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Abstract. A pair (u, α) in X × X′, where X is an infinite dimensional Banach space and X′ its topological
dual space, induces in a natural way two multiplication operators Lα,u and Rα,u on the Banach space
L(X), defined by Lα,u

(
T
)
(x) = α

(
T(x)
)
u, and Rα,u

(
T
)
(x) = α(x)T(u), for all T in L(X) and x in X. In this

paper, we present necessary and sufficient conditions for the compactness, demicompactness, stongly
demicompactess, power compactness and Riesz property of this family of operators. We also establish
sufficient conditions for the quasi-compactness and weak compactness of these operators. Finally, we show
that the Dunford-Pettis property fails for the Banach space L(X) whenever either X or L(X) is reflexive.

1. Introduction

Let X be an infinite-dimensional Banach space and X′ its topological dual space. ByL(X) we denote the
set of all bounded and linear operators on X, byK (X) (resp. PK (X)), we denote the set of all compact (resp.
power compact) operators in L(X) and by L(L(X)) we denote the set of all bounded and linear operators
on L(X).
Let (u, α,V) in X × X′ × L(X). Given the following two problems:

P1. Find a solution T in L(X) of

T(x) − α(T(x))u = V(x), for every x ∈ X. (1)

P2. Find a solution T in L(X) of

T(x) − α(x)T(u) = V(x), for every x ∈ X. (2)

Let us introduce the two linear operators Lα,u and Rα,u in L(L(X)), defined by

Lα,u
(
T
)
(x) = α

(
T(x)
)
u,

Rα,u
(
T
)
(x) = α(x)T(u), for every T ∈ L(X) and x ∈ X.
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The problems Pi, i = 1, 2 can be rewritten in terms of equations in L(X),
P1. Find a solution T in L(X) of

(I −Lα,u)(T) = V. (3)

P2. Find a solution T in L(X) of

(I −Rα,u)(T) = V. (4)

The resolution of these problems requires consideration of two cases:
Case 1. α(u) , 1. We can solve P1 by applying the linear functional α to both sides of equation (1). This
yields

α(T(x)) =
α(V(x))
1 − α(u)

, for every x ∈ X.

Hence, the solution of equation (1) is unique, and it is defined by

T = V +L α
1−α(u) ,u(V). (5)

We can solve P2 by taking x = u in equation (2), yielding

T(u) =
1

1 − α(u)
V(u).

Hence, the solution of equation (2) is unique, and it is defined by

T = V +R α
1−α(u) ,u(V). (6)

Case 2. α(u) = 1. The equation (1) (resp. (2) ) has a solution if, and only if, Im(V) ⊆ Ker(α), (resp. u ∈ Ker(V)).
In this case, T = V is the unique solution of equations (1) and (2) respectively.

The family of linear operators Lα,u and Rα,u, indexed with (u, α) in X×X′, constitutes a very interesting
subfamily of the family of multiplication operators. Indeed, for any fixed (u, α) in X×X′, if we denote byAu,α
the linear operator in L(X) defined byAu,α(x) = α(x)u for every x in X, and we use the same notation as in
[9], we can recognize the left and the right multiplication operators LAu,α and RAu,α respectively.

Lα,u(T) = LAu,α (T) = Au,αT, for every T ∈ L(X).
Rα,u(T) = RAu,α (T) = TAu,α, for every T ∈ L(X).

A preliminary investigation allowed us to identify the following property: for any T in L(X), the operators
Lα,u(T) and Rα,u(T) are of finite rank. As every finite rank operator in a Banach space is compact, the
operators Lα,u and Rα,u satisfy the same property: Lα,u

(
L(X)

)
⊆ K (X) and Rα,u

(
L(X)

)
⊆ K (X). Encouraged

by this fact regarding the operators Lα,u and Rα,u, our goal is to investigate some topological properties
satisfied by them, such as compactness, demicompactness, stongly demicompactess, power compactness
and Riesz property. Specifically, we provide necessary and sufficient conditions to establish these properties.
In addition, we obtain sufficient conditions for the quasi-compactness and weak-compactness of this class
of operators.

The paper is organized in the following way. In section 2, we recall some definitions and results needed
in the rest of the paper. Section 3 is entirely devoted to the study of the operator Lα,u. After exploring
some properties of the operator Lα,u, we separately provide necessary and sufficient conditions on its
compactness, demicompactness, stongly demicompactess, power compactness, and Riesz property (see
Propositions 3.5 and 3.8). We only obtain sufficient conditions for the quasi-compacteness and weakly
compactness of the operator Lα,u (see Proposition 3.8, (iii) and Proposition 3.11). As an immediate conse-
quence of the study of the linear operator Lα,u (see Proposition 3.13), we show that L(X) does not have
the Dunford-Pettis property if either X or L(X) is reflexive. In Section 4, we present several results for the
operator Rα,u. These results are similar to those obtained for the operator Lα,u in Section 3 and provide
further insights into the structure and properties of this subfamily. Finally, we show that the multiplication
operator obtained by composing the two operators Lα,u and Rα,u is compact (see Proposition 4.11).
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2. Preliminaries

Let X be an infinite-dimensional Banach space. We begin this section by the following definitions:

Definition 2.1. [10] An operator T in L(X) is said to be demicompact if for every bounded sequence (xn)n≥0 in X
such that xn − T(xn) converges to y ∈ X, there is a convergent subsequence of (xn)n≥0.

The set of all demicompact operators on X will be denoted byDC(X).

Proposition 2.2. [3, 4] For any T in L(X), the following statements are equivalent.

(i) T is a demicompact operator.
(ii) dim ker(I − T) < +∞ and ℑ(I − T) is a closed subset of X.

Definition 2.3. An operator T in L(X) is said to be strongly demicompact if αT is demicompact for every scalar
number α.

The set of all stongly demicompact operators on X will be denoted by SDC(X). Note that every power
compact operator is strongly demicompact. In particular, every compact operator is strongly demicompact.

Definition 2.4. [2] An operator T inL(X) is said to be quasi-compact if there exist a positive integer n and a compact
operator K , 0 on X such that ∥Tn

− K∥ < 1.

The set of all quasi-compact operators on X will be denoted by QK (X).

Definition 2.5. [1]. A linear operator T in L(X) is said to be a Riesz operator if (λI − T) is a Fredholm operator of
index 0 for all nonzero scalar number λ.

The set of all Riesz operators on X will be denoted by R(X).

These different subsets of linear operators satisfy the following inclusions:

K (X) ⊂ PK (X) ⊂ R(X) ⊂ QK (X)
and K (X) ⊂ PK (X) ⊂ SDC(X) ⊂ DC(X).

Lemma 2.6. If L(X) is reflexive, then X is reflexive.

Proof. Assume that u in X with u , 0X. Recall that the linear operator Mu defined by

Mu : L(X) → X
T 7→ T(u)

is in L(L(X),X), where ∥Mu∥ = ∥u∥ and the image set ℑ(Mu) = X. Thus, X is reflexive, from (9) p.p 198 in
[11].

