|\right) \\ &\geq \frac{1}{2}\left(\left(\frac{1}{4} + \varepsilon\right)\left(\frac{n^2p}{2^5}\right)^t\binom{n}{2}p - 3|Y_t|\right) \geq \left(\frac{n^2p}{2^5}\right)^{t+1}. \end{split}$$

Let $\left(\frac{n^2p}{2^5}\right)^s = (\log n)^{-1/4}(np)^{-1}$, it follows that there is an integer $s \leq \frac{\log n}{\log \log n}$ such that $|Y_s| = (\log n)^{-1/4}(np)^{-1}$ if $c \geq 2^5$. Repeat the same argument as above to $|Y_s|$, there is

$$|Y_{s+1}| \ge \left(\frac{n^2 p}{2^5}\right) (\log n)^{-1/4} (np)^{-1} \ge \frac{n}{2^5 (\log n)^{1/4}} > \frac{n}{(\log n)^{1/2}}.$$

Agian, repeat the same argument as above to subset with size $\frac{n}{(\log n)^{1/2}}$ of Y_{s+1} , and combine with Proposition 2.9, there is

$$|Y_{s+2}| \ge \frac{1}{2}(|N_H(Y_{s+1}|P)| - 3|Y_{s+1}|) \ge \frac{1}{2}\left(\left(\frac{1}{2} + \frac{1}{6}\varepsilon\right)n - 3\frac{n}{(\log n)^{1/2}}\right) \ge \frac{n}{4}.$$

Finally, we give a proof of $|Y_{s+3}| \geq (\frac{1}{2} + \frac{2}{3}\varepsilon)n$. Let $S := Y_{s+3}$ and $Y \subseteq Y_{s+2}$ be any subset with size $\frac{n}{4}$. We partition P into $r := \frac{\log n}{(\log\log n)^{1/2}}$ vertex disjoint intervals, such that the length of each interval are either $\lfloor \frac{|P|}{r} \rfloor$ or $\lceil \frac{|P|}{r} \rceil$. For each $i \in [r]$, let $\tilde{Y}_i \subseteq Y$ be a vertex subset, in which all those vertices are obtained by some rotations with some broken edges of P_i in the previous rotations. Let $Y_{i,+}$ and $Y_{i,-}$ be the collections of all those vertices of Y obtained by some rotations such that P_i is unbroken in the previous rotations, and the path from every vertex of $Y_{i,+}$ and $Y_{i,-}$ to v_l traverses P_i in the same and reverse order as P, expectively. Thus $Y = \tilde{Y}_i \cup Y_{i,+} \cup Y_{i,-}$ for all $i \in [r]$.

Let $J = \{i \in [r] : |\tilde{Y}_i| \ge (\log \log n)^{-1/4} |Y|\}$. We claim the first fact that |J| = o(r). Indeed, since every vertex in Y is obtained by at most $\frac{2\log n}{\log \log n}$ rotations of P. Let \tilde{E} denote the number of edges that broken in the previous rotations for obtain Y. There is

$$|Y|\frac{2\log n}{(\log\log n)} \ge \tilde{E} \ge (\log\log n)^{-1/4}|Y||J|,$$

which implies |J| = o(r).

Next, we define V := V(H), P := V'(P), $P_i := V'(P_i)$ for any $i \in [r]$, and show the second fact that

$$e_{H}(Y, V \setminus P|P) + \sum_{i \in [r]} \sum_{\pm \in \{+, -\}} \left\{ e_{H}(Y_{i, \pm}, (P_{i} \cap P_{i}^{\pm}) \setminus S^{\pm}|P) - e_{H}(Y_{i, \pm}, (P_{i} \cap P_{i}^{\pm}) \setminus S^{\pm}, V \setminus P|P) \right\}$$

