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Abstract. The main objective of this paper is to investigate the estimation of conditional density function
based on the single-index model in the censorship model when the sample is considered as an dependent
random variables. First of all, a kernel type estimator for the conditional density function (cond-df) is
introduced. Afterwards, the asymptotic properties are stated when the observations are linked with
a single-index structure. The pointwise almost complete convergence and the uniform almost complete
convergence (with rate) of the kernel estimate of this model are established. As an application the conditional
mode in functional single-index model is presented. Under general conditions, the asymptotic normality of
the conditional density estimator is established. Simulation study is also presented to illustrate the validity
and finite sample performance of the considered estimator. Finally, the estimation of the functional index
via the pseudo-maximum likelihood method is discussed, but not tackled.

1. Introduction

Conditional density function estimator has been widely used to estimate some characteristic feature
of the data set, such as the conditional mode, the conditional median, or the conditional quantiles. The
Kernel estimation of the functional density with an application to conditional mode estimation have been
presented by Ferraty et al. [14] and Ezzahrioui and Ould-Saı̈d [12] in the i.i.d case, the asymptotic normality
has been studied in by Ezzahrioui and Ould-Saı̈d [13] when the variable are dependent. In the censoring
case, Ould-Saı̈d and Cai [26] establish the strong uniform convergence (with rate) of kernel conditional
mode estimator for i.i.d. random variables, while Ould-Saı̈d [27] constructed a kernel estimator of the
conditional quantile and establish its strong uniforme convergence rate. Then, Khardani et al. [18] obtained
the strong consistency with rate and asymptotic normality of the conditional mode. Later, Khardani et al.
[19] established the strong consistency with rate of the conditional mode for the censored dependent case.
Then, Khardani et al. [20] presented the asymptotic normality.
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The single index models have been used and studied in both statistical and econometric literatures.
These models gave attracted the attention of many researchers as Aı̈t-Saidi et al. [1, 2]. Bouchentouf et
al. [6] established a nonparametric estimation of some characteristics of the the conditional cumulative
distribution function and the successive derivatives of the conditional density of a scalar response variable
Y given a Hilbertian random variable X when the observations are linked with a single-index structure.
Attaoui et al. [3] studied the functional single-index model via its conditional density Kernel estimator,
and established its pointwise and uniform almost complete convergence rates, their results were extended
to dependent case by Attaoui [4]. Furthermore, Ling et al. [23] obtained the asymptotic normality of the
conditional density estimator and the conditional mode estimator for the α-mixing dependence functional
time series data.

In our infinite dimensional purpose, we use the terminology functional nonparametric, where the word
functional referees to the infinite dimensionality of the data and where the word nonparametric referees to
the infinite dimensionality of the model. Such functional nonparametric statistics is also called doubly infinite
dimensional (see Ferraty and Vieu [16], for more details).

Inspired by the work of Rabhi et al. [28] under an i.i.d. censorship, our work in this paper aims
to contribute to the research on functional nonparametric conditional model, by giving an alternative
estimation of conditional mode estimation in the single functional index model with randomly right-
censored data under α-mixing conditions whose definition is given below.

Recall that a process (Xi,Yi)i≥1 is called α-mixing or strongly mixing (see Lin and Lu [22]) for more
details and examples, if

sup
k

sup
A∈F k

1

sup
B∈F ∞n+k

|P(A ∩ B) − P(A)P(B)| = α(n)→ 0 as n→∞,

where F k
j denotes the σ-field generated by the random variables {(Xi, Yi), j ≤ i ≤ k}. The process

{(Xi, Yi), i ≥ 1} is said to be arithmetically αmixing with order a > 0, if ∃C > 0, α(n) ≤ Cn−a.
The strong-mixing condition is reasonably weak and has many practical applications (see, e.g., Cai [7],

Doukhan [11], Dedecker et al. [8] Ch. 1, for more details). In particular, Masry and Tøjstheim [25] proved
that, both ARCH processes and nonlinear additive autoregressive models with exogenous variables, which
are particularly popular in finance and econometrics, are stationary and α-mixing.

The main contribution of this work, is to establish the pointwise almost complete convergence and
the uniform almost complete convergence (with rate) of the conditional density estimator in the single
functional index model in strong mixing case under random censorship, this result will be applied to obtain
the convergence rates of the conditional mode estimator. Moreover, we prove the asymptotic normality of
the estimators of conditional density function and conditional mode. The layout of the paper is as follows,
Section 2 presents the functional nonparametric framework, The asymptotic normality is given in Section 3.
As then application, we study the asymptotic normality of the conditional mode in functional single-index
model in Section 4. Section 5 illustrates those asymptotic properties through some simulations. Finally, the
proofs of the main results are postponed to Section 6.

1.1. The functional nonparametric framework

Consider a random pair (X,T) where T is valued in R and X is valued in some infinite dimensional
Hilbertian spaceH with scalar product < ·, · >. Let (Xi,Ti)i=1,...,n be the statistical sample of pairs which are
identically distributed like (X,T), but not necessarily independent. X is called functional random variable
f.r.v. . Assume that the conditional expectation of T given X is done through a fixed functional index θ in
H , such that

E[T|X] = E[T| < θ,X >].

This model was introduced by Ferraty et al. [15] and we can refer to Attaoui et al. [3] for details. From
this model, let f (θ, ·, x) be the conditional density of Y given < X, θ >=< x, θ > for x ∈ H , which also shows
the relationship between X and Y but it often unknown.
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Let (Ti)i≥1 be a sequence of independent and identically distributed (i.i.d.) random variables, and
assume that they form a strictly stationary sequence of lifetimes. Suppose that there exists a sample of i.i.d.
censoring random variable (r.v) (Ci)i≥1 with common unknown continuous distribution function (df).

In the censored framework, the observed random variables are the triplets (Yi, δi,Xi) with

Yi = min{Ti,Ci} and δi = 1Ti≤Ci , 1 ≤ i ≤ n,

where both of Ti and Ci are expected to exhibit some kind of dependence which ensures the identifiability
of the model.

In biomedical case studies, it is assumed that Ci and (Ti,Xi) are independent, this condition is plausible
whenever the censoring is independent of the patient’s modality.

The Kernel estimator fn(θ, ·, x) of f (θ, ·, x) is defined by :

fn(θ, t, x) =

h−1
H

n∑
i=1

K
(
h−1

K (< x − Xi, θ >)
)

H
(
h−1

H (t − Ti)
)

n∑
i=1

K
(
h−1

K (< x − Xi, θ >)
) , (1)

where K and H are Kernel functions , and hK = hK,n (resp. hH = hH,n) a sequence of positive real numbers.
The Kernel type estimator of the conditional density f (θ, ·, x) adapted for censorship model, can be

reformulate from the expression (1) as follows :

f̃ (θ, t, x) =

h−1
H

n∑
i=1

δi

Ḡ(Yi)
K

(
h−1

K (< x − Xi, θ >)
)

H
(
h−1

H (t − Yi)
)

n∑
i=1

K
(
h−1

K (< x − Xi, θ >)
) . (2)

In practice Ḡ(·) = 1−G(·) is unknown, then using Kaplan and Meier (1958) estimator, Ḡn(·) will be given
as

Ḡn(t) = 1 − Gn(t) =


n∏

i=1

(
1 −

1 − δ(i)

n − i + 1

)1{Y(i)≤t}

, if t < Y(n);

0, if t ≥ Y(n);

where Y(1) < Y(2) < . . . < Y(n) are the order statistics of Yi and δ(i) is the non-censoring indicator corresponding
to Y(i).

Therefore, estimator of the conditional density function f (θ, ·, x) is given by

f̂ (θ, t, x) =

h−1
H

n∑
i=1

δi

Ḡn(Yi)
K

(
h−1

K (< x − Xi, θ >)
)

H
(
h−1

H (t − Yi)
)

n∑
i=1

K
(
h−1

K (< x − Xi, θ >)
) . (3)

2. Asymptotic study

2.1. Pointwise almost complete rate of convergence
In the following, for any x ∈ H , let Nx be a fixed neighborhood of x and SR is a fixed compact of

R+.We denote by Bθ(x, h) = {χ ∈ H/0 < | < x − χ, θ > | < h} be a ball of center x and radius h, and let
dθ (x,Xi) = | < x−Xi, θ > | denote a random variable such that its cumulative distribution function is given
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by ϕθ,x (u) = P (dθ (x,Xi) ≤ u) = P (Xi ∈ Bθ(x,u)) . Assume that, (Ci)i≥1 and (Ti)i≥1 are independent and we
assume that τG := sup{t : G(t) < 1} and let τ be a positive real number such that τ < τG.

In order to establish the almost complete (a.co.) convergence of our estimator, we need some regular
hypotheses as follows.

(H0) (Xi,Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈N, α(n) ≤ cn−a.

(H1) 0 < sup
i, j
P

(
(Xi,X j) ∈ Bθ(x, h) × Bθ(x, h)

)
= O


(
ϕθ,x(hK)

)(a+1)/a

n1/a

 .
(H2) The conditional density f (θ, t, x) satisfies the Hölder condition, i.e., ∀(x1, x2) ∈ Nx ×Nx, ∀(t1, t2) ∈ S2

R
,

| f (θ, t1, x1) − f (θ, t2, x2)| ≤ Cθ,x
(
∥x1 − x2∥

b1 + |t1 − t2|
b2
)
, b1 > 0, b2 > 0.