Definition 2.7. [5, 6] A Banach space X has the Dunford-Pettis property if every continuous weakly compact
operator T from X into another Banach space Y transforms weakly compact sets in X into norm-compact sets in Y
(such operators are called completely continuous).

Proposition 2.8. [8] Let X be a Banach space having the Dunford-Pettis property. If T1 and T2 in L(X) are weakly
compact operators, then the composition operator T1T2 is compact.
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3. Some properties of the operator Lα,u

Let X be a Banach space and X′ its dual space. For any (u, α) in X ×X′, let Lα,u be the linear operator on
L(X) defined by,

Lα,u : L(X) → L(X)
T 7→ Lα,u(T)

where Lα,u
(
T
)
(x) = α

(
T(x)
)
u, for every T ∈ L(X) and x ∈ X.

The following properties are easily derived and require no proof. While the proofs of these properties
are straightforward and can be readily verified, we omit them here for the sake of brevity and to focus on
the more complex aspects of the analysis.

Proposition 3.1. For any α, β in X′ and u, v in X, the following properties hold.

(a) Lα,u ∈ L
(
L(X)

)
where ∥Lα,u∥ = ∥α∥∥u∥.

(b) Lα,u ◦Lβ,v = α(v)Lβ,u.
(c) L n+1

α,u = (α(u))nLα,u, for all integer n ≥ 0.
(d) Lα,u +Lβ,u = Lα+β,u.
(e) Lα,u +Lα,v = Lα,u+v.
( f ) λLα,u = Lλ.α,u = Lα,λu, for every scalar number λ.
(1) Lα,u = 0 if, and only if, α = 0X′ or u = 0X.

To investigate the compactness of the operator Lα,u, we rely on some auxiliary results.

Lemma 3.2. For any non-zero α in X′, the following properties hold.

(i) For any β in X′, there exists Tβ in L(X) such that β = α ◦ Tβ.
(ii) For any bounded sequence (βn)n≥0 in X′, there exists a bounded sequence (Tn)n≥0 inL(X) such that βn = α◦Tn,

for all integer n ≥ 0.

Proof. Let α in X′ where α , 0X′ be fixed. Since α , 0X′ , there exists u in X such that α(u) = 1. Given
β ∈ X′ and let’s consider the bounded linear operator Tβ on X defined by Tβ(x) = β(x)u for every x ∈ X.
Clearly, the operator Tβ is linear from X to itself and satisfies ∥Tβ∥ = ∥β∥∥u∥. Furthermore, we have
α ◦ Tβ(x) = α

(
β(x)u

)
= β(x)α(u) = β(x) for every x ∈ X. This implies that β = α ◦ Tβ. Therefore, (i) holds.

Assume that (u, α) in X × X′ where α(u) = 1. Let (βn)n≥0 be a bounded sequence in X′ and consider
the sequence (Tn)n≥0 in L(X) defined by Tn(x) = βn(x)u for every x ∈ X and every integer n ≥ 0. Since
(βn)n≥0 is a bounded sequence in X′, there exists M > 0 such that ∥βn∥ ≤ M for every n ≥ 0. It follows that
∥Tn∥ = ∥u|∥βn∥ ≤ ∥u∥M for every n ≥ 0. Moreover, we have βn = α ◦ Tn for every n ≥ 0. Therefore, (ii)
holds.

Lemma 3.3. For any non-zero α in X′, the operator Lα defined by,

Lα : L(X) → X′

T 7→ Lα(T) = α ◦ T

is surjective linear and where ∥Lα∥ = ∥α∥.

Proof. Assume that α in X′ where α , 0X′ . Let Ti in L(X), i = 1, 2 and λ be a scalar number, we can write
Lα(T1 + λT2) = α ◦ (T1 + λT2) = α ◦ T1 + λα ◦ T2 = Lα(T1) + λLα(T2). Since |α(x)| ≤ ∥α∥∥x∥ for every x ∈ X, it
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comes that ∥Lα∥ ≤ ∥α∥. Indeed, we have

∥Lα∥ = sup
∥T∥=1

∥Lα(T)∥

= sup
∥T∥=1

(sup
∥x∥=1
|α(T(x))|)

≤ sup
∥T∥=1

(sup
∥x∥=1
∥α∥∥T(x)∥)

≤ ∥α∥ sup
∥T∥=1

(sup
∥x∥=1
∥T(x)∥)

≤ ∥α∥ sup
∥T∥=1

∥T∥

≤ ∥α∥.

Since ∥I∥ = 1, then ∥Lα∥ ≥ ∥Lα(I)∥ = sup
∥x∥=1
|α(x)| = ∥α∥. Thus, ∥Lα∥ = ∥α∥. Finally, by Lemma 3.2, (i), we can

conclude that Lα is surjective.

Lemma 3.4. For any (u, α) in X × X′ where u , 0X and α , 0X′ , the following properties hold.

(i) ker(Lα,u) = {T ∈ L(X)| ℑ(T) ⊆ ker(α)} = {T ∈ L(X)| ℑ(T) ⊆ ker(α)}.
(ii) ℑ(Lα,u) = {L ∈ L(X)| ℑ(L) ⊆ Vect{u}}.

Proof. Assume that (u, α) in X × X′ where α , 0X′ and u , 0X. We have

ker(Lα,u) = {T ∈ L(X)| Lα,u(T) = 0}
= {T ∈ L(X)| Lα,u(T)(x) = 0, for all x ∈ X}
= {T ∈ L(X)| α(T(x))u = 0, for all x ∈ X}
= {T ∈ L(X)| T(x) ∈ ker(α), for all x ∈ X}
= {T ∈ L(X)| ℑ(T) ⊆ ker(α)}.

By the continuity of α ∈ X′ and since ker(α) = α−1
(
{0}
)

is a closed subset of X and ℑ(T) ⊆ ℑ(T) for all

T ∈ L(X), we deduce that ker(Lα,u) = {T ∈ L(X)| ℑ(T) ⊆ ker(α)}. Hence, (i) holds.
We always have

ℑ(Lα,u) = {L ∈ L(X)| ∃ T ∈ L(X), Lα,u(T) = L}
= {L ∈ L(X)| ∃ T ∈ L(X), Lα,u(T)(x) = L(x), for all x ∈ X}
= {L ∈ L(X)| ∃ T ∈ L(X), α(T(x))u = L(x), for all x ∈ X}
⊆ {L ∈ L(X)| ℑ(L) ⊆ Vect{u}}.