$$\leq e_{H_{1}}(Y, V). \tag{1}$$

For P is the longest Berge path and by applying Proposition 2.9 to Y, we can get $e_{H_2}(Y, V \setminus P|P) = 0$ and $|V \setminus P| \leq \frac{n}{4}$. For each $i \in [r]$, if there exists vertices $x \in Y_{i,+}$, $a_j \in P_i$ and an edge $e \notin E(P_y)$ contains $\{a_j, x\}$ in H_2 , then $a_{j-1} \in S$ and $a_j \in S^+$, therefore $e_{H_2}(Y_{i,+}, (P_i \cap P_i^+) \setminus S^+|P) = 0$ (similarly, $e_{H_2}(Y_{i,-}, (P_i \cap P_i^-) \setminus S^-|P) = 0$). On the other hand, for every edge $e \in E_H(Y_{i,+}, (P_i \cap P_i^+) \setminus S^+|P) \cup E_H(Y_{i,-}, (P_i \cap P_i^-) \setminus S^-|P)$, if $e \cap (V \setminus P) \neq \phi$, then e will be counted repeatedly. This completes the proof of (1), Now we estimate the left inequality of (1).

By definition, we know $|P_i| \le \lceil \frac{|P|}{r} \rceil \le \frac{n}{\log n} (\log \log n)^{1/2} + 1$. Thus by Proposition 2.7 and Proposition 2.8, we can get the lower bound of the left inequality of (1) is as follows

$$|Y||V \setminus P| \left[n - \frac{|Y|}{2} - \frac{|V \setminus P|}{2} \right] p + o(w(n)n)$$

$$+ \sum_{i \in [r]} \sum_{\pm \in \{+, -\}} \left(|Y_{i, \pm}|| (P_i \cap P_i^{\pm}) \setminus S^{\pm}| \left[n - \frac{|Y_{i, \pm}|}{2} - \frac{|(P_i \cap P_i^{\pm}) \setminus S^{\pm}|}{2} \right] p + o\left(n^2 \frac{|P|}{r} p\right) \right)$$

$$- \sum_{i \in [r]} \sum_{\pm \in \{+, -\}} \left[(1 + o(1))|Y_{i, \pm}||V \setminus P|| (P_i \cap P_i^{\pm}) \setminus S^{\pm}|p + o(w(n)n)].$$
(2)

Due to $||(P_i \cap P_i^+) \setminus S^+| - |P_i \setminus S|| \le 2$ (similar for $(P_i \cap P_i^-) \setminus S^-$), the second line in the inequality (2) is at least

$$\begin{split} & \sum_{i \in [r]} \sum_{\pm \in \{+, -\}} \left(|Y_{i, \pm}| |P_i \setminus S| \left[n - \frac{|Y_{i, \pm}|}{2} - \frac{|(P_i \cap P_i^{\pm}) \setminus S^{\pm}|}{2} \right] p + o\left(\frac{n^3}{r}p\right) - o\left(2\frac{n^2}{r}p\right) \right) \\ & \geq \sum_{i \in [r]} \sum_{\pm \in \{+, -\}} |Y_{i, \pm}| |P_i \setminus S| \left[n - \frac{|Y_{i, \pm}|}{2} - \frac{|P_i \setminus S|}{2} \right] p - o(n^3p) \\ & \geq \sum_{i \in [r]} \left(\sum_{\pm \in \{+, -\}} |Y_{i, \pm}| |P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2} \right) - \frac{|Y_{i, \pm}|^2 + |Y_{i, -}|^2}{2} |P_i \setminus S| \right) p - o(n^3p) \\ & \geq \sum_{i \in [r]} \left(|Y \setminus \tilde{Y}_i| |P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2} \right) - \frac{(|Y_{i, \pm}| + |Y_{i, -}|)^2}{2} |P_i \setminus S| \right) p - o(n^3p) \\ & \geq \sum_{i \in [r]} |Y \setminus \tilde{Y}_i| |P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2} \right) p - \frac{|Y|^2}{2} |P \setminus S| p - o(n^3p). \end{split}$$