(H3) H is positive bounded function, such that ∀(t1, t2) ∈ R2, |H(t1) −H(t2)| ≤ C|t1 − t2|,
∫

H2(t)dt < ∞ and∫
|t|b2 H(t)dt < ∞ and lim

n→∞
nςhH = ∞ for some ς > 0.

(H4) The kernel K is a positive bounded function supported on [0, 1] and is differentiable on [0, 1] with
derivative such that: ∃C1, C2, −∞ < C1 < K′(t) < C2 < 0, for 0 < t < 1.

(H5) The bandwidths hK and hH satisfy

(i) lim
n→∞

hK = 0 and
log n

nhH ϕθ,x(hK)
−→
n→∞

0.

(ii) ∃C > 0, hHϕθ,x(hK) ≥ C/n2/a+1 and
(
ϕθ,x(hK)

n

)1/a
+ ϕθ,x(hK) = o

(
1

na/a−1

)
.

(H6) (Xi,Yi) for i = 1, . . . ,n are strongly mixing with arithmetic coefficient of order a > 1, and ∃β > 2 such
that s−(a+1)

n,k = o
(
n−β

)
for k = 1, . . . , 6.

• Comments on the hypotheses
The hypothesis (H0) specifies the asymptotic behavior of the α-mixing coefficients.

• ϕθ,x (u) can be interpreted as a concentration hypothesis acting on the distribution of the f.r.v. X, while
(H1) concerns the behavior of the joint distribution of the pairs (Xi,X j). Indeed, this hypothesis is
equivalent to assume that, for n large enough

sup
i, j

P
(
(Xi,X j) ∈ Bθ(x, hK) × Bθ(x, hK)

)
P (X ∈ Bθ(x, hK))

≤ C
(
ϕθ,x(hK)

n

)1/a

.

This is one way to control the local asymptotic ratio between the joint distribution and its margin.
Remark that the upper bound increases with a. In other words, more the dependence is strong, more
restrictive is (H1).

• (H2) is a regularity conditions which characterize the functional space of our model and is needed
to evaluate the bias term of our asymptotic results which have been adopted by Bouchentouf et al.
(2014) for i.i.d case.

• Assumptions (H3) is technical conditions and are also similar to those done in Ferraty and Vieu (2006).
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• Assumption (H4) is classical and permits to make the variance term negligible.

• Assumption (H5) concern the choice of the bandwidth which is closely linked to the small balls
probability.

• (H6) is similar to analysis in Ferraty and Vieu [17], and it shows the influence of covariance structure
on the convergence rate.

Proposition 2.1. Under conditions (H0)-(H5) and assume that (H6)-(i) is satisfied, then we have as n goes to infinity,

sup
t∈SR

∣∣∣∣ f̂ (θ, t, x) − f (θ, t, x)
∣∣∣∣ = O (

hb1
K + hb2

H

)
+ Oa.co.


√

s2
n log n

n

 ,
where s2

n = max{s2
n,1; s2

n,2}.

Proof. [Proof of Proposition 2.1]
Consider now, for i = 1, . . . ,n, in what follows, let’s denote:

Ki(θ, x) = K(h−1
K (< x − Xi, θ >)), Hi(t) = H

(
h−1

H (t − Yi)
)
, Ḡi = Ḡ(Yi),

f̂N(θ, t, x) =

∑n
i=1

δi
Ḡn(Yi)

Ki(θ, x)Hi(t)

n hH E(K1(θ, x))
, f̃N(θ, t, x) =

∑n
i=1

δi
Ḡ(Yi)

Ki(θ, x)Hi(t)

n hH E(K1(θ, x))
,

F̂D(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x), ∆i(x, θ) =
K(h−1

K (< x − Xi, θ >))
EK1(θ, x)

and

s2
n,1 =

n∑
i=1

n∑
j=1

∣∣∣∣Cov
(
∆i(x, θ),∆ j(x, θ)

)∣∣∣∣ , s2
n,2 =

n∑
i=1

n∑
j=1

∣∣∣∣∣∣Cov

 h−1
H δi

Ḡ(Yi)
Hi(t)∆i(x, θ),

h−1
H δ j

Ḡ(Y j)
H j(t)∆ j(x, θ)

∣∣∣∣∣∣ .
The proof is based on the following decomposition, valid for any t ∈ SR,

sup
t∈SR

∣∣∣∣ f̂ (θ, t, x) − f (θ, t, x)
∣∣∣∣ ≤ 1

F̂D(θ, x)
sup
t∈SR

{∣∣∣∣ f̂N(θ, t, x) − f̃N(θ, t, x)
∣∣∣∣}

+
1

F̂D(θ, x)
sup
t∈SR

{∣∣∣∣ f̃N(θ, t, x) − E f̃N(θ, t, x)
∣∣∣∣}

+
1

F̂D(θ, x)
sup
t∈SR

{∣∣∣∣E f̃N(θ, t, x) − f (θ, t, x)
∣∣∣∣}

+ sup
t∈SR

f (θ, t, x)

F̂D(θ, x)

∣∣∣∣1 − F̂D(θ, x)
∣∣∣∣ . (4)

Finally, the proof of this proposition is a direct consequence of the following intermediate results.

Lemma 2.2. Under hypotheses (H2)-(H5)-(i)) and if nhHϕθ,x(hK) −→ ∞,
(

log log n
n

)1/2

= o
(
ϕθ,x(hK)

)
, we have,

sup
t∈SR

{∣∣∣∣ f̂N(θ, t, x) − f̃N(θ, t, x)
∣∣∣∣} = Oa.s.

(
log log n

n

)
.
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The lemmas below shows the asymptotic bias term of f̃N(θ, t, x) and F̂D(θ, x) as n tends to infinity.

Lemma 2.3. Under hypotheses (H2)-(H3), we have as n→∞,

sup
t∈SR

∣∣∣∣E [
f̃N(θ, t, x)

]
− f (θ, t, x)

∣∣∣∣ = O (
hb1

K + hb2
H

)
.

The following result deals with the variance term of the right-hand side of (4) which is expressed by:

sup
t∈SR

{∣∣∣∣ f̃N(θ, t, x) − E f̃N(θ, t, x)
∣∣∣∣}. For F̂D(θ, x) − E

[
F̂D(θ, x)

]
the same arguments will be used with a slight

difference.

Lemma 2.4. Under conditions of the Proposition 2.1 and if
(

log log n
n

)1/2

= o
(
ϕθ,x(hK)

)
, we have as n→∞,

(i) F̂D(θ, x) − EF̂D(θ, x) = Oa.co.


√

s2
n,1 log n

n


and

(ii) sup
t∈SR

{∣∣∣∣ f̃N(θ, t, x) − E f̃N(θ, t, x)
∣∣∣∣} = Oa.co.


√

s2
n,2 log n

n

 ,
furthermore, we have,

∞∑
n=1

P
(
|̂FD(θ, x) ≤ 1/2

)
< ∞.

We conclude the proof of the Proposition 2.1 by making use the inequality (4), in conjunction with
Lemmas 2.2-2.4.

The proof of these latter will be collected in Section 5.

3. Asymptotic Normality

In this section, the asymptotic normality of the conditional density and the conditional mode are
established. Therefore, further assumptions are required. Assume that

(N1) The df of the censored random variable, G has a bounded first derivative G′

.

(N2) There exists a function ξθ,x , such that ∀u ∈ [0, 1]

lim
h→0

ϕθ,x(uh)
ϕθ,x(h)

= lim
h→0
ξθ,xh (u) = ξθ,x0 (u).

(N3) The bandwidth hH satisfies, as n goes to infinity,

(i) nh3
Hϕθ,x(hK) −→ ∞ and

nh3
Hϕθ,x(hK)

log2 n
−→ ∞.

(ii) nh3
Hϕ

3
θ,x(hK) −→ 0.
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(N4) There exist sequences of integers (un) and (vn) increasing to infinity such that (un + vn) ≤ n, satisfying
as n goes to infinity

(i) vn = o((nhHϕθ,x(hK))1/2) and
(

n
hHϕθ,x(hK)

)1/2
α(vn)→ 0.

(ii) qnvn = o((nhHϕθ,x(hK))1/2) and qn

(
n

hHϕθ,x(hK)

)1/2
α(vn)→ 0,

where qn is the largest integer such that qn(un + vn) ≤ n.

(N5) The conditional density function f (θ, t, x) satisfies: ∃β0 > 0,∀(t1, t2) ∈ S2
R
,

| f (l)(θ, t1, x) − f (l)(θ, t2, x)| ≤ C(|t1 − t2|
β0 ), ∀l = 1, 2.

(N6) H′

and H′′

are bounded respectively with
∫

(H′

(t))2dt < ∞,
∫
|t|β0 H(t)dt < ∞.

• Comments
Our hypotheses are very standard for the conditional density estimation in single functional index

model, which have been adopted by Attatoui et al. [3].