Conversely, let L in {L ∈ L(X)| ℑ(L) ⊆ Vect{u}}. There exists β in X′ where ∥β∥ = ∥L∥∥u∥−1 such that
L(x) = β(x)u for all x ∈ X. By lemma 3.2 (i), since α , 0X′ , there exists T ∈ L(X) such that β = α ◦ T, and
hence, L(x) =

(
α ◦ T

)
(x)u for all x ∈ X, i.e., L = Lα,u(T) ∈ ℑ(Lα,u). Accordingly, we have ℑ(Lα,u) = {L ∈

L(X)|ℑ(L) ⊆ Vect{u}}. Therefore, (ii) holds.

Proposition 3.5. For any (u, α) in X × X′, the following statements are equivalents.

(i) Lα,u is a compact operator.
(ii) α = 0X′ or u = 0X.

Proof. (i) ⇒ (ii). Suppose that Lα,u is compact where u , 0X and α , 0X′ . Let (βn)n≥0 be any bounded
sequence in X′. By lemma 3.2 (ii), there exists a bounded sequence (Tn)n≥0 in L(X) such that βn = α ◦ Tn for
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every integer n ≥ 0. By the assumption Lα,u is compact and by the fact that the sequence (Tn)n≥0 is bounded
in L(X), the sequence (Lα,u(Tn))n≥0 has a convergent subsequence (Lα,u(Tφ(n)))n≥0 in L(X). Since L(X) is a
Banach space, the sequence (Lα,u(Tφ(n)))n≥0 is a Cauchy sequence, i.e., for all ε > 0, there exists an integer
∃ ≥ 0 such that for all integers n > m > Nε,we have ∥Lα,u(Tφ(n)) −Lα,u(Tφ(m))∥ < ε∥u∥. Notice that

∥Lα,u(Tφ(n)) −Lα,u(Tφ(m))∥ = ∥u∥ sup
∥x∥=1
∥α ◦ Tφ(n)(x) − α ◦ Tφ(m)(x)∥

= ∥u∥ sup
∥x∥=1
∥βφ(n)(x) − βφ(m)(x)∥

= ∥u∥∥βφ(n) − βφ(m)∥.

Then, for all ε > 0, there exists an integer Nε ≥ 0 such that for all integers n > m > Nε, we have
∥βφ(n)−βφ(m)∥ < ε.Hence, (βφ(n))n≥0 is a Cauchy sequence in the Banach space X′. Thus, the sequence (βφ(n))n≥0
converges in X′. As a conclusion, any bounded sequence (βn)n≥0 in X′ has a convergent subsequence. This
requires that the space X′ is of finite dimension and then the space X is also of finite dimension. This is a
contradiction.

(ii) ⇒ (i). When α = 0X′ or u = 0X, it is clear that Lα,u = 0L(X) the null operator which is a compact
operator.

To analyze the demicompactness of the linear operator Lα,u, we must establish some technical Lemmas.

Lemma 3.6. For any (u, α) in X × X′ where α , 0X′ and u , 0X, the following statements hold.

(i) If α(u) , 1, then ker(I −Lα,u) = {0L(X)}.
(ii) If α(u) = 1, then ker(I −Lα,u) is an infinite and closed subspace of the Banach space L(X), isomorphic to X′

and defined by

ker(I −Lα,u) = {T ∈ L(X)| ℑ(T) ⊆ Vect{u}}

= {T ∈ L(X)| ℑ(T) ⊆ Vect{u}}
= {T ∈ L(X)| ∃! β ∈ X′, T(x) = β(x)u, for all x ∈ X}.

Proof. Assume that (u, α) in X × X′ where α , 0X′ and u , 0X. Notice that we have ker(I − Lα,u) =
(I−Lα,u)−1

(
{0}
)

and I−Lα,u is continuous, then ker(I−Lα,u) is a closed subspace of the Banach spaceL(X),
and hence, ker(I −Lα,u) is also a Banach space. Moreover, we have

ker(I −Lα,u) = {T ∈ L(X)| (I −Lα,u)(T) = 0}
= {T ∈ L(X)| Lα,u(T) = T}
= {T ∈ L(X)| T(x) = α(T(x))u, for all x ∈ X}.

We have to distinguish two cases.
Case α(u) , 1. Let T in ker(I −Lα,u), then T(x) = α(T(x))u for all x ∈ X. By applying the linear functional

α on both sides of the last equation, we get (1−α(u))α(T(x)) = 0 for all x ∈ X. Since α(u) , 1, then α(T(x)) = 0
for all x ∈ X. This yields, T(x) = α(T(x))u = 0 for all x ∈ X. Hence, ker(I −Lα,u) = {0L(X)}.

Case α(u) = 1. We have ker(I−Lα,u) ⊆ {T ∈ L(X)| ℑ(T) ⊆ Vect{u}}. Conversely, let T in {T ∈ L(X)| ℑ(T) ⊆
Vect{u}}. There exists β in X′ where ∥β∥ = (∥T∥/∥u∥) such that T(x) = β(x)u for all x ∈ X. If we apply α on
both sides of the last equation and we use the assumption α(u) = 1, we obtain α(T(x)) = β(x) for all x ∈ X. It
follows that, T(x) = α(T(x))u for all x ∈ X, and hence, T ∈ ker(I −Lα,u). Consequently, ker(I −Lα,u) = {T ∈
L(X)| ℑ(T) ⊆ Vect{u}}, if α(u) = 1. Moreover, since Vect{u} is a closed subset of X, i.e., Vect{u} = Vect{u} and
since we have ℑ(T) ⊆ ℑ(T) for all T ∈ L(X), we conclude that ker(I −Lα,u) = {T ∈ L(X)|ℑ(T) ⊆ Vect{u}}. It’s
clear that {T ∈ L(X)| ∃! β ∈ X′, T(x) = β(x)u for all x ∈ X} ⊆ {T ∈ L(X)| ℑ(T) ⊆ Vect{u}}.
Conversely, let T in ker(I −Lα,u) = {T ∈ L(X)| ℑ(T) ⊆ Vect{u}} and assume that there exist β and γ in X′

such that T(x) = β(x)u = γ(x)u for all x ∈ X. Since we have u , 0X, then β = γ. Hence, T ∈ {T ∈ L(X)| ∃! β ∈
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X′, T(x) = β(x)u for all x ∈ X}. Therefore, ker(I −Lα,u) ⊆ {T ∈ L(X)| ∃! β ∈ X′, T(x) = β(x)u for all x ∈ X}.
Thus, ker(I −Lα,u) = {T ∈ L(X)| ∃! β ∈ X′, T(x) = β(x)u for all x ∈ X}.
Based on the previous statement and in a structural and constructive way, let’s consider the linear operator
M that maps the Banach space X′ to the Banach space ker(I −Lα,u) defined byM(β) = Tβ where Tβ is in
L(X) and defined by Tβ(x) = β(x)u for all x ∈ X. We have

∥M∥ = sup
∥β∥=1
∥M(β)∥

= sup
∥β∥=1
∥Tβ∥

= sup
∥β∥=1

sup
∥x∥=1
∥Tβ(x)∥

= sup
∥β∥=1

sup
∥x∥=1
∥β(x)u∥

= ∥u∥ sup
∥β∥=1

sup
∥x∥=1
∥β(x)∥

= ∥u∥ sup
∥β∥=1
∥β∥

= ∥u∥.