Since J = o(r), there is $|Y \setminus \tilde{Y}_i| = (1 - o(1))|Y|$ for $i \in [r] \setminus J$. The inequality above is

$$\geq \sum_{i \in [r] \setminus J} (1 - o(1))|Y||P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2}\right) p - \frac{|Y|^2}{2}|P \setminus S|p - o(n^3p)$$

$$\geq \sum_{i \in [r]} (1 - o(1))|Y||P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2}\right) p - o(r)(1 - o(1))|Y| \frac{|P|}{r} np - \frac{|Y|^2}{2}|P \setminus S|p - o(n^3p)$$

$$\geq \sum_{i \in [r]} |Y||P_i \setminus S| \left(n - \frac{|P_i \setminus S|}{2}\right) p - \frac{|Y|^2}{2}|P \setminus S|p - o(n^3p)$$

$$\geq |Y||P \setminus S|n - \frac{|Y|^2}{2}|P \setminus S|p - o(n^3p).$$

The inequality (2) can be expressed as

$$\geq |Y||V \setminus P| \left[n - \frac{|Y|}{2} - \frac{|V \setminus P|}{2} \right] p + o(w(n)n) + |Y||P \setminus S|np - \frac{|Y|^2}{2} |P \setminus S|p - o(n^3p)$$

$$- \sum_{i \in [r]} |Y \setminus \tilde{Y}_i||V \setminus P||P_i \setminus S|p - o(w(n)n)$$

$$\geq |Y||V \setminus P| \left[n - \frac{|Y|}{2} - \frac{|V \setminus P|}{2} \right] p + |Y||P \setminus S|np - \frac{|Y|^2}{2} |P \setminus S|p - |Y||V \setminus P||P \setminus S|p - o(n^3p)$$

$$\geq |Y|(|V \setminus P| + |P \setminus S|)np - \frac{|Y|^2}{2} (|V \setminus P| + |P \setminus S|)p - |Y||V \setminus P| \left(\frac{|V \setminus P|}{2} + |P \setminus S| \right) p - o(n^3p)$$

$$\geq |Y||V \setminus S|np - \frac{|Y|^2}{2} |V \setminus S|p - |Y||V \setminus P||V \setminus S|p - o(n^3p)$$

$$\geq \frac{3}{4} n|Y||V \setminus S|p - \frac{|Y|^2}{2} |V \setminus S|p - o(n^3p).$$

Therefore inequality (1) implies $\frac{3}{4}n|Y||V\setminus S|p-\frac{|Y|^2}{2}|V\setminus S|p-o(n^3p)\leq e_{H_1}(Y,V)$. On the other hand, $e_{H_1}(Y,V)+e_{H_1}(\binom{Y}{2},V)\leq |Y|\Delta_{H_1}(Y)$, thus following Proposition 2.7 we can get

$$\frac{3}{4}n|Y||V\setminus S|p-o(n^3p)\leq |Y|\left(\frac{3}{4}-2\varepsilon\right)\binom{n}{2}p\leq |Y|\left(\frac{3}{8}-\frac{\varepsilon}{2}\right)n^2p.$$

It's easy to check
$$|S| \ge \left(\frac{1}{2} + \frac{2}{3}\varepsilon\right)n$$
 by $|V \setminus S| \le \left(\left(\frac{3}{8} - \frac{\varepsilon}{2}\right)n + o(n^2)\right)\frac{4}{3} \le \left(\frac{1}{2} - \frac{2}{3}\varepsilon\right)n$.

Hence, we can get an endpoint set S of size at least $(\frac{1}{2} + \frac{2}{3}\varepsilon)n$, in which for every $y \in S$, there is a Berge path of length |P| in $H_2 \cup P$ with endpoints a_l and y. Similarly, for such Berge path we can fixed y to obtain an endpoint set $S_y \subseteq V(H)$ of size at least $(\frac{1}{2} + \frac{2}{3}\varepsilon)n$ such that, for every $s \in S_y$, there is a Berge path of length |P| in $H_2 \cup P$ from s to y. \square

Proof of Theorem 2.2. Let $p' = \lambda p$ and let H' be the 3-uniform hypergraph obtained by taking each edge of $H^3(n,p)$ independently with probability λ . Thus H' has the same distribution with $H^3(n,p')$. By Lemma 2.10 and Proposition 2.7, we can get

$$\Pr\left[H' \in RE\left(\frac{1}{2} + \frac{2}{3}\varepsilon\right) \text{ with at most } \lambda n^3 p \text{ edges}\right] = 1 - o(1). \tag{3}$$

Now, we define that a 3-uniform hypergraph H is good: if for each $H_1 \subseteq H$ with $\Delta(H_1) \leq (\frac{3}{4} - 2\varepsilon)\binom{n}{2}p'$, the 3-uniform hypergraph $H - H_1$ has at most $n^3p' = \lambda n^3p$ edges and is $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$. Otherwise call H is bad. Under this definition, (3) means $\Pr[H' \text{ is good}] = 1 - o(1)$.