• (N1) is classical in nonparametric estimation. Assumption (N2) is the concentration property of the
explanatory variable in small balls under single-index topological structure. The function ξθ,x plays
a fundamental role in all asymptotic, in particular for the variance term.

• Assumption (N3) is also classical in the functional estimation in finite or infinite dimension spaces, in

particular, condition (N2)-(i) yields that lim
n→∞

log2 n
nh3

Hϕθ,x(hK)
= 0 which implies lim

n→∞

log n
nh3

Hϕθ,x(hK)
= 0.

• For (N3)-(ii) is used to eliminate the term bias in the result of asymptotic normality

• To establish the asymptotic normality, dealing with strong mixing random variables (under (H1)), we
use the well-known sectioning device introduced by Doob [10] in (N4).

• The conditions (N5)-(N6) are used to control the regularity of the functional space of our model and
it is needed to evaluate the bias term of the convergence rates.

Theorem 3.1. Under assumptions (H0)-(H5) and (N1)-(N4) for all x ∈ H , we have as n goes to infinity,√
nhHϕθ,x(hK)

V(θ, t, x)

(
f̂ (θ, t, x) − f (θ, t, x)

)
D
−→ N(0, 1),

where

V(θ, t, x) =
a2(θ, x) f (θ, t, x)
(a1(θ, x))2Ḡ(t)

∫
R

H2(u)du,

with

al(θ, x) = Kl(1) −
∫ 1

0
(Kl)

′

(u)ξθ,x0 (u)du, l = 1, 2.

” D
−→ ” means the convergence in distribution.
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Proof. In order to establish the asymptotic normality of f̂ (θ, t, x), we need further notations and definitions.
First we consider the following decomposition

f̂ (θ, t, x) − f (θ, t, x) =
f̂N(θ, t, x)

F̂D(θ, x)
−

a1(θ, x) f (θ, t, x)
a1(θ, x)

=
1

F̂D(θ, x)

{(
f̂N(θ, t, x) − E f̂N(θ, t, x)

)
−

(
a1(θ, x) f (θ, t, x) − E f̂N(θ, t, x)

)}
+

f (θ, t, x)

F̂D(θ, x)

{(
a1(θ, x) − EF̂D(θ, x)

)
−

(
F̂D(θ, x) − EF̂D(θ, x)

)}
=

1

F̂D(θ, x)
(An(θ, t, x) + Bn(θ, t, x)) ,

where

An(θ, t, x) =
1

nhHEK1(θ, x)

n∑
i=1

{(
δi

Ḡ(Yi)
Hi(t) − hH f (θ, t, x)

)
Ki(θ, x) − E

[(
δi

Ḡ(Yi)
Hi(t) − hH f (θ, t, x)

)
Ki(θ, x)

]}

=
1

nhHEK1(θ, x)

n∑
i=1

Ni(θ, t, x).

It follows that,

nhHϕθ,x(hK)Var(An(θ, t, x)) =
ϕθ,x(hK)

hH(EK1(θ, x))2 Var(N1(θ, t, x)) = Vn(θ, t, x),

and
Bn(θ, t, x) = a1(θ, x) f (θ, t, x) − E f̂N(θ, t, x) + f (θ, t, x)(a1(θ, x) − EF̂D(θ, x)).

Then, the proof of Theorem 3.1 can be deduced from the following Lemmas.

Lemma 3.2. Under hypotheses (H0)-(H1), (H4) and (N1)-(N2) as n→∞ we have,

nϕθ,x(hK)Var (An(θ, t, x)) −→ V(θ, t, x),

where V(θ, t, x) is given in Theorem 3.1.

Lemma 3.3. Under conditions of Theorem 3.1, we have,√
nhHϕθ,x(hK)An(θ, t, x) D

−→ N(0,V(θ, t, x)).

Lemma 3.4. Under assumptions (H1)-(H5) and (N1)-(N2), we have,√
nhHϕθ,x(hK)Bn(θ, t, x) −→

n→∞
0 in probability.

4. Application: The conditional mode in functional single-index model

The main objective of this section is to establish the asymptotic normality a of the kernel estimator of
the conditional mode of Y given < X, θ >=< x, θ > denoted by Mθ(x). We will consider the problem of the
estimation of the conditional mode in the functional single-index model, denoted by Mθ(x). For this, we
assume that Mθ(x) satisfies the following uniqueness property:

(H7) ∀ε0 > 0,∃η > 0,∀φ :

|Mθ(x) − φ(x)| ≥ ε0 =⇒ | f (θ,φ(x), x) − f (θ,Mθ(x), x)| ≥ η,
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where Mθ(x) = arg sup
t∈SR

f (θ, t, x).

We estimate the conditional mode Mθ(x) with a random variable M̂θ(x) such that,

M̂θ(x) = arg sup
t∈SR

f̂ (θ, t, x). (5)

The difficulty of the problem is naturally linked with the flatness of the function f (θ, t, x) around the
mode Mθ. This flatness can be controlled by the number of vanishing derivatives at point Mθ, and this
parameter will also have a great influence on the asymptotic rates of our estimates. More precisely, we
introduce the following additional smoothness condition.

(H8) There exists some integer j > 1 such that ∀x ∈ SH , the function f (θ, ·, x) is j times continuously
differentiable w.r.t t on SR with,

f (l)(θ,Mθ(x), x) = 0, i f 1 ≤ l < j

and f ( j)(θ, ·, x) is uniformly continuous on SR such that,

f ( j)(θ,Mθ(x), x) , 0,

where f ( j)(θ, ·, x) is the jth order derivative of the conditional density f (θ, ·, x).

Theorem 4.1. Put s′2n = max{s2
n,1; s2

n,2}, under hypotheses of Proposition 2.1 and if the conditional density f (θ, ·, x)
satisfies (H7) and (H8), then we get,

|M̂θ(x) −Mθ(x)| = O
((

hb1
K + hb2

H

) 1
j
)
+ Oa.co

( s′2n log n
n2

) 1
2 j
 .

Proof. [Proof of Theorem 4.1] By the Taylor expansion of f (θ, t, x) in neighborhood of Mθ(x), we get,

f̂ (θ, M̂θ(x), x) = f (θ,Mθ(x), x) +
f ( j)(θ,M∗

θ(x), x)

j!
(M̂θ(x) −Mθ(x)) j,

where M∗

θ(x) is between Mθ(x) and M̂θ(x).
Combining the last equality with the fact that

| f̂ (θ, M̂θ(x), x) − f (θ,Mθ(x), x)| ≤ 2 sup
t∈SR
| f̂ (θ, t, x) − f (θ, t, x)|,

allow to write:

|M̂θ(x) −Mθ(x)| j ≤
j!

f ( j)(θ,M∗

θ, x)
sup
t∈SR
| f̂ (θ, t, x) − f (θ, t, x)|.

Using the second part of (H8) we obtain that,

∃c > 0,
∞∑

n=1

P
(

f ( j)(θ,M∗

θ, x) < c
)
< ∞.

So, we would have

|M̂θ(x) −Mθ(x)| j = Oa.co.

sup
t∈SR

∣∣∣∣ f̂ (θ, t, x) − f (θ, t, x)
∣∣∣∣ .

Finally, Theorem 4.1 can be deduced from proposition 2.1.
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Theorem 4.2. Under the hpotheses of Proposition 2.1, thus we have,

M̂θ(x) −Mθ(x) −→
n→∞

0, a.co.

Proof. [Proof of Theorem 4.2] Because the continuity of the function f (θ, t, x), we have, for all ε > 0, ∃η(ε) > 0
such that:

| f (θ, t, x) − f (θ,Mθ(x), x)| ≤ η(ε) =⇒ |t −Mθ(x)| ≤ ε.

Therefore, for t = M̂θ(x),

P
(
|M̂θ(x) −Mθ(x)| > ε

)
≤ P

(
| f (θ, M̂θ(x), x) − f (θ,Mθ(x), x)| > η(ε)

)
.

Then, according to theorem, M̂θ −Mθ go almost completely to 0, as n goes to infinity.

Theorem 4.3. If the assumptions (H1)-(H8) as well as (N1)-(N5) hold, then, we have,√
nh3

Hϕθ,x(hK)

σ2
1(θ, x)

(M̂θ(x) −Mθ(x)) D
−→ N(0, 1), as n −→ ∞, (6)

where

σ2
1(θ, t, x) =

a2(θ, x) f (θ,Mθ(x), x)
(a1(θ, x) f (2)(θ,Mθ(x), x))2Ḡ(t)

∫
R

H
′2(u)du.

Proof. Firstly, by (5) and (H8), it follows that f (1)(θ,Mθ(x), x) = 0.
Writing the first order Taylor expansion for f (1)(θ, y, x) at point Mθ(x) leads to the existence of some

M∗

θ(x) between M̂θ(x) and Mθ(x) such that,

√
nh3

Hϕθ,x(hK)(M̂θ(x) −Mθ(x)) =
−

√
nh3

Hϕθ,x(hK) f̂ (1)(θ,Mθ(x), x)

f̂ (2)(θ,M∗

θ(x), x)
.