Through the carefully designed construction, we can demonstrate that the linear operatorM is bijective,
mapping from the dual space of X to the kernel of (I −Lα,u).

Lemma 3.7. For any (u, α) in X × X′ where α , 0X′ and u , 0X, the following statements hold.

(i) If α(u) , 1, then ℑ(I −Lα,u) = L(X).
(ii) If α(u) = 1, then ℑ(I −Lα,u) is a closed subset of L(X) and defined by,

ℑ(I −Lα,u) = {L ∈ L(X)| ℑ(L) ⊆ ker(α)}

= {L ∈ L(X)| ℑ(L) ⊆ ker(α)}
= ker(Lα,u).

Proof. Let(u, α) in X × X′ where α , 0X′ and u , 0X. We have

ℑ(I −Lα,u) = {L ∈ L(X)| ∃ T ∈ L(X), L = (I −Lα,u)(T)}.

Assume that α(u) , 1. Given L in L(X) and let’s introduce T in L(X) defined by T(x) = L(x) + (1 −
α(u))−1α(L(x))u for all x ∈ X. For all x ∈ X, we have

(I −Lα,u)(T)(x) = T(x) −Lα,u(T)(x)

= L(x) +
α
(
L(x)
)

1 − α(u)
u − α

(
L(x) +

α(L(x))u
1 − α(u)

)
u

= L(x) +
α
(
L(x)
)

1 − α(u)
u − α

(
L(x))u −

α(L(x)
)
α(u)

1 − α(u)
u

= L(x) +
( 1
1 − α(u)

− 1 −
α(u)

1 − α(u)

)
α
(
L(x)
)
u

= L(x).

Equivalently, L = (I −Lα,u)(T) where T ∈ L(X). This implies that ℑ(I −Lα,u) = L(X). Hence, (i) holds.
Assume that α(u) = 1. Let L in ℑ(I −Lα,u), then there exists T ∈ L(X) such that L = (I −Lα,u)(T), i.e.,

L(x) = T(x)−α(T(x))u for all x ∈ X. By applying α to both hand sides of the last equation, we get α(L(x)) = 0
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for all x ∈ X. This implies thatℑ(L) ⊆ ker(α). Therefore,ℑ(I−Lα,u) ⊆ {L ∈ L(X)| ℑ(L) ⊆ ker(α)}. Conversely,
let L ∈ {L ∈ L(X)| ℑ(L) ⊆ ker(α)}. Clearly, ℑ(L) ⊆ ker(α), and hence, (I −Lα,u)(L)(x) = L(x) − α(L(x))u = L(x)
for all x ∈ X, i.e., L = (I −Lα,u)(L) ∈ ℑ(I −Lα,u).Thus, ℑ(I −Lα,u) = {L ∈ L(X)| ℑ(L) ⊆ ker(α)}. Finally, by
Lemma 3.4, (i), we have ℑ(I −Lα,u) = ker(Lα,u). Therefore,(ii) holds.

Proposition 3.8. For any (u, α) in X × X′ where α , 0X′ and u , 0X, the following statements hold.

(i) Lα,u is demicompact if, and only if, α(u) , 1.
(ii) Lα,u is strongly demicompact if, and only if, α(u) = 0.

(iii) Lα,u is quasi-compact if |α(u)|n∥α∥∥u∥ < 1, for some integer n ≥ 0.
(iv) Lα,u is power compact if, and only if, α(u) = 0.
(v) Lα,u is a Riesz operator if, and only if, α(u) = 0.

Proof. Let (u, α) in X × X′ where α , 0X′ and u , 0X. By the Proposition 2.2, Lα,u is demicompact if, and
only if, dim ker(I −Lα,u) < +∞ and ℑ(I −Lα,u) is a closed subset of L(X). In view of Lemmas 3.6 and 3.7, it
comes that Lα,u is demicompact if, and only if, α(u) , 1. Therefore, (i) holds.

Let λ be a scalar number. By Proposition 3.1, ( f ), we may write I − λLα,u = I −Lλα,u. Next, we have to
treat the two following cases:

Case α(u) = 0. Then, λα(u) = 0 , 1. By the last property (i), the operator I − λLα,u is demicompact for
all scalar number λ. Equivalently, Lα,u is strongly demicompact.

Case α(u) , 0. Then, I − λLα,u = I −Lλα,u is demicompact if, and only if,, λ , (α(u))−1. Thus, Lα,u is not
strongly demicompact. Therefore, (ii) holds.

Assume that there exists an integer n ≥ 0 such that |α(u)|n∥α∥∥u∥ < 1. By Proposition 3.1, (a) and (c), we
have ∥L n+1

α,u ∥ = |α(u)|n∥α∥∥u∥ < 1.Hence, there exist an integer N = n+ 1 ≥ 1 and K = 0 inK (L(X)) such that
∥L N
α,u − K∥ < 1. Thus, the operator Lα,u is quasi-compact. Hence, (iii) holds.
Assume that (u, α) in X×X′ such that u , 0X and α , 0X′ . Suppose that Lα,u is power compact, i.e., there

exists an integer N such that L N
α,u is compact. By Proposition 3.1, (a) and (c), we have L N

α,u = (α(u))N−1Lα,u.
But, by virtue of the Proposition 3.5, and by the assumptions u , 0X and α , 0X′ , this requires that N ≥ 2
and α(u) = 0. Conversely, assume that α(u) = 0. From Proposition 3.1, (c), observe that L 2

α,u = 0 which is a
compact operator. Therefore, (iv) holds.

Assume that (u, α) in X×X′ are such that u , 0X and α , 0X′ . Suppose that Lα,u is a Riesz operator. Then,
the operator Lα,u is strongly quasi-compact, and hence, Lα,u is strongly demicompact. By the previous
property (ii), this requires that α(u) = 0. Conversely, if α(u) = 0, then Lα,u is a power compact operator, and
hence, it is a Riesz operator. Therefore, (v) holds.

Proposition 3.9. For any α in X′ where α , 0X′ , it does not exist β in X′ and γ in X′ such that α
(
T(x)
)
= β(T)γ(x),

for every T in L(X) and x in X.

Proof. Let α ∈ X′ where α , 0X′ . Assume that there exist two non-zero linear functional β and γ in X′ such
that α(T(x)) = β(T)γ(x) for all T ∈ L(X) and x ∈ X. Since α , 0X′ , then α is surjective and so that there exists
u , 0X such that α(u) = 1. By Proposition 3.5, the operator Lα,u is not compact . On the other hand, putting
Lγ,u(x) = γ(x)u for all x ∈ X. Clearly, Lγ,u ∈ L(X) and ∥Lγ,u∥ = ∥γ∥∥u∥. Consider the operator Mβ,γ,u defined
by Mβ,γ,u(T) = β(T)Lγ,u for all T ∈ L(X). We can show that Mβ,γ,u ∈ L(L(X)), where ∥Mβ,γ,u∥ = ∥γ∥∥β∥∥u∥.
The operator Mβ,γ,u is compact because it has finite rank. Indeed, we have ℑ(Mβ,γ,u) = Vect{Lγ,u} and so that
dimℑ(Mβ,γ,u) = 1. This leads to a contradiction because we have Mβ,γ,u = Lα,u, where Lα,u is not compact,
while Mβ,γ,u is compact.

