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The projectively Hurewicz property is f-invariant

Alexander V. Osipov?

?Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Yekaterinburg, Russia

Abstract. A space X is projectively Hurewicz provided every separable metrizable continuous image of X is
Hurewicz.

In this paper we prove that the projectively Hurewicz property is t-invariant, i.e., if C,(X) is homeomor-
phic to C,(Y) and X is projectively Hurewicz, then Y is projectively Hurewicz, too.

1. Introduction

Let # be a topological property. A.V. Arhangel’skii calls X projectively P if every second countable
continuous image of X is # [1, 3]. The projective selection principles were introduced and first time
considered in [5]. Lj.D.R. Ko¢inac characterized the classical covering properties of Menger, Rothberger,
Hurewicz and Gerlits-Nagy in term of continuous images in IR”. Characterizations of the classical covering
properties in terms a selection principle restricted to countable covers by cozero sets are given in [4]. In
[8, 9] we obtained the functional characterizations of all projective versions of the selection properties in
the Scheepers Diagram.

Let us recall that a topological space is Hurewicz if for every sequence (U, : n € IN) of open covers of X,
there is a sequence (V, : n € IN) such that for every n, V, is a finite subfamily of U, and every point of X
is contained in | J V, for all but finitely many n’s.

Recall that if C,(X) and C,(Y) are homeomorphic (linearly homeomorphic, uniform homeomorphic),
we say that the spaces X and Y are t-equivalent (I-equivalent, u-equivalent). The properties preserved by
t-equivalence (l-equivalence, u-equivalence) we call t-invariant (I-invariant, u-invariant) [2].

The following interesting results were obtained:

e (Lj.D.R. Kotinac) A space is Hurewicz if and only if it is Lindel6f and projectively Hurewicz [5].
e (L. Zdomskyy) The Hurewicz property is [-invariant (Corollary 7 in [12]).

o (N.V. Velichko) The Lindelof property is I-invariant [11].

o (M. Krupski) The projectively Hurewicz property is l-invariant (Theorem 1.5 in [7]).

In this paper we prove that the projectively Hurewicz property is t-invariant.
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2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of positive integers is denoted
by IN. Let R be the real line, we put I = [0,1] C R, and let Q be the rational numbers. For a space X,
we denote by C,(X) the space of all real-valued continuous functions on X with the topology of pointwise
convergence. The symbol 0 stands for the constant function to 0. Since C,(X) is a homogenous space we
may always consider the point 0 when studying local properties of this space.

A basic open neighborhood of 0 is of the form [F, (=€, €)] = {f € C(X) : f(F) C (—¢, €)}, where F is a finite
subset of X and € > 0.

We recall that a subset of X that is the complete preimage of zero for a certain function from C(X) is
called a zero-set. A subset O C X is called a cozero-set (or functionally open) of X if X \ O is a zero-set.

Many topological properties are characterized in terms of the following classical selection principles.
Let A and B be sets consisting of families of subsets of an infinite set X. Then:

Sfin(A, B) is the selection hypothesis: for each sequence (A, : n € IN) of elements of A there is a sequence
(B, : n € N) of finite sets such that for each n, B, € A, and U, By € 8.

Ufin(A, B) is the selection hypothesis: whenever Uy, U, ... € A and none contains a finite subcover,
there are finite sets 7, € U, n € N, such that {| JF,, : n € N} € 8.

In this paper, by a cover we mean a nontrivial one, that is, ¢ is a cover of Xif X = | J U and X ¢ U.

An open cover U of a space X is:

e an w-cover if every finite subset of X is contained in a member of U.

e a y-cover if it is infinite and each x € X belongs to all but finitely many elements of .

e yr-shrinkable if U is a cozero y-cover and there exists a y-cover {F; : U € U} of zero-sets of X with
FycUforevery UeU.

e w-groupable if there is a partition of the cover into finite parts such that for each finite set F C X and all
but finitely many parts # of the partition, there is a set U € $ with F C U [6].

For a topological space X we denote:

e O — the family of all open covers of X;

e 0% — the family of all countable cozero covers of the space X;

o [' — the family of all open y-covers of the space X;

o I', — the family of all cozero y-covers of the space X;

e (9" — the family of open w-groupable covers of the space X;

o ['r — the family of all cozero yr-shrinkable covers of the space X.