Let \mathcal{H} be the collection of all 3-uniform hypergraphs H satisfies $\Pr(H' \text{ is good}|H = H^3(n,p)) \geq \frac{5}{6}$, in other words, $\Pr(H' \text{ is good}|H \notin \mathcal{H}) < \frac{5}{6}$, following this, there is

$$o(1) = \Pr(H' \text{ is bad}) \ge \Pr(H' \text{ is bad}|H^3(n,p) \notin \mathcal{H}) \cdot \Pr(H^3(n,p) \notin \mathcal{H}) \ge \frac{1}{6}\Pr(H^3(n,p) \notin \mathcal{H}).$$

Hence $\Pr(H^3(n,p) \notin \mathcal{H}) = o(1)$, that means $\Pr(H^3(n,p) \in \mathcal{H}) = 1 - o(1)$. Next, let $H_1 \subseteq H$ be any subgraph with $\Delta(H_1) \leq (\frac{3}{4} - 3\epsilon)(\frac{n}{2})p$. By Theorem 2.6, there is

$$\sum_{v \in V(H')} \Pr\left(d_{H' \cap H_1}(v) \geq \left(\frac{3}{4} - 2\varepsilon\right) \binom{n}{2} p'\right) \leq \sum_{v \in V(H')} \Pr\left(d_{H' \cap H_1}(v) \geq (1+\varepsilon) \left(\frac{3}{4} - 3\varepsilon\right) \binom{n}{2} p'\right) = o(1).$$

Hence, there exists a subgraph $H'\subset H$ that is good and the maximum degree of $H'\cap H_1$ at most $(\frac{3}{4}-2\varepsilon)(\frac{n}{2})p'$. For such H', by the definition of good, the hypergraph $H'-(H'\cap H_1)\subseteq H-H_1$ which has $RE(\frac{1}{2}+\frac{2}{3}\varepsilon)$ and $|E(H'-(H'\cap H_1))|\leq \lambda n^3p$. \square

2.3. Proof of Theorem 2.4.

Proof of Theorem 2.4. Let \mathcal{H}_2 be the collection of all subgraphs $H - H_1$, which satisfy $\Delta(H_1) \leq (\frac{3}{4} - 2\epsilon)(\frac{n}{2})p$.

$$\Pr\left[\bigcup_{H' \in RE(\frac{1}{2} + \frac{2}{3}\varepsilon), |E(H')| \leq \lambda n^{3}p} (\{H' \subseteq H\} \cap \{\text{exists } H_{2} \in \mathcal{H}_{2} \text{ does not complement } H'\})\right] \\ \leq \sum_{H' \in RE(\frac{1}{2} + \frac{2}{3}\varepsilon), |E(H')| \leq \lambda n^{3}p} \Pr(H' \subseteq H) \cdot \Pr(\text{exists } H_{2} \in \mathcal{H}_{2} \text{ does not complement } H'|H' \subseteq H) \\ \leq \sum_{m=1}^{\lambda n^{3}p} \binom{\binom{n}{3}}{m} p^{m} \cdot \Pr(\text{exists } H_{2} \in \mathcal{H}_{2} \text{ does not complement } H'|H' \subseteq H), \tag{4}$$

where the $H' \subseteq H$ of last line of inequality (4) are taken over all labeled 3-uniform hypergraphs with $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$ and m edges.