Proposition 3.10. Let X be an infinite separable Banach space and (u, α) in X × X′ where u , 0X and α , 0X′ .
For any bounded sequence (Tn)n≥0 in L(X), the sequence

(
Lα,u(Tn)

)
n≥0

has a pointwise convergent subsequence(
Lα,u(Tφ(n))

)
n≥0

that converges to Lα,u(T) where T in L(X).
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Proof. Assume that X is an infinite separable Banach space and (u, α) in X × X′ where u , 0X and α , 0X′ .
Let (Tn)n≥0 be a bounded sequence in L(X), such that there exists some M > 0 such that ∥Tn∥ < M for all
n ≥ 0. Consider the sequence (βn)n≥0 in X′ defined by βn = α ◦ Tn for all integer n ≥ 0. The sequence (βn)n≥0
is bounded in X′, since we have ∥βn∥ ≤M∥α∥ for all n ≥ 0. By the assumption X is a separable space and by
referring to [11], Theorem 8.13, the bounded sequence (βn)n≥0 has a weak* convergent subsequence (βφ(n))n≥0
in X′. This means that there exists a unique β in X′ such that (βφ(n)(x))n≥0 converges to β(x) for all x ∈ X.
Immediately, (Lα,u(Tφ(n))(x))n≥0 converges to β(x)u for all x ∈ X. By Lemma 3.2 (i), there exists Tβ ∈ L(X)
such that β = α ◦ Tβ. As a consequence, for all x ∈ X, (Lα,u(Tφ(n))(x))n≥0 converges to Lα,u(Tβ)(x).

Proposition 3.11. When X is a reflexive Banach space, the linear operator Lα,u is weakly compact for every (u, α) in
X × X′.

Proof. Assume that X is reflexive and let (u, α) in X ×X′. If either α = 0X′ or u = 0X, the operator Lα,u = 0 is
compact and therefore weakly compact.
Suppose that α , 0X′ and u , 0X and denote byAu,α the linear operator in L(X) defined byAu,α(x) = α(x)u
for all x in X. Since u , 0X and α , 0X′ , it follows that ℑ(Au,α) = Vect{u}. The operator Au,α is compact,
since it is of finite rank. Moreover, we can express Lα,u(T)(x) = α(T(x))u = Au,α

(
T(x)
)

for all x in X and T in
L(X). Then Lα,u(T) = Au,αT for all T in L(X), which implies that Lα,u = LAu,α where LAu,α (T) = Au,αT for
all T in L(X). Finally, by applying Appendix 6, Theorem 6 in [9], we conclude that Lα,u = LAu,α is a weakly
compact operator on L(X), if X is reflexive.

Corollary 3.12. If L(X) is reflexive, then Lα,u is weakly compact, for every (u, α) in X × X′.

Proof. It is a straightforward consequence of Proposition 3.11 and Lemma 2.6.

Proposition 3.13. If X is reflexive or L(X) is reflexive, then L(X) does not posses the Dunford-Pettis property.

Proof. Assume that X orL(X) is reflexive. By Lemma 2.6, it follows that X is reflexive. Suppose thatL(X) has
the Dunford-Pettis Property. In view of the Proposition 3.11, we infer that Lα,u is weakly compact for every
(u, α) in X × X′. In particular, Lα,u is weakly compact, if α(u) , 0. By Proposition 2.8 and the assumption
L(X) has the Dunford-Pettis Property, we have L 2

α,u = α(u)Lα,u is compact. This is a contradiction, since
Lα,u where α , 0X′ and u , 0X, is not compact by the Proposition 3.5. As a consequence, L(X) does not
posses the Dunford-Pettis property.

4. Some properties of the operator Rα,u.

Let X be an infinite Banach space and X′ its dual space. For every (u, α) in X × X′, let us introduce the
linear operator Rα,u on L(X) defined by

Rα,u : L(X) → L(X)
T 7→ Rα,u(T)

where Rα,u(T)(x) = α(x)T(u) for every T in L(X) and x in X.
The following properties are immediate and the proof are omitted.

Proposition 4.1. Let α, β in X′ and u, v in X, the following properties hold.

(a) Rα,u ∈ L(L(X)) where ∥Rα,u∥ = ∥α∥∥u∥.
(b) Rα,u ◦Rβ,v = β(u)Rα,v.

(c) Rn+1
α,u =

(
α(u)
)n

Rα,u, for all integer n ≥ 0.
(d) Rα,u +Rβ,u = Rα+β,u.
(e) Rα,u +Rα,v = Rα,u+v.
( f ) λRα,u = Rλα,u = Rα,λu, for all scalar number λ.
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(1) Rα,u = 0 if, and only if, α = 0X′ or u = 0X.

To investigate the compactness of the operator Rα,u operator, we require the application of some specialized
and intricate lemmas that provide crucial insights into the behavior of the operator.

Lemma 4.2. Let u in X where u , 0X. The following properties hold.

(i) For every v in X, there exists Tv in L(X) such that v = Tv(u).
(ii) For every bounded sequence (vn)n≥0 in X, there exists a bounded sequence (Tn)n≥0 inL(X) such that vn = Tn(u),

for all integer n ≥ 0.

Proof. Assuming that u is in X where u , 0X. Clearly, there exists α in X′ such that α(u) = 1. The operator
Tv defined by Tv(x) = α(x)v for all x ∈ X is a bounded linear operator from X to itself, since α is linear and
∥Tv∥ = ∥α∥∥v∥. In addition, Tv(u) = v for all v ∈ X. Hence, (i) holds.

Assuming that u is in X where u , 0X and let (vn)n≥0 be a bounded sequence in X, i.e., there exists M > 0
such that ∥vn∥ ≤ M for all n ≥ 0. By the last property (i), there exists a sequence (Tn)n≥0 in L(X) defined by
Tn(x) = α(x)vn for all x ∈ X and n ≥ 0. Such sequence satisfies ∥Tn∥ = ∥α∥∥vn∥ ≤ ∥α∥M and Tn(u) = vn for all
n ≥ 0. Hence, (ii) holds.

Lemma 4.3. For every u in X where u , 0X, the operator Ru defined by

Ru : L(X) → X
T 7→ Ru(T) = T(u)

is surjective linear and where ∥Ru∥ = ∥u∥.