Since any infinite part of the y-cover is also a y-cover, we further assume that all yr-shrinkable covers
are countable.

Let us recall that a topological space X is Hurewicz if X has the property Uy;,(O, T).

3. The projectively Hurewicz property

A space X is projectively Hurewicz provided every separable metrizable continuous image of X is
Hurewicz.
In ([4], Theorem 30), M. Bonanzinga, F. Cammaroto, M. Matveev proved

Theorem 3.1. The following conditions are equivalent for a space X:

1. Xis projectively Uy;,(O, T) [projectivelyHurewicz];

2. Every Lindelof continuous image of X is Hurewicz;

3. for every continuous mapping f : X — R®, f(X) is Hurewicz;
4. for every continuous mapping f : X — R®, f(X) is bounded;
5. X satisfies Ui (O, T).

Proposition 3.2. (Proposition 31 in [4])
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1. Every o-pseudocompact space is projectively Hurewicz.

2. Every space of cardinality less than b is projectively Hurewicz.

3. The projectively Hurewicz property is preserved by continuous images, by countably unions, by C*-embedded
zero-sets, and by cozero sets.

Definition 3.3. Let S = {S,, : n € N} be a family of subsets of a space X and x € X. Then S weakly converges
to x if for every neighborhood W of x there is a sequence (s, : n € IN) such that s, € S, for each n € N and
there is n’ such that s, € W for each n > n’.

Let us recall that a subset A of X converges to x if A is infinite, x ¢ A, and for each neighborhood U of x,
A\ U is finite. We write x = lim A if A converges to x. Consider the following collections:

o[, ={ACX:x=1limA};

o wl'y = the family of all subsets of X admitting a partition S = {S,, : n € IN} such that for every n the set
S, is finite and S weakly converges to x.

Theorem 3.4. The following conditions are equivalent for a space X:

1. Cy(X) satisfies S fin(To, wlo);
X satisfies Sgin(I'r, Q77);

X satisfies U (T, T);

X satisfies Ui, (O, T);

X is projectively Hurewicz.

Gk W

Proof. (3) & (2). By Theorem 3.4 in [10], the equality U;,(O,T) = Sf;u(I, Q") is true in the class of metric
separable spaces. Let X satisfies Uj;,(I'r, I'). By Theorem 5.4 in [9] and Theorem 3.1, Uy, (T'r, T') = Uy, (0%, 1),
i.e., X is projectively Hurewicz.

Let (U, : n € IN) be a sequence of countable yr-shrinkable covers of X. For every n € N and every
U € U, fix a continuous function fi; : X — R such that U = fL‘Il[]R\ {0}]. Puth =I]{fu: U € U, neN}
Then £ is a continuous mapping from X onto h(X) C R, thus h(X) satisfies Uy;,(O,T) = Sgu(T, Q7). Let
h(U,) = (kW) : U € U,}. Since (I(U,) : n € IN) be a sequence of y-covers of h(X) we get (2). Since a
continuous metrizable image of a space satisfying the property S;,(I'r, Q27") is a space with this property
and S¢;,(I'r, Q) = Sf,(T', Q77) for metrizable spaces, the implication (2) = (3) is proved similarly.

(4) © (5). By Theorem 3.1.

(5) = (3). By Theorem 5.4 in [9] (or Theorem 4.1 in [8]).

(3) = (4). Let (U, : n € IN) be a sequence of countable cozero covers of X. Enumerate U,, = (U]}, : m € IN}.

For n,m € N, fix a continuous function f,,, : X — [0, 1] that witnesses U”, being cozero, i.e. f~1(0,1] =
uy,. For every n,m,i € N, let us define

W' o= fol (25, ]and H" . = fol [, 1]
Clearly, the set W), . is cozero and HJ . is a zero-set. Note that

w cHﬂ chchuﬂ andU”—UW"

For k € IN, write W} = U{W; PN m < k} and let W, = {W}, W7, ...}. Observe that ‘W, € I'r because
H} = U{H;’m. ti,m < k} is a zero-set contained in W}'. Moreover the family {H} : k € N} is a y-cover of X
since one readily checks that the family {U{W’;u. 2i,m <k} : k € N} is a y-cover and UW! vi,m <k} C H}.
Now apply the property Uy, (I'r, I') to the sequence (W), : n € IN) together with the fact that Wyisa fmer
cover that U, for all n.