In order to prove (6), we only need to show that,

−

√
nh3

Hϕθ,x(hK) f̂ (1)(θ,Mθ(x), x) D
−→ N(0, σ2

0(θ, x)) (7)

and

f̂ (2)(θ,M∗

θ(x), x) −→ f̂ (2)(θ,Mθ(x), x) , 0, in probability, (8)

where,

σ2
0(θ, x) =

a2(θ, x) f (θ,Mθ(x), x)(
a1(θ, x)

)2
Ḡ(t)

∫
, x)

)2
Ḡ(t)

∫
(H

′

(u))2du.

In fact, because the continuity of the function f (θ, t, x) and by (H7) and the definitions of M̂θ(x) and
Mθ(x), we have, for all ε > 0, ∃η(ε) > 0 such that:

P
(
|M̂θ(x) −Mθ(x)| ≥ ε

)
≤ P

(
| f (θ,Mθ(x), x) − f̂ (θ,Mθ(x), x)| ≥

η(ε)
2

)
+ P

(
| f̂ (θ, M̂θ(x), x) − f (θ, M̂θ(x), x)| ≥

η(ε)
2

)
. (9)

Thus, similar to [17], by (H0)-(H6), we have, f̂ (θ, t, x) −→ f (θ, t, x) in probability, which implies that
M̂θ(x) −→ Mθ(x) in probability by (9) as n → ∞. Similarly, the methodology can be also applied to obtain
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f̂ (2)(θ, t, x) −→ f (2)(θ, t, x) in probability as n→ ∞ by (H0)-(H1), (H4), (N1), (N3) and (N5)-(N6). Therefore,
(8) is valid by the fact that f (2)(θ, t, x) is uniformly continuous with respect to y on SR. Next, we prove (7).

In fact, since,

f̂ (1)(θ,Mθ(x), x) =
1

f̂D(θ, x)

(
f̂ (1)
N (θ,Mθ(x), x) − E f̂ (1)

N (θ,Mθ(x), x)
)

−
1

f̂D(θ, x)

(
f (1)(θ,Mθ(x), x) − E f̂ (1)

N (θ,Mθ(x), x)
)
. (10)

By (H8), (N3)-(i), (N5)-(N6) and (10), similar to the proof of lemmas, Lemma 3.1 and Lemma 3.4
respectively, (7) follows directly. Then, the proof of Theorem 4.3 is completed.

4.1. Application and Confidence bands

The asymptotic variances V(θ, t, x) and σ2
1(θ, t, x) in Theorem 3.1 and Theorem 4.3 depend on some

unknown quantities including a1, a2, ϕ(u),Mθ(x) and f (θ,Mθ(x), x). So, Mθ(x), and f (θ,Mθ(x), x) should be
replaced by their respective estimators M̂θ(x), and f̂ (θ,Mθ(x), x).

Because the unknown functions a j := a j(θ, x) and f (θ, t, x) intervening in the expression of the variance.
So we need to estimate the quantities a1(θ, x), a2(θ, x) and f (θ, t, x), respectively.

By the assumptions (H0)-(H4) we know that a j(θ, x) can be estimated by â j(θ, x) which is defined as:

â j(θ, x) =
1

nϕ̂θ,x(h)

n∑
i=1

K j
i (θ, x), where ϕ̂θ,x(h) =

1
n

n∑
i=1

1{|<x−Xi,θ>|<h},

with 1{·} being the indicator function.
By applying the kernel estimator of f (θ, t, x) given above, the quantity V(θ, t, x) can be estimated finally

by:

V̂(θ, t, x) =
â2(θ, x)
â2

1(θ, x)
f̂ (θ, t, x)

Ḡn(t)

∫
H′2(u)du.

So, we can derive the following corollary.

Corollary 4.4. Under the assumptions of Theorem 3.1, we have as n→∞,√√
nhHϕ̂θ,x(hK)

V̂(θ, t, x)

(
f̂ (θ, t, x) − f (θ, t, x)

)
D
−→ N(0, 1).

Proof. Observe that,

Σ =
â1(θ, x)√
â2(θ, x)

√√
nhHϕ̂θ,x(hK)

f̂ (θ, t, x)

(
f̂ (θ, t, x) − f (θ, t, x)

)
=

â1(θ, x)
√

a2(θ, x)

a1(θ, x)
√

â2(θ, x)

√√
nhHϕ̂θ,x(hK) f (θ, t, x)

f̂ (θ, t, x)nhHϕθ,x(hK)
×

a1(θ, x)√
a2(θ, x)

√
nhHϕθ,x(hK)

f (θ, t, x)

(
f̂ (θ, t, x) − f (θ, t, x)

)
.

Via Theorem 3.1, we have,

a1(θ, x)√
a2(θ, x)

√
nhHϕθ,x(hK)

f (θ, t, x)

(
f̂ (θ, t, x) − f (θ, t, x)

)
−→ N (0, 1) .
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Next, by [21], we can prove that,

â1(θ, x) P
−→ a1(θ, x), â2(θ, x) P

−→ a2(θ, x), and
ϕ̂θ,x(hK)
ϕθ,x(hK)

P
−→ 1, as n→∞.

Therefore, we obtain,

â1(θ, x)
√

a2(θ, x)

a1(θ, x)
√

â2(θ, x)

√√
nhHϕ̂θ,x(hK) f (θ, t, x)

f̂ (θ, t, x)nhHϕθ,x(hK)
−→ 1, as n→∞.

This yields the proof of Corollary 4.4.

Finally, in order to show the asymptotic (1 − ξ) confidence interval of Mθ(x), we need to consider the
estimator of σ2

1(θ, x) as follows:

σ̂2
1(θ, x) =

â2(θ, x) f̂ (θ, M̂θ(x), x)(̂
a1(θ, x) f̂ (2)(θ, M̂θ(x), x)

)2

∫
(H

′

(u))2du.

Thus, the following corollary is obtained.

Corollary 4.5. Under conditions of Theorem 4.3, as n→∞ we have,√√
nh3

Hϕ̂θ,x(hK)

σ̂2
1(θ, x)

(M̂θ(x) −Mθ(x)) D
−→ N(0, 1).

Proof. Observe that

Σ′ =
â1(θ, x) f̂ (2)(θ, M̂θ(x), x)√

â2(θ, x)

√√√
nh3

Hϕ̂θ,x(hK)

f̂ (θ, M̂θ(x), x)

(
M̂θ(x) −Mθ(x)

)

=
â1(θ, x)

√
a2(θ, x)

a1(θ, x)
√

â2(θ, x)

√√√
nh3

Hϕ̂θ,x(hK) f (θ,Mθ(x), x)

f̂ (θ, M̂θ(x), x)nh3
Hϕθ,x(hK)

f̂ (2)(θ, M̂θ(x), x)
f (2)(θ,Mθ(x), x)

×
a1(θ, x)√
a2(θ, x)

√
nh3

Hϕθ,x(hK)

f (θ,Mθ(x), x)
f (2)(θ,Mθ(x), x)

(
M̂θ(x) −Mθ(x)

)
.

Making use of Theorem 4.3, we obtain,

a1(θ, x)√
a2(θ, x)

√
nh3

Hϕθ,x(hK)

f (θ,Mθ(x), x)
f (2)(θ,Mθ(x), x)

(
M̂θ(x) −Mθ(x)

)
−→ N (0, 1) .

Further, by considering Lemma 3.4, (8) and (9), we obtain

â1(θ, x)
√

a2(θ, x)

a1(θ, x)
√

â2(θ, x)

√√√
nh3

Hϕ̂θ,x(hK) f (θ,Mθ(x), x)

f̂ (θ, M̂θ(x), x)nh3
Hϕθ,x(hK)

f̂ (2)(θ, M̂θ(x), x)
f (2)(θ,Mθ(x), x)

P
−→
n→∞

1.

Hence, the proof is completed.
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Remark 4.6. Thus, following the corollaries, Corollary 4.4 and Corollary 4.5, the asymptotic (1 − ξ) confidence
interval of f (θ, t, x) and Mθ(x) are given by:

f̂ (θ, t, x) ± τξ/2 ×

√√
V̂(θ, t, x)

nhHϕ̂θ,x(hK)
and M̂θ(x) ± τξ/2 ×

σ̂1(θ, x)√
nh3

Hϕ̂θ,x(hK)
,

where τξ/2 is the upper ξ/2 quantile of standard NormalN(0, 1).

Corollary 4.7. If the assumptions (H1)-(H7) as well as (N1)-(N5) hold, then, we have,√
nh3

Hϕθ,x(hK)

σ2
1(θ, x)

(M̂θ(x) −Mθ(x)) D
−→ N(0, 1), as n→∞,

where,

σ2
1(θ, t, x) =

a2(θ, x) f (θ,Mθ(x), x)
(a1(θ, x) f (2)(θ,Mθ(x), x))2Ḡ(t)

∫
R

H
′2(u)du.

5. Simulation study

To study the behavior of our conditional mode estimator, we consider in this part two examples of
simulation. In the first one, we compare our model CFSIM (functional single index model with censored
data) with that of CNPFDA (censored non-parametric functional data analysis) and in the latter, knowing
the distribution of the regression model (the distribution is known and usual), we look to the behavior of
our estimator of the conditional density function with respect to this distribution. Therefore, the best way
to know the behavior of the estimator of conditional density is to compute its mean square error. So, in this
part of paper we compare between the conditional density estimation in the CFSIM which is our model
and the conditional density estimation in the CNPFDA defined in (11).

f̂n(x|y) =

n∑
i=1

δi

Ḡn(Yi)
K

(
h−1

K d(x,Xi)
)

H
(
h−1

H (t − Yi)
)

n∑
i=1

K
(
h−1

K d(x,Xi)
) . (11)

So, we have to compare their respective conditional density estimators by computing and comparing
their respective mean square errors for some values of the scalar response T.