Next we consider Pr(exists $H_2 \in \mathcal{H}_2$ does not complement $H'|H' \subseteq H$). Let P be a fixed Berge path on V(H'). Recall the definition of complement. If H_2 does not complement H', then there is not Berge path longer than P in $H' \cup P$. On the one hand, since $H' \in RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$, we can find an endpoint set $A \subseteq V(H)$ which $|A| \ge (\frac{1}{2} + \frac{2}{3}\varepsilon)n$ and for every $a \in A$, there is an endpoint set B_a of V(H') with $|B_a| \ge (\frac{1}{2} + \frac{2}{3}\varepsilon)n$ satisfies for all $b \in B_a$, the 3-uniform hypergraph $H' \cup P$ contains a Berge path T_{ab} between a and b with

 $|T_{ab}|=|P|$. On the other hand, since H_2 does not complement H', for every such T_{ab} , there is not edge $e\notin T_{ab}$ contains $\{a,b\}$ in H_2 . By the maximum degree of H_1 at most $(\frac{3}{4}-2\varepsilon)(\frac{n}{2})p$, there is

$$e_H(a, B_a|P) \leq \left(\frac{3}{4} - 2\varepsilon\right) \binom{n}{2} p.$$

Since

$$E[e_{H}(a, B_{a}|P)] \ge \left[\binom{n-1}{2} - \binom{n-1-|B_{a}|}{2} - 3 \right] p$$

$$\ge \left(\binom{n-1}{2} - \binom{n-1-(\frac{1}{2} - \frac{\varepsilon}{3})n}{2} - 3 \right) p$$

$$= (1-o(1)) \left(1 - \left(\frac{1}{2} + \frac{\varepsilon}{3} \right)^{2} \right) \binom{n}{2} p$$

$$\ge \left(\frac{3}{4} - \frac{\varepsilon}{2} \right) \binom{n}{2} p.$$

Theorem 2.6 implies that the probability of $e_H(a, B_a|P) \leq \left(\frac{3}{4} - 2\varepsilon\right)\binom{n}{2}p$ is at most $e^{-\frac{\varepsilon^2}{3}(n^2p)}$. Therefore,

$$\Pr\left[\bigcap_{a\in A}\left(e_H(a,B_a|P)\leq \left(\frac{3}{4}-2\varepsilon\right)\binom{n}{2}p\right)\right]\leq e^{-\frac{\varepsilon^2}{3}(n^3p)}.$$

Note that there are at most n choices for the length of Berge path P. For each $j \in [n]$, there are at most n-2 choices for the edges of any two vertices of V'(P) in H, thus there are at most $\frac{n}{(j-1)!}(n-2)^j$ Berge path of length j. Based on this, the third line of inequality (4)

$$\sum_{m=1}^{\lambda n^3 p} {n \choose 3} p^m \cdot \Pr(\text{exists } H_2 \in \mathcal{H}_2 \text{ does not complement } H' | H' \subseteq H)$$

$$\leq \sum_{m=1}^{\lambda n^3 p} {n \choose 3} p^m \cdot n \cdot \frac{n!}{(j-1)!} (n-2)^j \cdot e^{-\frac{\varepsilon^2}{3}(n^3 p)}$$

$$\leq e^{-\frac{\varepsilon^2}{3}(n^3 p)} \sum_{m=1}^{\lambda n^3 p} {n \choose 3} p^m$$

$$\leq e^{-\frac{\varepsilon^2}{3}(n^3 p)} \sum_{m=1}^{\lambda n^3 p} \left(\frac{en^3 p}{m}\right)^m$$

$$\leq e^{-\frac{\varepsilon^2}{3}(n^3 p)} (\lambda n^3 p) \left(\frac{e}{\lambda}\right)^{\lambda n^3 p}$$

$$= e^{-\frac{\varepsilon^2}{3}(n^3 p)} e^{O(\lambda \log(\frac{1}{\lambda})n^3 p)} = o(1),$$

which the inequality holds for $\left(\frac{en^3p}{m}\right)^m$ is monotone increasing in the range $1 \le m \le \lambda n^3p$ and $\lambda = \lambda(\varepsilon)$ is sufficiently small. \square

3. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let $0 < \varepsilon < 1$. Let $c = c(\varepsilon) > 0$ and $\lambda = \lambda(\varepsilon) > 0$ be constants such that for $p \ge \frac{c \log n}{n^2}$, the 3-uniform hypergraph $H = H^3(n, p)$ asymptotically almost surely holds for Proposition 2.7, Theorem