Proof. Assume that u ∈ X where u , 0X. For every Ti ∈ L(X), i = 1, 2 and λ a scalar number, we have
Ru(T1 + λT2) = Ru(T1) + λRu(T2). Moreover, since we have ∥T(x)∥ ≤ ∥T∥∥x∥ for all x ∈ X and T ∈ L(X), we
may write ∥Ru∥ = sup

∥T∥=1
∥T(u)∥ ≤ ∥u∥. Since, ∥I∥ = 1, then ∥Ru∥ = sup

∥T∥=1
∥T(u)∥ ≥ ∥I(u)∥ = ∥u∥. Accordingly,

Ru ∈ L(L(X),X) where ∥Ru∥ = ∥u∥. In view of Lemma 4.2 (i), we infer that the operator Ru is surjective.

Lemma 4.4. For every (u, α) ∈ X × X′ where u , 0X and α , 0X′ , the following statements hold.

(i) ker(Rα,u) = {T ∈ L(X)| u ∈ ker(T)}.
(ii) ℑ(Rα,u) = {Lw ∈ L(X)| w ∈ X} where Lw(x) = α(x)w, for every x ∈ X.

Proof. Assume that (u, α) ∈ X × X′ where α , 0X′ and u , 0X. We have

ker(Rα,u) = {T ∈ L(X)| Rα,u(T) = 0}
= {T ∈ L(X)| Rα,u(T)(x) = 0, for all x ∈ X}
= {T ∈ L(X)| α(x)T(u) = 0, for all x ∈ X}
= {T ∈ L(X)| T(u) = 0}
= {T ∈ L(X)| u ∈ ker(T)}.

Hence, (i) holds.
We have

ℑ(Rα,u) = {L ∈ L(X)| ∃ T ∈ L(X) such that Rα,u(T) = L}
= {L ∈ L(X)| ∃ T ∈ L(X) such that Rα,u(T)(x) = L(x), for all x ∈ X}
= {L ∈ L(X)| ∃ T ∈ L(X) such that α(x)T(u) = L(x), for all x ∈ X}
⊆ {Lw ∈ L(X)| w ∈ X}, where Lw(x) = α(x)w, for all x ∈ X.

Clearly, Lw ∈ L(X) and ∥Lw∥ = ∥α∥∥w∥ for all w ∈ X. Conversely, for every w ∈ X, there exists Tw ∈ L(X)
such that w = Tw(u), on account of Lemma 4.3, (i). We may write Lw(x) = α(x)Tw(u) = Rα,u(Tw)(x) for all
x ∈ X. Thus, Lw = Rα,u(Tw) ∈ ℑ(Rα,u). Hence, (ii) holds.
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Proposition 4.5. For every (u, α) ∈ X × X′, the following statements are equivalent.

(i) Rα,u is a compact operator.
(ii) α = 0X′ or u = 0X.

Proof. (i)⇒ (ii). Suppose that Rα,u is compact for some (u, α) in X×X′ where u , 0X and α , 0X′ . Let (vn)n≥0
be a bounded sequence in X. By lemma 4.2, (ii), there exists a bounded sequence (Tn)n≥0 in L(X) such that
vn = Tn(u) for all n ≥ 0. By the assumption Rα,u is compact, and since (Tn)n≥0 is a bounded sequence inL(X),
the sequence (Rα,u(Tn))n≥0 has a convergent subsequence (Rα,u(Tφ(n)))n≥0 in L(X). Since L(X) is a Banach
space, (Rα,u(Tφ(n)))n≥0 is a Cauchy sequence, i.e., for all ε > 0, there exists an integer Nε ≥ 0, for all integers
n > m ≥ Nε we have ∥Rα,u(Tφ(n)) −Rα,u(Tφ(m))∥ < ε∥α∥. Observe that for every non-negative integers n and
m, we have sup

∥x∥=1
∥α(x)Tφ(n)(u) − α(x)Tφ(m)(u)∥ = ∥Tφ(n)(u) − Tφ(m)(u)∥ sup

∥x∥=1
∥α(x)∥

= ∥vφ(n) − vφ(m)∥∥α∥. Therefore, for any ε > 0 there exists an integer Nε ≥ 0 for all integers n > m ≥ Nε,
we have ∥vφ(n) − vφ(m)∥ < ε. Since X is a Banach space, the sequence (vn)n≥0 has a convergent subsequence
(vφ(n))n≥0. As a consequence, any bounded sequence (vn)n≥0 in X has a convergent subsequence. This
requires that the vector space X has a finite dimension. This is a contradiction.

(ii)⇒ (i). If either α = 0X′ or u = 0X, then Rα,u = 0 is compact.

Further, we will study the demicompactness of the linear operator Rα,u. We need first to establish the
following Lemmas.

Lemma 4.6. For any (u, α) ∈ X × X′ such that α , 0X′ and u , 0X, the following statements hold.

(i) If α(u) , 1, then ker(I −Rα,u) = {0L(X)}.
(ii) If α(u) = 1, then

a) ker(I −Rα,u) = {Tw ∈ L(X)| w ∈ X} where Tw(x) = α(x)w for all x ∈ X.
b) ker(I −Rα,u) is isomorphic to X and it is an infinite closed subspace of the Banach space L(X).

Proof. Assume that (u, α) ∈ X × X′ where α , 0X′ and u , 0X. Since, ker(I −Rα,u) = (I −Rα,u)−1
(
{0L(X)}

)
and

I −Rα,u in L(X), then ker(I −Rα,u) is a closed subspace of the Banach space L(X), and hence, ker(I −Rα,u)
is also a Banach space. Notice that,

ker(I −Rα,u) = {T ∈ L(X)| (I −Rα,u)(T) = 0L(X)}

= {T ∈ L(X)| T = Rα,u(T)}
= {T ∈ L(X)| T(x) = α(x)T(u), for all x ∈ X}.

We have to address two cases:
Case α(u) , 1. Let T ∈ ker(I − Rα,u). This means that T(x) = α(x)T(u) for all x ∈ X. For x = u, we get
(1 − α(u))T(u) = 0. Under the assumption α(u) , 1, it follows that T(u) = 0. This yields, T(x) = 0X for all
x ∈ X, i.e., T = 0L(X). Hence, ker(I −Rα,u) = {0L(X)}. Therefore, (i) holds.
Case α(u) = 1. We have

ker(I −Rα,u) = {T ∈ L(X)| T(x) = α(x)T(u), for all x ∈ X}
⊆ {Tw ∈ L(X)| w ∈ X},

where Tw(x) = α(x)w for all x ∈ X.
Conversely, let T in {Tw ∈ L(X)| w ∈ X}. This means that there exists w in X such that T(x) = α(x)w for
all x ∈ X. For x = u, we get T(u) = w and so that T(x) = α(x)T(u) for all x ∈ X, i.e., Rα,u(T)(x) = T(x)
for all x ∈ X. Equivalently, Rα,u(T) = T, and hence, T ∈ ker(I − Rα,u). Accordingly, if α(u) = 1, we have
ker(I −Rα,u) = {Tw ∈ L(X)| w ∈ X}where Tw(x) = α(x)w for all x ∈ X. Therefore, a) holds.
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From the previous statement and in a natural way, we can consider the linear operator M from the
Banach space X to the Banach space ker(I −Rα,u) defined byM(w) = Tw, where Tw ∈ L(X) and defined by
Tw(x) = α(x)w for all x ∈ X. The operatorM satisfies

∥M∥ = sup
∥w∥=1

∥M(w)∥

= sup
∥w∥=1

∥Tw∥

= sup
∥w∥=1

sup
∥x∥=1
∥Tw(x)∥

= sup
∥w∥=1

sup
∥x∥=1
∥α(x)w∥

= sup
∥w∥=1

∥w∥ sup
∥x∥=1
∥α(x)∥

= ∥α∥.