In the following, our purpose consists in assessing the performance, in terms of prediction, of M̂θ(x)
and M̂(x). For each given predictor (X j) j∈J in the testing subsample, we are interested in the prediction
of the response variable (Y j) j∈J via the single functional index conditional mode M̂θ(x) and the fully
nonparametric conditional mode M̂(x) so as to compare the finite-sample behavior of the estimator. As
assessment tool we consider the mean square error (MSE) defined as follows:

SSR =
1
|J|

∑
j∈J

(
Y j − Ŷ j

)2
, (12)

where Ŷ j is a predictor of Y j obtained either semi-parametrically by M̂θ(x) or nonparametrically via M̂(x).
Furthermore, some tuning parameters have to be specified. The kernel K(·) is chosen to be the quadratic

function defined as K (u) = 3
2

(
1 − u2

)
1[0,1] and the cumulative df H (u) =

∫ u

−∞

3
4

(
1 − z2

)
1[−1,1] (z) dz.

The semi-metric d(·, ·) will be specified according to the choice of the functional space H discussed in
the scenarios below. It is well-known that one of the crucial parameters in semi-parametric models is the
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smoothing parameters which are involved in defining the shape of the link function between the response
and the covariate.

Using the result given in Theorem 4.3, the variance of our estimator is obtained as,

CV =
a2(θ, x) f (θ,Mθ(x), x)

nh3
Hϕθ,x(hK)

(
a1(θ, x) f (2)(θ,Mθ(x), x)

)2
Ḡ(t)
.

The idea is to choose the parameters hK and hH so that the variance is minimal. Since the variance (CV)
depends on several unknown parameters that must be estimated, the calculus becomes tedious. Thus, by
replacing the unknown parameters by their respective estimators â1(θ, x), â2(θ, x), M̂θ(x), f̂ , and ϕ̂θ,x(hK),
we obtain,

(hK, hH) = arg min
hK ,hH

CV (hK, hH) = arg min
hK ,hH

â2(θ, x) f̂ (θ, M̂θ(x), x)

nh3
Hϕ̂θ,x(hK)

(̂
a1(θ, x) f̂ (2)(θ, M̂θ(x), x)

)2
Ḡn(t)

.

Now for simplifying the implementation of our methodology, we take the bandwidths hH ∼ hK = h,
where h will be chosen by the cross-validation method on the k-nearest neighbors (see [17]), p. 102).

5.1. Simulation 1: case of smooth curves
Let us consider the following regression model, where the covariate is a curve and the response is a

scalar:
Ti = R (Xi) + ϵi, i = 1, . . . ,n,

where ϵi is the error supposed to be generated by an autoregressive model defined by:

ϵi =
1
√

2
ϵi−1 + ηi, i = 1, . . . ,n,

with (ηi)i a sequence of i.i.d. random variables normally distributed with a variance equal to 0.1.
The functional covariate X is assumed to be a diffusion process defined on [0, 1] and generated by the

following equation:

X(t) = a cos(b + πWt) + c sin(d + πWt) + (1 − A) sin(πtW), t ∈ [0, 1],

where W is an a process generated by Wi =
2
9 + ϵ, i = 1, . . . , 200, b and d are independent of normal

distributions respectively ⇝ N(0, 0.03) and ⇝ N(0, 0.05). The variables a and c are Bernoulli’s laws
Bernoulli B(0.5). Figure 1 depicts a sample of 200 curves representing a realization of the functional
random variable X.

Take into account of the smoothness of the curves Xi(t) (see Figure 1), we choose the distance deriv1 (the
semi-metric based on the first derivatives of the curves) inH as:

d (χ1, χ2) =
(∫ 1

0

(
χ′1 (t) − χ′2 (t)

)2
dt

)1/2

,

as semi-metric.
Then, we consider a nonlinear regression function defined as

R (X) = 4 log

1/

∫ 1

0
(X′(t))2 dt +

[∫ 1

0
X′(t)dt

]2
 .

On the other hand, n i.i.d. random variables (Ci)i are simulated through the exponential distribution
E (1.5) .
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Figure 1: A sample of 200 curves Xi=1,...,200(t j), t j=1,...,200 ∈ [0, 1]

Given X = x, T ⇝ N (R (x) , 0.2), and thus, the conditional median, the conditional mode and the
conditional mean functions will coincide and will be equal to R (x), for any fixed x. The computation of our
estimator is based on the observed data (Xi, Yi, δi)i=1,...,n where Yi = min (Ti, Ci); δi = I{Ti≤Ci} and the single
index θwhich is unknown and has to be estimated.

In practice this parameter can be selected by cross-validation approach (see [2]). In this passage it may
be that one can select the real-valued function θ (t) among the eigenfunctions of the covariance operator
E [(X′ − EX′) < X′, · >H ] where X (t) is a diffusion processes defined on a real interval [a, b] and X′ (t) its
first derivative (see [5]). So for a chosen training sample L, by applying the principal component analysis
(PCA) method, the computation of the eigenvectors of the covariance operator estimated by its empirical
covariance operator: 1

|L|

∑
i∈L(X′i − EX′) t(X′i − EX′), will be the one best approximation of our functional

parameter θ. Now, let us denote θ⋆ the first eigenfunction corresponding to the first higher eigenvalue of
the empirical covariance operator, which will replace θ during the simulation step.

In the following graphs, the covariance operator for L = {1, . . . , 200} gives the discretization of the first
eigenfunction θ (presented by a continuous curve) and all the eigenfunctions θi(t) (Figure 2 and 3). In this
simulation part, we divide our sample of size 200 into two parts. The first one from 1 to 125 will be used to
make the simulation and the second from 126 to 200 will serve us for the prediction.

We follow the following steps:

Step 1. Compute the inner product: < θ∗,X1 >, . . . , < θ∗,X200 >, generate independently the variables
ε1, . . . , ε200, then simulate the response variables Yi = r(< θ∗,Xi >)+ εi, where r(< θ∗,Xi >) = exp(10(<
θ∗,Xi > −0.05)) and generate independently the variables ε1, . . . , ε200.

Step 2. For each k in the test sample J = {126, . . . , 200},we compute: Ŷk = M̂θ⋆ (Xk) and Ŷk = M̂(Xk),

where
M(x) = arg sup

y∈SR
f (x|y) and M̂(x) = arg sup

y∈SR
f̂n(x|y).

Finally, we present the results by plotting the predicted values versus the true values and compute the
sum of squared residuals (SSR) defined by (12).

We see that the sum of squared residuals (SSR) of our method Functional-Single-Index-Model with
Censored Data (CFSIM) is less than the one of the Censored Non-Parametric-Functional-Data-Analysis
(CNPFDA). This is confirmed by the following graphs, when we compare the conditional mode by (CFSIM)
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Figure 2: The curves θi=1,2,3(t j), t j=1,...,200 ∈ [0, 1]

against the conditional mode by (CNPFDA) (Fig. 4). Our estimator is so acceptable. As intuitively expected,
it is well observed that the mean square errors of our estimator are smaller than that of CNPFDA. Thus,
again, the CFSIM model produces much more accurate estimation accuracies than CNPFDA model in all
criteria.

In order to construct conditional confidence bands we proceed by the following algorithm:

Step 1. < θ⋆,X1 >, . . . , < θ⋆,X200 >, generate independently the variables ε1, . . . , ε200, then simulate the
response variables Yi = r(< θ⋆,Xi >) + εi, where r(< θ⋆,Xi >) = exp(10(< θ⋆,Xi > −0.05)) and
generate independently the variables ε1, . . . , ε200.

Step 2. For each i in the training sample, we calculate the estimator: Ŷi = M̂θ⋆ (Xi).

Step 3. For each X j in the test sample J = 126, . . . , 200, we set: j⋆ := arg min
i∈L

dθ(Xi,X j).

Step 4. For each j in the test sample J = 126, . . . , 200, we define the confidence bands by:[
M̂θ⋆ (X j⋆ ) − τ0.975 ×

( ν̂(θ⋆,X j⋆ )√
Lh3

Hϕ̂θ⋆,x(hK)

)
, M̂θ⋆ (X j⋆ ) + τ0.975 ×

( ν̂(θ⋆,X j⋆ )√
Lh3

Hϕ̂θ⋆,x(hK)

)]
.

We obtain the following figure which gathers asymptotic confidence bands study.