2.2 and Theorem 2.4, especially, Proposition 2.7 hold with 2ε instead of ε . That means, $d_H(v) \geq (1-2\varepsilon)\binom{n}{2}p$ for every vertex $v \in V(H)$. Therefore, for any 3-uniform hypergraph H_2 with minimum degree at least $(\frac{1}{4}+\varepsilon)\binom{n}{2}p$ can be obtained by the following way: exists a subgraph $H_1 \subseteq H$ with maximum degree at most $(\frac{3}{4}-3\varepsilon)\binom{n}{2}p$ such that $H_2=H-H_1$. Next we will show that $H_1=H_2$ is Berge Hamiltonian.

On the one hand, by Theorem 2.2, there exists a subgraph $H^* \subseteq H - H_1$ which has property $RE(\frac{1}{2} + \frac{2}{3}\varepsilon)$ and $|E(H^*)| \leq \lambda n^3 p$. On the other hand, by Theorem 2.4 and the fact that $(\frac{3}{4} - 3\varepsilon)\binom{n}{2}p \leq (\frac{3}{4} - 2\varepsilon)\binom{n}{2}p$, there is $H - H_1$ complement H^* . Therefore, Proposition 2.5 implies that $H - H_1$ is Berge Hamiltonian.

References

- [1] R. M. Karp, *Reducibility among combinatorial problems*, in Complexity of Computer Computations, New York: Plenum. (1972) 85–103.
- [2] G. A. Dirac, Some theorems on abstract graphs, Proceedings of the London Mathematical Society. 3 (1952) 69-81.
- [3] C. Lee, B. Sudakov, Dirac's theorem for random graphs, Random Structures Algorithms. 41 (2012) 293-305.
- [4] C. Berge, Graphs and Hypergraph, (2rd edition), North-Holland, Amsterdam, 1976.
- [5] J. C. Bermond, A. Germa, M. C. Heydemann, D. Sotteau, *Hypergraphes Hamiltoniens*, problèmes combinatoires et thèorie des graphes, Colloque International CNRS. **260** (1978) 39–43.
- [6] D. Clemens, J. Ehrenmüller, Y. Person, A Dirac-type theorem for Berge cycles in random hypergraphs, The Electronic Journal of Combinatorics. 27 (2020) 3–39.
- [7] D. Bal, P. Devlin, et al, Hamiltonian Berge cycles in random hypergraphs, Probability and Computing. 30 (2021) 228–238.
- [8] Q. Zhou, L. Wang, Y. Lu, Wiener-type invariants and Hamiltonian properties of graphs, Filomat. 33 (2019) 4045–4058.
- [9] D. Kühn, D. Osthus, Decompositions of complete uniform hypergraphs into Hamilton Berge cycles, Journal of Combinatorial Theory. 126 (2014) 128–135.
- [10] A. Dudek, A. Frieze, A. Ruciński, Rainbow Hamilton cycles in uniform hypergraphs, The Electronic Journal of Combinatorics. 19 (2012) 118–125.
- [11] A. Dudek, M. Ferrara, Extensions of results on rainbow Hamilton cycles in uniform hypergraphs, Graphs and Combinatorics. 31 (2015) 577–583.
- [12] A. Ferber, M. Krivelevich. *Rainbow Hamilton cycles in random graphs and hypergraphs*, Recent trends in combinatorics. **159** (2016) 167–189
- [13] B. Deepak, F. Alan, Rainbow matchings and Hamilton cycles in random graphs, Random structures and Algorithms. 48 (2016) 503-523.
- [14] M. Z. Chen, X. D. Zhang, Some new sufficient conditions for 2p-Hamilton-biconnectedness of graphs, Filomat. 33 (2019) 993–1011
- [15] L. Pósa, Hamiltonian circuits in random graphs, Discrete Mathematics. 14 (1976) 359–364.
- [16] N. Alon, J. Spencer, The probabilistic method, (2rd edition), Wiley, New York, 2000.
- [17] M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and B. Reed, *Probabilistic methods for algorithmic discrete mathematics*, Springer-Verlag, Berlin, 1998.