(1) = (2). Let {V; :i € N} € [['r]“. Note that we assume that all yr-shrinkable covers are countable.

Since V; ={V;;: j € N} € I'r, thereis {F;; : j € N} € T' such that F; ; is a zero-setin X and F;; C V;; € V;
for each j € IN. LetT {fij € CG(X): f;, (F”)—Oandfl (X\Vij) = 1f0reach1 j € N}. Since {F;; : j € N}is
a y-cover, we have lim T; = 0 for eachi € N. By (1), there are finite subsets T’ of T; and a partition of the set

j—oo
U T; into finite parts such that for each neighborhood O = [K, (—¢, €)] of the function 0 where K is a finite
subset of X and € > 0, and all but finitely many parts # of the partition, there is a function g € £ with g € O.
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Let® = {{g11, ..., g1x,} : I € N}. Since g1, = f;, ;. for someis, js € IN, we can consider Q = {Vi,, : Vi,u = Vi j,,
fiiX\ Vi) =1, fij = gim, | € N}. Then Q has a partition Q = {{Vj1,..., Vix} : | € N} and, for any finite
subset K of X all but finitely many parts Q of the partition, there is V;; with K € V;. Thus, Q € Q7.

(2) = (1). Let T; € I'p for each i € IN. By passing to a countable infinite subset, we can without loss of
generality assume that each T; is countable. Enumerate T; = {f;; € C,(X) : j € N}.

For i, j define V; ; = fl.‘jl((—l 1)) (we can without loss of generality assume that each V; ; is non-empty),

i’
and let V; ={V;;:j€ N}
Note that V; ; is a cozero-set in X for each 7, j € IN.
Thus we have a mapping @ : |JV; — U T; such that ®(V; ;) = f; i for i, j € N.
Since lim T; = 0, for any finite subset F of X and € > 0 (we can assume that € < %), there is j* € IN such

]—}DO

that f; ; € [F, (=€, €)] for each j > j'. Thus, F C V;; for each j > j’. Thus, V; € I'..

For i, j define F; ; = fl.,‘jl([—%, —]),and let 7 = {F;; : j € N}.

Then F;; C V;; for each j € IN and ¥; € I'. Note also that F; ; is a zero-set and V; ; is a cozero-set in X for
each j € N. It follows that V; € I'r.

By (2), there are finite subsets D; C V; for each i € IN such that | D; is a cozero w-groupable cover of the
space X.

Let P = {P) : k € N} be a partition of the cover |J D; into finite parts such that for each finite set F € X
and all but finitely many parts {# : k € IN} of the partition, there is a set Vi jx) € Pr with F C Vg ik

For each k define Sy = {fy : ®(V) = fy, V € Px}. The family S = {S; : k € IN} is a partition of J{f;;: Vi, €
D;,i € IN}. Then, for each finite set F C X and € > 0, and all but finitely many parts of the partition S, there
is a function fi(k),j(k) € Sy with fi(k),j(k) € [E (—€,¢€)]. Thus, U{f,‘/]‘ : fi,j eT; Vi,j € D;,i € N} € wl'y and Cp(X)
satisfies Sin(I'o, wlp). [

Note that the property S, (I'y, wI'y) is a topological property. Thus, if C,(X) is homeomorphic to C,(Y)
and C,(X) satisfies Sy, (I'o, wIy), then C,(Y) satisfies Sy, (I'y, wl'y) for each g € C,(Y).

Theorem 3.5. Suppose that C,(X) and Cy(Y) are homeomorphic. Then X has the projectively Hurewicz property if
and only if Y has the projectively Hurewicz property.

Problem 3.6. Let P € {Menger, Rothberger, Scheepers, S1(I', O)}. Will the projectively P property be t-invariant?

Conjecture 3.7. The projectively Scheepers Diagram is t-invariant, i.e., each projectively selection property in the
Scheepers Diagram is t-invariant.

If the conjecture is true, then, applying Velichko's result, the Scheepers Diagram is l-invariant.
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