6. Proofs of technical lemmas

Proof. [Proof of Lemma 2.2] The proof is similar to that of Lemma 5.2 in [18]. From Equations (2) and (3),
we have,

| f̂N(θ, t, x) − f̃N(θ, t, x)| ≤
h−1

H

nEK1(θ, x)

n∑
i=1

∣∣∣∣ δi

Ḡn(Yi)
Ki(θ, x)Hi(t) −

δi

Ḡ(Yi)
Ki(θ, x)Hi(t)

∣∣∣∣
≤

h−1
H

nEK1(θ, x)

n∑
i=1

|δiKi(θ, x)Hi(t)|
∣∣∣∣∣ 1
Ḡn(Yi)

−
1

Ḡ(Yi)

∣∣∣∣∣
≤

h−1
H

ϕθ,x(hK)
C

Ḡn(τG)Ḡ(τG)
sup
t∈R
|Ḡn(t) − Ḡ(t)|

1
n

n∑
i=1

|Ki(θ, x)Hi(t)|.
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Figure 3: The curves θi=1,...,200(t j), t j=1,...,200 ∈ [0, 1]

Since Ḡ(τG) > 0, together with the SLLN and the LIL on the censoring law (see formula (4.28) in
Deheuvels and Einmahl [9]), we obtain

sup
t≤τG

∣∣∣Ḡn(t) − Ḡ(t)
∣∣∣ = Oa.s.

(
log log n

n

)
.

We achieve the proof by considering the conditions (H3) and (H4).

Proof. [Proof of Lemma 2.3] We have,

E f̃N(θ, t, x) − f (θ, t, x) =
h−1

H

EK1(x, θ)
E

(
δi

Ḡ(Yi)
Ki(x, θ)Hi(t)

)
− f (θ, t, x)

=
h−1

H

EK1(x, θ)
E

(
Ki(x, θ)

[
E

(
δi

Ḡ(Yi)
Hi(t)| < X1, θ >

)
− hH f (θ, t, x)

])
. (13)

Using the fact that H is a cdf and the use a double conditioning with respect to T1, we can easily get

I = E

(
δi

Ḡ(Yi)
Hi(t)| < X1, θ >

)
= E

(
E

[
1T1≤C1

Ḡ(T1)
H

( t − T1

hH

)
| < X1, θ >,T1

])
= E

(
1

Ḡ(T1)
H

( t − T1

hH

)
E

[
1T1≤C1 |T1

]
| < X1, θ >

)
= E

[
H

( t − T1

hH

)
| < X1, θ >

]
=

∫
R

H
( t − u

hH

)
f (θ,u,X1)du,

= hH

∫
R

H(v) f (θ, t − vhH,X1)dv,

= hH

∫
R

H(v)
(

f (θ, t − vhH,X1) − f (θ, t, x)
)

dv + hH f (θ, t, x)
∫
R

H(v)dv,
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Figure 4: Prediction via the conditional mode by CFSIM with error SSR = 0.0069 against CNPFDA with error SSR = 0.034, with
CR∼ 18%

we can write, because of (H2) and (H3):

I ≤ hH Cx,θ

∫
R

H(v)
(
hb1

K + |v|
b2 hb2

H

)
dv + hH f (θ, t, x)

= O

(
hb1

K + hb2
H

)
+ hH f (θ, t, x).

Combining this last result with (13) allows us to achieve the proof.

Proof. [Proof of Lemma 2.4]

(i) Similar to the proof of Lemma 3 in Attaoui [4], it can be completed easily. Here we omit its proof.

(ii) Using the compactness of SR, we can write that, SR ⊂
τn⋃

k=1

(zk − ln, zk + ln) with ln and τn can be chosen

such that ln = Cτ−1
n ∼ Cn−ς−1/2. Taking kt = arg min

{z1,...,zτn }
|t − zk|.

Thus, we have the following decomposition:

T =
1

F̂D(θ, x)
sup
t∈SR

∣∣∣∣ f̃N(θ, t, x) − E f̃N(θ, t, x)
∣∣∣∣

≤
1

F̂D(θ, x)
sup
t∈SR

∣∣∣∣ f̃N(θ, t, x) − f̂N(θ, tk, x)
∣∣∣∣

+
1

F̂D(θ, x)
sup
t∈SR

∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)
∣∣∣∣

+
1

F̂D(θ, x)
sup
t∈SR

∣∣∣∣E f̂N(θ, tk, x) − E f̃N(θ, t, x)
∣∣∣∣

≤ T1 + T2 + T3.
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Figure 5: The 95% conditional predictive bands. The solid curve connects the true values. The crossed curve joins the predicted
values. The dashed curves connects the lower and upper predicted values with CR∼ 3%

On the one hand, as the first and the third terms can be treated in the same manner, we deal only with
first term. Making use of (H3) we get

T′1 = sup
t∈SR

∣∣∣∣ f̃N(θ, t, x) − f̂N(θ, tk, x)
∣∣∣∣

≤
1

nhHEK1(θ, x)
sup
t∈SR

n∑
i=1

∣∣∣∣∣ δi

Ḡ(Yi)
Hi(t) −

δi

Ḡn(Yi)
Hi(tk)

∣∣∣∣∣ |Ki(θ, x)|

≤
1

nhHEK1(θ, x)
sup
t∈SR

n∑
i=1

∣∣∣∣∣ δi

Ḡ(Yi)
Hi(t) −

δi

Ḡn(Yi)
Hi(tk)

∣∣∣∣∣ |Ki(θ, x)|

≤
C

nhHEK1(θ, x)
sup
t∈SR

|t − tk|

hH
×

 n∑
i=1

Ki(θ, x)
(

1
Ḡ(Yi)

−
1

Ḡn(Yi)

)
≤

Cln
h2

HḠn(τG)Ḡ(τG)
sup
t∈SR
|Gn(t) − G(t)|̂FD(θ, x).

Using ln = n−ς−1/2 we obtain

T1 ≤
Cn−ς−1/2

h2
HḠn(τG)Ḡ(τG)

(
log n log n

n

)1/2

and note that, because of (H3), we have,

ln
h2

H

= o


√

log n
nhHϕθ,x(hK)

 .
Thus, for n large enough, we have,

T1 = Oa.co


√

log n
nhHϕθ,x(hK)

 .
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Following similar arguments, we can write

T3 ≤ T1.

Concerning T2, let us consider ε = ϵ0

√
s2

n,2 log n

n2 . Since for all ϵ0 > 0, we have that,

B = P

sup
t∈SR

∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)
∣∣∣∣ > ε)

≤ P

(
max

k∈{1...τn}

∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)
∣∣∣∣ > ε)

≤ τnP
(∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)

∣∣∣∣ > ε) .
The application of Fuk-Nagaev’s inequality (see Proposition A.11-ii of Ferraty and Vieu [17]) with

r = (log n)2 and q = a + 1, we get that,

P
(∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)

∣∣∣∣ > ε) ≤

1 +
ϵ20

(log n)2

−(log n)2/2

+ n(log n)−2


√

log n
ϵ0sn,2

a+1

≤ Cθ,xB1 + C′θ,xB2.

Finally, the use that, s2
n,2 = O(nhHϕθ,x(hK)), allows to get directly that there exist some η > 0 such that

B1 + B2 ≤ Cn−1−η.

Finally, we arrive at,

sup
t∈SR

∣∣∣∣ f̂N(θ, tk, x) − E f̂N(θ, tk, x)
∣∣∣∣ = Oa.co.


√

s2
n,2 log n

n

 .

Proof. [Proof of Lemma 3.2]

Vn(θ, t, x) =
h−1

H ϕθ,x(hK)

(EK1(θ, x))2E

K2
1(θ, x)

(
δ1

Ḡ(Y1)
H1(t) − hH f (θ, t, x)

)2
=

h−1
H ϕθ,x(hK)

(EK1(θ, x))2E

K2
1(θ, x)E

( δ1

Ḡ(Y1)
H1(t) − hH f (θ, t, x)

)2

| < θ,X1 >


 . (14)

Using the definition of conditional variance, we have,

E

( δ1

Ḡ(Y1)
H1(t) − hH f (θ, t, x)

)2

| < θ,X1 >

 = J1n + J2n,

where

J1n = Var
(
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

)
and

J2n =

[
E

(
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

)
− hH f (θ, t, x)

]2

.
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• Concerning J1n

J1n = E

(
δ1

Ḡ2(Y1)
H2

1(t)| < θ,X1 >

)
− E

(
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

)2

= J1 + J2.

As for J1, by the property of double conditional expectation and by changing variables, we get that,

J1 = E

[
E

(
δ1

Ḡ2(Y1)
H2

1

( t − Y1

hH

)
| < θ,X1 >,T1

)]
= E

(
1

Ḡ2(T1)
H2

1

( t − T1

hH

)
E[1T1≤C1 |T1]| < θ,X1 >

)
= E

(
1

Ḡ(T1)
H2

1

( t − T1

hH

)
| < θ,X1 >

)
=

∫
R

1
Ḡ(v)

H2
1

( t − v
hH

)
f (θ, v,X1)dv

=

∫
R

1
Ḡ(t − uhH)

H2
1(u)dF(θ, t − uhH,X1). (15)

By the first order Taylor’s expansion of the function Ḡ−1(·) around zero, one gets

J1 =

∫
R

1
Ḡ(t)

H2
1(u)dF(θ, t − uhH,X1) +

h2
H

Ḡ(t)2

∫
R

uH2
1(u)Ḡ(1)(t∗) f (θ, t − uhH,X1)du + o(1),

where t∗ is between t and t − uhH.
Under assumptions (N1) and using hypothesis (H2), we get

h2
H

Ḡ2(t)

∫
R

uH2
1(u)Ḡ(1)(t∗) f (θ, t − uhH,X1)du = o(h2

H).