Through a carefully designed construction and under the assumption α , 0X′ , the linear operatorM is a
bijection between the space X and the kernel of the operator I −Rα,u. Therefore, b) holds.

Lemma 4.7. For any (u, α) in X × X′ where α , 0X′ and u , 0X, the set ℑ(I −Rα,u) is a closed subset of L(X) and
satisfies

(i) If α(u) , 1, then ℑ(I −Rα,u) = L(X).

(ii) If α(u) = 1, then ℑ(I −Rα,u) = ker(Rα,u) = {L ∈ L(X)| u ∈ ker(L)}.

Proof. Assume that (u, α) in X × X′ such that α , 0X′ and u , 0X. Clearly, we have ℑ(I − Rα,u) = {L =
(I −Rα,u)(T)| T ∈ L(X)} ⊆ L(X). In what follows, we are dealing with two cases:

Case α(u) , 1. Given L ∈ L(X), let’s take T(x) = L(x) +
α(x)

1 − α(u)
L(u) for all x ∈ X. Observe that T ∈ L(X).

Moreover, for every x ∈ X,we have

(I −Rα,u)(T)(x) = T(x) −Rα,u(T)(x)
= T(x) − α(x)T(u)

= L(x) +
α(x)

1 − α(u)
L(u) − α(x)

(
L(u) +

α(u)
1 − α(u)

)L(u)
)

= L(x).

i.e., L = (I −Rα,u)(T). This implies that L(X) ⊆ ℑ(I −Rα,u). Hence, (i) holds.
Case α(u) = 1. Given L ∈ ℑ(I −Rα,u), this means that there exists T ∈ L(X) such that L = (I −Rα,u)(T),

i.e., L(x) = T(x) − α(x)T(u) for all x ∈ X. For x = u, we get L(u) = 0. This implies that ℑ(I − Rα,u) ⊆
{L ∈ L(X)| u ∈ ker(L)}. Conversely, let L ∈ {L ∈ L(X)| u ∈ ker(L)}. Clearly, we have L(u) = 0, and
hence, (I − Rα,u)(L)(x) = L(x) − α(x)L(u) = L(x) for all x ∈ X, i.e., L = (I − Rα,u)(L) ∈ ℑ(I − Rα,u). Thus,
ℑ(I −Rα,u) = {L ∈ L(X)| u ∈ ker(L)}. In view of Lemma 4.4, (i), we conclude that ℑ(I −Rα,u) = ker(Rα,u).
Therefore, (ii) holds.

Proposition 4.8. For any (u, α) ∈ X × X′ where u , 0X and α , 0X′ , the following statements hold.

(i) Rα,u is demicompact if, and only if, α(u) , 1.
(ii) Rα,u is stongly demicompact if, and only if, α(u) = 0.

(iii) Rα,u is quasi-compact, if |α(u)|n∥α∥∥u∥ < 1, for some integer n ≥ 0.
(iv) Rα,u is power compact if, and only if, α(u) = 0.
(v) Rα,u is a Riesz operator if, and only if, α(u) = 0.
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Proof. Assume that (u, α) ∈ X × X′ where u , 0X and α , 0X′ . By Proposition 2.2, the operator Rα,u is
demicompact if, and only if, dim ker(I −Rα,u) < +∞ and ℑ(I −Rα,u) is a closed subset of L(X). By Lemmas
4.6 and 4.7, it follows that Rα,u is demicompact if, and only if, α(u) , 1. Therefore, (i) holds.

By Proposition 4.1, ( f ), we have I − λRα,u = I − Rλα,u for all scalar number λ. When α(u) = 0, then
λα(u) = 0 , 1 and by virtue of the previous property (i), it comes that I − λRα,u is demicompact, for every
scalar number λ. Therefore, Rα,u is strongly demicompact.
When α(u) , 0, then I − λRα,u is demicompact if, and only if, λ , (α(u))−1. This allows us to say that Rα,u is
not strongly demicompact. Hence, (ii) holds.

Assume that there exists an integer n ≥ 0 such that |α(u)|n.∥α∥.∥u∥ < 1. By Proposition 4.1, (a) and (c), we
get ∥Rn+1

α,u ∥ = |α(u)|n∥α∥∥u∥ < 1. By the assumption and the definition of the quasi-compactness, there exist
an integer N = n + 1 ≥ 1 and K = 0 ∈ K (L(X)) such that ∥RN

α,u − K∥ < 1. Hence, (iii) holds.
Suppose that the operator Rα,u is power compact, i.e., there exists an integer N ≥ 1 such that RN

α,u is
compact. By Proposition 4.1, (a) and (c), we have RN

α,u = (α(u))N−1Rα,u. By Proposition 4.5, and by the
assumption u , 0X and α , 0X′ , this requires that N ≥ 2 and α(u) = 0. Conversely, assume that α(u) = 0.
From Proposition 4.1 (c), we have R2

α,u = 0 ∈ K (L(X)). Hence, (iv) holds.
Suppose that Rα,u is a Riesz operator. From the characterization of Riesz operators, Rα,u is strongly

quasi-compact and then Rα,u is strongly demicompact. From the previous property (ii), we get α(u) = 0.
Conversely, if α(u) = 0, then Rα,u is power compact and then it is a Riesz operator. Therefore, (v) holds.

Proposition 4.9. When X is a reflexive Banach space, the linear operator Rα,u is weakly compact for every (u, α) in
X × X′.

Proof. Assume that X is reflexive and let (u, α) ∈ X × X′. When α = 0X′ or u = 0X, we have Rα,u = 0L(L(X)) is
weakly compact.
Suppose that α , 0X′ and u , 0X. Recall that the linear operatorAu,α defined byAu,α(x) = α(x)u for every
x ∈ X, is compact. On the other hand, Rα,u(T)(x) = α(x)T(u) = TAu,α(x) for every x ∈ X and T ∈ L(X). Then
Rα,u(T) = TAu,α for every T ∈ L(X). Therefore, Rα,u = RAu,α where RAu,α (T) = TAu,α for every T ∈ L(X).
In view of Appendix 6, Theorem 6 in [9], Rα,u = RAu,α is a weakly compact operator on L(X), if X is
reflexive.