Indeed

J
′

1 =
h2

H

Ḡ2(t)

∫
R

uH2
1(u)Ḡ(1)(t∗) f (θ, t − uhH,X1)du

≤ h2
H

(
sup
u∈R
|G
′

(u)||Ḡ2(t)
) ∫
R

u f (θ, t − yhH, x)du.

On the other hand, by applying (H2) and (H3), we have,∫
R

1
Ḡ(t)

H2
1(u)dF(θ, t − uhH,X1) = hH

∫
R

1
Ḡ(t)

H2
1(u) f (θ, t − uhH,X1)du

≤
hH

Ḡ(t)

(∫
R

H2
1(u)( f (θ, t − uhH,X1) − f (θ, t, x))du +

∫
R

H2
1(u) f (θ, t, x)du

)
≤

hH

Ḡ(t)
Cx,θ

(∫
R

H2(u)
(
hb1

K + |v|
b2 hb2

H

)
du + f (θ, t, x)

∫
R

H2(u)du
)

= O

(
hb1

k + hb2
H

)
+

hH f (θ, t, x)
Ḡ(t)

∫
R

H2(u)du. (16)
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As for J2,

J
′

2 = E

(
δ1

Ḡ(Y1)
H1(t)| < θ,X1 >

)
= E

[
E

(
δ1

Ḡ(Y1)
H1

( t − Y1

hH

)
| < θ,X1 >,T1

)]
= E

(
1

Ḡ(T1)
H1

( t − T1

hH

)
E[1T1≤C1 |T1]| < θ,X1 >

)
= E

(
H1

( t − T1

hH

)
| < θ,X1 >

)
=

∫
R

H(1)
( t − v

hH

)
f (θ, t,X1)dv.

Moreover, we have by changing variables,

J
′

2 = hH

∫
R

H(u)( f (θ, t − uhH,X1 − f (θ, t, x))du + hH f (θ, t, x)
∫
R

H(u)du,

the last equality is due to the fact that H is a probability density. Thus, we have,

J
′

2 = O
(
hb1

k + hb2
H

)
+ hH f (θ, t, x). (17)

Finally we get J2 −→
n→∞

0. As for J2n, by (H2)-(H3), we obtain that J2n −→ 0, as n→∞.

Meanwhile, by (H2)-(H3) and (N1), it follows that

ϕθ,x(hK)EK2
1(θ, x)

E2K1(θ, x)
−→
n→∞

a2(θ, x)
(a1(θ, x))2 ,

which leads to combining equations (14)-(17).

Vn(θ, t, x) −→
n→∞

a2(θ, x)
(a1(θ, x))2

f (θ, t, x)
Ḡ(t)

∫
R

H2(u)du. (18)

Secondly, by the boundness of H and conditioning on (< θ,Xi >,< θ,X j >), we have,

E
(
|NiN j|

)
= E

[
(Ωi)

(
Ω j

)
Ki(θ, x)K j(θ, x)

]
= E

(
E
[

(Ωi)
(
Ω j

)
| < θ,Xi >,< θ,X j >

]
Ki(θ, x)K j(θ, x)

)
≤

(
hH +

1
Ḡ(τF)

)2

E(Ki(θ, x)K j(θ, x))

≤ Ch2
HP

(
(Xi,X j) ∈ Bθ(x, h) × Bθ(x, h)

)
≤ Ch2

H

(ϕθ,x(hK)
n

)1/a

ϕθ,x(hK)

 ,
where Ωi =

δi

Ḡi(t)
Hi(t) − hH f (θ, t, x). Then, taking

ϕθ,x(hK)
nE2K1(x, θ)

n∑∑
|i− j|>0

Cov(Ni,N j) =
ϕθ,x(hK)

nhHE2K1(x, θ)

 n∑
0<|i− j|≤mn

Cov(Ni,N j) +
n∑

|i− j|>mn

Cov(Ni,N j)


= K1n + K2n.
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Therefore

K1n ≤ CmnhH


(
ϕθ,x(hK)

n

)1/a
 , ∀i , j.

For K2n: since the variable (∆i)1≤i≤n is bounded (i.e, ∥∆i∥∞ < ∞, we can use the Davydov-Rio’s inequality.
So, we have for all i , j,

|Cov(∆i,∆ j)| ≤ Ca(|i − j|).

By the fact,
∑

k≥mn+1

k−a
≤

∫
∞

mn

v−adv =
m−a+1

n

a − 1
, we get by applying (H0),

K2n ≤
∑

|i− j|≥mn+1

|i − j|−a
≤

nm−a+1
n

a − 1
.

Thus,

K1n + K2n ≤ Cn

mnhH

(
ϕθ,x(hK)

n

)1/a

+
m−a+1

n

a − 1

 .
Choosing mn = h−1

H

(
ϕθ,x(hK)

n

)−1/a
, we get K1n = o(hH) and K2n = o(1).

Finally by

ϕθ,x(hK)
nE2K1(x, θ)

n∑∑
|i− j|>0

Cov(Ni,N j) = o(1), (19)

this complete the proof of lemma.

Proof. [Proof of Lemma 3.3]
We will establish the asymptotic normality of An(θ, t, x) suitably normalized. We have,√

nhHϕθ,x(hK)An(θ, t, x) =

√
nhHϕθ,x(hK)

nhHEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=

√
ϕθ,x(hK)

√
nhHEK1(θ, x)

n∑
i=1

Ni(θ, t, x)

=
1
√

nhH

n∑
i=1

Ξi(θ, t, x) =
1
√

nhH
Sn.

Now we can write, Ξi =

√
hHϕθ,x(hK)
EK1(θ, x)

Ni, we have,

Var(Ξi) =
ϕθ,x(hK)

hHE2K1(θ, x)
Var(Ni) = Vn(θ, t, x).

Note that by (18), we have Var(Ξi) −→ V(θ, t, x) as n goes to infinity and by (19), we have,∑
|i− j|>0

|Cov(Ξi,Ξ j)| =
ϕθ,x(hK)

hHE2K1(x, θ)

n∑
|i− j|>0

|Cov(Ni,N j)| = o(nhHϕθ,x(hK)). (20)

Obviously, we have, √
nϕθ,x(hK)
V(θ, t, x)

(An(θ, t, x)) = (nhHV(θ, t, x))−1/2 Sn.
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Thus, the asymptotic normality of (nV(θ, t, x))−1/2 Sn, is sufficient to show the proof of this Lemma. This
last is shown by the blocking method, where the random variables Ξi are grouped into blocks of different
sizes defined.

We consider the classical big- and small-block decomposition. We split the set {1, 2, . . . ,n} into 2kn + 1
subsets with large blocks of size un and small blocks of size vn and put

kn :=
[ n
un + vn

]
.

Now by Assumption (H10)-(ii) allows us to define the large block size by

un =:

(nhHϕθ,x(hK)
qn

)1/2 .
Using Assumption (H10) and simple algebra allows us to prove that

vn

un
→ 0,

un

n
→ 0,

un√
nϕθ,x(hK)

→ 0, and
n
un

a(vn)→ 0. (21)

Now, let Υ j, Υ′j and Υ
′′

j be defined as follows:

Υ j(θ, t, x) = Υ j =

j(u+v)+u∑
i= j(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1,

Υ′j(θ, t, x) = Υ′j =
( j+1)(u+v)∑

i= j(u+v)+u+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1,

Υ
′′

j (θ, t, x) = Υ
′′

j =

n∑
i=k(u+v)+1

Ξi(θ, t, x), 0 ≤ j ≤ k − 1.

Clearly, we can write

Sn(θ, t, x) = Sn =

k−1∑
j=1

Υ j +

k−1∑
j=1

Υ′j + Υ
′′

k

=: Ψn(θ, t, x) +Ψ′n(θ, t, x) +Ψ
′′

n(θ, t, x)
=: Ψn +Ψ

′

n +Ψ
′′

n .

We prove that

(i)
1
n
E(Ψ′n)2

−→ 0, (ii)
1
n
E(Ψ′′n )2

−→ 0, (22)

∣∣∣∣E {
exp

(
izn−1/2Ψn

)}
−

k−1∏
j=0

E
{
exp

(
izn−1/2Υ j

)} ∣∣∣∣ −→ 0, (23)

1
n

k−1∑
j=0

E
(
Υ2

j

)
−→ V(θ, t, x), (24)
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1
n

k−1∑
j=0

E
(
Υ2

j 1{|Υ j |>ε
√

nV(θ,t,x)}

)
−→ 0, (25)

for every ε > 0.
Expression (22) show that the termsΨ′n andΨ′′n are asymptotically negligible, while Equations (23) and

(24) show that the Υ j are asymptotically independent, verifying that the sum of their variances tends to
V(θ, t, x). Expression (25) is the Lindeberg-Feller’s condition for a sum of independent terms. Asymptotic
normality of Sn is a consequence of Equations (22)-(25).

• Proof of (22) Because E(Ξ j) = 0, ∀ j,we have that,

E(Ψ′n)2 = Var

 k−1∑
j=1

Υ′j

 = k−1∑
j=1

Var
(
Υ′j

)
+

k−1∑
|i− j|>0

Cov
(
Υ′i ,Υ

′

j

)
:= Π1 +Π2.

By the second-order stationarity and (20) we get

Var
(
Υ′j

)
= Var

 ( j+1)(un+vn)∑
i= j(un+vn)+un+1

Ξi(θ, t, x)


= vnVar(Ξ1(x)) +

vn∑
|i− j|>0

Cov
(
Ξi(θ, t, x),Ξ j(θ, t, x)

)
= vnVar(Ξ1(x)) + o(vn).

Then

Π1

n
=

kvn

n
Var(Ξ1(θ, t, x)) +

1
n

k−1∑
j=0

vn∑
i, j

Cov
(
Ξi(θ, t, x),Ξ j(θ, t, x)

)
≤

kvn

n

{
ϕθ,x(hK)

hHE2K1(x)
Var (Ξ1(θ, t, x))

}
+

1
n

n∑
i, j

∣∣∣∣Cov
(
Ξi(θ, t, x),Ξ j(θ, t, x)

) ∣∣∣∣
≤

kvn

n

{
1

hHϕθ,x(hK)
Var (Ξ1(θ, t, x)))

}
+

1
n

n∑
i, j

∣∣∣∣Cov
(
Ξi(θ, t, x),Ξ j(θ, t, x)

) ∣∣∣∣
≤

kvn

n

{
1

ϕθ,x(hK)
Var (Ξ1(x))

}
+

k
n

o(vn).

Simple algebra gives us

kvn

n
�

( n
un + vn

) vn

n
�

vn

un + vn
�

vn

un
−→ 0 as n→∞.

Using Equation (19) we have,

lim
n→∞

Π1

n
= 0. (26)
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Now, let us turn to Π2/n. We have,

Π2

n
=

1
n

k−1∑
|i− j|>0

Cov
(
Υi(x),Υ j(x)

)
=

1
n

k−1∑
|i− j|>0

vn∑
l1=1

vn∑
l2=1

Cov
(
Ξm j+l1 ,Ξm j+l2

)
,

with mi = i(un + vn) + un + 1. As i , j, we have, |mi −m j + l1 − l2| ≥ un. It follows that

Π2

n
≤

1
n

n∑
|i− j|≥un

Cov
(
Ξi(x),Ξ j(x)

)
= o(1),

then

lim
n→∞

Π2

n
= 0. (27)

By Equations (26) and (27) we get Part(i) of the Equation(22).

We turn to (ii), we have,

1
n
E

(
Ψ′′n

)2 =
1
n

Var
(
Υ′′k

)
=
ϑn

n
Var (Ξ1(x)) +

1
n

ϑn∑
|i− j|>0

Cov
(
Ξi(x),Ξ j(x)

)
,

where ϑn = n − kn(un + vn); by the definition of kn, we have, ϑn ≤ un + vn.

Then,
1
n
E

(
Ψ′′n

)2
≤

un + vn

n
Var (Ξ1(x)) +

1
n

ϑn∑
|i− j|>0

Cov
(
Ξi(x),Ξ j(x)

)
,

and by the definition of un and vn we achieve the proof of (ii) of Equation (22).

• Proof of (23) We make use of Volkonskii and Rozanov’s lemma (see the appendix in Masry [24]) and
the fact that the process (Xi,X j)is strong mixing.

Note that Υa is F ja
ia

-mesurable with ia = a(un + vn) + 1 and ja = a(un + vn) + un; hence, with V j =

exp
(
izn−1/2Ψn

)
we have,

∣∣∣∣E {
V j

}
−

k−1∏
j=0

E
{
exp

(
izn−1/2Υ j

)} ∣∣∣∣ ≤ 16kna(vn + 1) �
n
vn

a(vn + 1),

which goes to zero by the last part of Equation (21). Now we establish Equation (24).

• Proof of (24) Note that Var(Ψn) −→ V(θ, t, x) by equation (22) (by the definition of the Ξi). Then
because

E (Ψn)2 = Var (Ψn) =
k−1∑
j=0

Var
(
Υ j

)
+

k−1∑
i=0 i, j

k−1∑
j=1

Cov
(
Υi,Υ j

)
,

all, we have to prove is that the double sum of covariances in the last equation tends to zero. Using
the same arguments as those previously used for Π2 in the proof of first term of Equation (22)we
obtain by replacing vn by un we get

1
n

k−1∑
j=1

E
(
Υ2

j

)
=

kun

n
Var (Ξ1) + o(1).
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As Var (Ξ1) −→ V(θ, t, x) and
kun

n
−→ 1, we get the result.

Finally, we prove Equation (25).

• Proof of (25) Recall that

Υ j =

j(un+vn)+un∑
i= j(un+vn)+1

Ξi.

Finally for establish (25) it suffices to show for n large enough that the set {|Υ j| > ε
√

nV(θ, t, x)} is empty
.

Making use Assumptions (H1), (H3) and (H4), we have,∣∣∣∣Ξi

∣∣∣∣ ≤ C
(
hHϕθ,x(hK)

)−1/2
,

therefore, ∣∣∣∣Υ j

∣∣∣∣ ≤ Cun

(
hHϕθ,x(hK)

)−1/2
,

which goes to zero as n goes to infinity by Equation (21).
Then for n large enough, the set

{
|Υ j| > ε (nV(θ, t, x))−1/2

}
becomes empty, this completes the proof and

therefore that of the asymptotic normality of (nV(θ, t, x))−1/2 Sn and the Lemma 3.3.

Proof. [Proof of Lemma 3.4] We have,√
nhHϕθ,x(hK)Bn(θ, t, x) =

√
nhHϕθ,x(hK)

F̂D(θ, x)

{
E f̂N(θ, t, x) − a1(θ, x) f (θ, t, x) + f (θ, t, x)

(
a1(θ, x) − EF̂D(θ, x)

)}
.

Firstly, observed that the results below

1
ϕθ,x(hK)

E
[
Kl

(
< x − Xi, θ >

hK

)]
−→
n→∞

al(θ, x), for l = 1, 2, E
[
F̂D(θ, x)

]
−→
n→∞

a1(θ, x)

and
E

[
f̂n(θ, t, x)

]
−→ a1(θ, x) f (θ, t, x), as n→∞,

can be proved in the same way as in Ezzahrioui and Ould Saı̈d [12] corresponding to their Lemmas 5.1-5.2,
and then their proofs omitted.

Secondly, on the one hand, making use of, we have,

E f̂N(θ, t, x) − a1(θ, x) f (θ, t, x) + f (θ, t, x)
(
a1(θ, x) − EF̂D(θ, x)

)
−→
n→∞

0.

On other hand, √
nhHϕθ,x(hK)

F̂D(θ, x)
=

√
nhHϕθ,x(hK) f̃ (θ, t, x)

F̂D(θ, x) f̃ (θ, t, x)
=

√
nhHϕθ,x(hK) f̃ (θ, t, x)

f̃N(θ, t, x)
.

Then using, it suffices to show that,
√

nhHϕθ,x(hK)

f̃N(θ,t,x)
tend to zero as n goes to infinity. Indeed,

f̃N(θ, t, x) =
1

nhHEK1(θ, x)

n∑
i=1

δi

Ḡ(Yi)
K

(
< x − Xi, θ >

hK

)
H

( t − Yi

hH

)
.

Because K(·)H(·) is continuous with support on [0,1], then by (H3) and (H4) ∃m = inf[0,1] K(t)H(t) if
follows that,

f̃N(θ, t, x) ≥
m

hHϕθ,x(hK)
, which gives

√
nhHϕθ,x(hK)

f̃N(θ, t, x)
≤

√
nh3

Hϕ
3
θ,x(hK)

m
.

Finally, using (N2), completes the proof of Lemma. 3.4
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7. Conclusion

This paper focused on nonparametric estimation of conditional mode in the single functional index
model for dependent data under random censorship. Both the asymptotic normality as well as a confidence
interval of the resulted estimator are derived. Our prime aim was to improve the performance of the
single-index model for the conditional mode with a scalar response variable conditioned by a functional
Hilbertian regressor under the dependent property. The nonparametric aspect is well exploited in the
first two sections by the given hypotheses. The proposed estimators are consistent and asymptotically
distributed under appropriate conditions. Note that this approach is more significant in the presence of a
simple single functional index. The dimensionality of the model is the bias part while the dimensionality
of the functional space of the explanatory variable is in the dispersion part.

Research in the nonparametric field remains an open question which will be the subject of several future
studies in order to improve and highlight the results obtained in this work. Extend our study of estimation
of the conditionals mode to the estimation of the conditional models of a MAR (missing at random) response
to the independent case and the dependent case. Another type of dependency could be considered such
as the quasi-associated data. Develop the asymptotic properties of a kernel estimator of the k-nearest
neighbors. Generalize the results obtained by using other families of semi-metrics in order to improve the
prediction performance of our estimators where the choice of the smoothing window is important.

References

[1] A. Ait-Saı̈di, F. Ferraty and R. Kassa, Single functional index model for a time series, Revue Roumaine de Mathématique Pures et
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