Corollary 4.10. When the Banach space L(X) is reflexive, then the operator Rα,u is weakly compact for all (u, α) ∈
X × X′.

Proposition 4.11. For any α, β in X′ and u, v in X, the following statements hold.

(i) Lα,u ◦Rβ,v = Rβ,v ◦Lα,u.

(ii) If α , 0X′ , β , 0X′ , u , 0X and v , 0X, then ℑ
(
Lα,u ◦Lβ,v

)
= Vect{Au,β} where Au,β ∈ L(X) is defined by

Au,β(x) = β(x)u, for all x ∈ X.
(iii) Lα,u ◦Rβ,v is a compact operator.
(iv) Suppose that X′ is of infinite dimension, the linear operator Lα,u +Rβ,v is compact if, and only if, (α = 0X′ or

u = 0X) and (β = 0X′ or v = 0X).

Proof. Assume that α, β ∈ X′ and u, v ∈ X. For any T ∈ L(X) and x ∈ X, we may write

Lα,u ◦Rβ,v(T)(x) = Lα,u(Rβ,v(T))(x)
= α(Rβ,v(T)(x))u
= α(β(x)T(v))u
= β(x)α(T(v))u
= β(x)Lα,u(T)(v)
= Rβ,v(Lα,u(T))(x)
= Rβ,v ◦Lα,u(T)(x).
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This yields, Lα,u ◦Rβ,v = Rβ,v ◦Lα,u. Therefore, (i) holds.
Assume that α, β ∈ X′ and u, v ∈ X where α , 0X′ , β , 0X′ , u , 0X and v , 0X. We have

ℑ(Lα,u ◦Rβ,v) = {L = Lα,u ◦Rβ,v(T)| T ∈ L(X)}
= {L ∈ L(X)| ∃ T ∈ L(X) such that L(x) = β(x)α(T(v))u, for all x ∈ X}
= {L ∈ L(X)| ∃ T ∈ L(X) such that L(x) = α(T(v))Au,β(x), for all x ∈ X}
= {L ∈ L(X)| ∃ T ∈ L(X) such that L = α(T(v))Au,β}

⊆ Vect{Au,β}.

where Au,β ∈ L(X) is defined by Au,β(x) = β(x)u for all x ∈ X. Conversely, let L in Vect{Au,β}, then there
exists a scalar number γ such that L = γAu,β. Consider the linear functional ev defined by ev(T) = α(T(v))
for all T ∈ L(X). We have ∥ev∥ = sup

∥T∥=1
|α(T(v))| ≤ ∥α∥∥v∥. Notice that ev , 0L(X)′ . Indeed, by the assumption

α , 0X′ , there exists w ∈ X such that α(w) , 0. By Lemma 4.2, (i) and the assumption u , 0X, there exists
T ∈ L(X) such that w = T(v) and so that ev(T) = α(T(v)) = α(w) , 0. Since, ev , 0L(X)′ and ev ∈ L(X)′, the
linear functional ev is surjective. Thus, for any scalar number δ, there exists T ∈ L(X) such that δ = ev(T).
This implies that L = δAu,β = ev(T)Au,β = α(T(v))Au,β = Lα,u ◦Rβ,v(T). Hence, ℑ(Lα,u ◦Rβ,v) = Vect{Au,β}.
Hence, (ii) holds.

Assume that α, β ∈ X′ and u, v ∈ X. When α = 0X′ or β = 0X′ or u = 0X or v = 0X, we have Lα,u ◦Rβ,v = 0
is a compact operator.
Suppose that α , 0X′ , β , 0X′ , u , 0X and v , 0X. From the previous property (ii), since ℑ(Lα,u ◦Rβ,v) =
Vect{Au,β} then, Lα,u ◦Rβ,v has a finite rank, and hence, it is a compact operator. Therefore, (iii) holds.

Assume that α, β ∈ X′ and u, v ∈ X. If (α = 0X′ or u = 0X) and (β = 0X′ or v = 0X), we can see that
Lα,u +Rβ,v = 0,which is a compact operator.
Suppose that there exist α, β ∈ X′ and u, v ∈ X such that

M = Lα,u +Rβ,v (7)

is a compact operator.
For any (w, δ) in X×X′, while applying the operator Lδ,w from the left hand sides of equation (7), we obtain

Lδ,w ◦M = Lδ,w ◦Lα,u +Lδ,w ◦Rβ,v

= δ(u)Lα,w +Lδ,w ◦Rβ,v.

This yields, δ(u)Lα,w = Lδ,w ◦M−Lδ,w ◦Rβ,v is a compact operator, for every (w, δ) in X ×X′. This requires
that u = 0X or α = 0′X, under the assumption X is of infinite dimension and due to the Proposition 3.5.
For every (w, δ) in X × X′, while applying the operator Rδ,w, from the right hand sides of equation (7), we
get

M ◦Lδ,w = Lα,u ◦Rδ,w +Rβ,v ◦Rδ,w

= Lα,u ◦Rδ,w + δ(v)Rβ,w.

This gives, δ(v)Rβ,w = M ◦Lδ,w −Lα,u ◦Rδ,w is a compact operator for every (w, δ) in X × X′. This obliges
that v = 0X or β = 0′X, by Proposition 4.5. Hence, (iv) holds.
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[3] W. Chaker, A. Jeribi, B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results. Math. Nachr. 288 (13)

(2015), 1476-1486.
[4] W. Chaker, A. Jeribi and B. Krichen, Some Fredholm theory results arround relative demicompactness concept. Commun. Korean Math.

Soc. 36 (2) (2021), 313-325.



R. Sfaxi et al. / Filomat 37:26 (2023), 9063–9077 9077

[5] J. Diestel, Geometry of Banach spaces- Selected topics, Springer Verlag, Berlin, 1975.
[6] J. Diestel and J. J. J. Uhl, Vector Measures, American Mathematical Society, Providence, R.I., 1977.
[7] N. Dunford and J. Schwartz, Linear operators. I. General Theory Interscience Publishers, Inc., New York, 1958.
[8] A. Jeribi, Spectral Theory and Applications of Linear Operators and Block Operator Matrices. Springer-Verlag, New York, 2015.
[9] W. B. Johnson and G. Schechtman. Multiplication operators on L(Lp) and lp -strictly singular operators, Jour. Euro. Math. Soc 10 (4)

(2008), 1105-1119.
[10] W. V. Petryshyn. Remarks on condensing and k-set-contractive mappings, J. Math. Anal. Appl. 39 (1972), 717-741.
[11] M. Schechter, Principles of functional analysis. Grad. Stud. Math. Soc., Providence, RI, (2002).


	Introduction
	Preliminaries 
	Some properties of the operator L, u 
	Some properties of the operator R, u.

