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On the Gaussian curvature of timelike surfaces in Lorentz-Minkowski
3-space
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Abstract. In this study, the various expressions of the Gaussian curvature of timelike surfaces whose
parameter curves intersect under any angle are investigated and the Enneper formula is obtained in
Lorentz-Minkowski 3-space. By giving an example for these surfaces, the graphs of the surface and its
Gaussian curvature are drawn.

1. Introduction

Euclidean geometry, which ruled for thousands of years, left its place to new geometries with the
discovery of non-Euclidean geometries that did not provide the parallelism axiom, [1]. Euclidean geometry
makes sense for plane geometry, but the shape of the Earth we live on conforms to non-Euclidean geometry.
Mathematicians such as Lobachevski, Gauss, Bolyai and Riemann, who set out with this idea, agreed on
non-Euclidean geometries. Thus, new geometries emerged, such as Riemann (elliptical) geometry and
Lobachevsky (hyperbolic) geometry. These geometries are the most used by NASA today. Even Einstein’s
theory of relativity is a product of Riemannian geometry. One of the broad areas in the study of Euclidean
or non-Euclidean geometry is differential geometry. The most popular subject of differential geometry is the
theory of surfaces. One of the tools used when examining the geometry of a surface is the curvature of the
surface. The method of calculating the curvature of a surface was defined by Carl Gauss in the 19th century
and is therefore called Gaussian curvature. To explain Gauss’s method of calculating surface curvature, it
is first necessary to understand how the curvature of curves is calculated. Accordingly, the curvature of a
curve is inversely proportional to the radius of the circle of curvature at a point on it. Therefore, the smaller
the radius, the larger the curvature, while the larger the radius, the smaller the curvature. That is, since
the radius of the circle of curvature of the line is infinite, its curvature is zero. The product of the principal
curvatures at a point on a surface gives the Gaussian curvature of the surface at that point. If one of the
curvatures is zero, it means that the Gaussian curvature of the surface at that point is zero. If a surface has
zero Gaussian curvature, the surface is developable. Therefore, surfaces with zero Gaussian curvature can
be said to be isomorphic to the plane. The Gaussian curvature of surfaces that have a nonzero curvature
are expressed as either positive or negative. In cases where both circles of curvature are on the same side
of the surface, there is positive Gaussian curvature at that point, and negative when one is on the opposite
side. On a surface, the sum of the interior angles of the triangle in areas with zero Gaussian curvature is 180
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degrees, the sum of the interior angles of the triangle in areas with positive Gaussian curvature is more than
180 degrees, and the sum of the interior angles of the triangle in areas with negative Gaussian curvature is
less than 180 degrees, Figure (1).

Figure 1: Interpreting the Gaussian curvature’s value

Points with zero Gaussian curvature on a surface are called “parabolic points”, points with positive Gaussian
curvature are called “elliptical points” and points with negative Gaussian curvature are called “hyperbolic
points”, [2]. Thus, if the Gaussian curvature at each point of a surface is zero, that is the surface is flat, the
surface is related to Euclidean geometry, if the curvature at each point of the surface is positive, the surface
is related to Riemannian geometry, and if the curvature at each point of the surface is negative, the surface is
related to Lobachevsky geometry. The subject of surfaces is also important in architectural studies. Surfaces
built in architectural studies may have only zero, only positive and only negative Gaussian curvature, as
well as these three situations can be found in different parts of the surface, [3]. Nordpark Train Station
(Austria), built by architect Zaha Hadid Architects, can be given as an example of structures with three
different Gaussian curvatures in different parts of its surface, Figure (2).

Figure 2: Nordpark Train Station
(Accessed on 13.11.2017, used under Creative Commons CC0 license, https://pixabay.com/en/architecture-modern-zaha-hadid-1618100/ )

The Lorentz-Minkowski geometry is one of the best known of the non-Euclidean geometries, [4–8].
There are many studies on curves or surfaces in Lorentz-Minkowski 3-space [9–23], which is named with
the defined Lorentz metric

⟨, ⟩ : R3
×R3

→ R ,
〈
z, y

〉
= z1y1 + z2y2 − z3y3,

where z = (z1, z2, z3) and y =
(
y1, y2, y3

)
∈ R3. Some of the studies on the Gaussian curvature of surfaces

in this space are [3, 24–29]. In this study, the different expressions of the Gaussion curvature of timelike
surfaces which are examined under six cases in [30] is examined and Enneper formula is obtained for all
cases.
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2. Preliminaries

The causal character of a vector z in Lorentz-Minkowski 3-space is timelike if ⟨z, z⟩ < 0, spacelike if
⟨z, z⟩ > 0 or z = 0 and lightlike if ⟨z, z⟩ = 0, z , 0, [6]. Similarly, the causal character of the all tangent vectors
of any curve is the same as the causal character of the curve. As for surfaces, they are named according to the
characters of their normal vectors at each point. If The normal vector at each point is timelike (spacelike), the
surface is spacelike (timelike), respectively. Addition, the norm of the vector z is ∥z∥ =

√
|⟨z, z⟩|. If ∥z∥ = 1, z

is a unit vector. The unit timelike vectors create the hyperbolic unit sphere H2
0 =

{
z ∈ R3

1 | ⟨ z, z⟩ = − 1
}

and the unit spacelike vectors create the Lorentz unit sphere S2
1 =

{
z ∈ R3

1 | ⟨ z, z⟩ = 1
}
. For z, y ∈ R3

1,
if ⟨ z, y⟩ = 0, the vectors z and y are called Lorentzian ortgonal vectors. Besides, just like the inner product
function, the vectorial product function in this space is defined differently from that in Euclidean space
also:

∧ : R3
1 ×R

3
1 → R

3
1 , z ∧ y = −

∣∣∣∣∣∣∣∣
e1 e2 −e3
z1 z2 z3
y1 y2 y3

∣∣∣∣∣∣∣∣
This fuction is called Lorentz vectorial product of z and y vectors. The causal characters of the vectors
in R3

1 also affect the result of the vector products of these vectors with each other, and this effect causes
various cases on a timelike surface. Depending on these cases, the Darboux frame is shaped in various
ways according to the characters of the elements that creat the frame. For example, let’s take the Darboux
frame

{
t, 1,N

}
on a timelike surface. Here the normal vector N is a spacelike, by definition of a timelike

surface. Let’s assume that vector 1 is also spacelike. So, this vector is defined by 1 = −N∧ t, here the vector
t is timelike. In the present case, Darboux vector of this frame is [21]

w =
t

T1
+
1

Rn
−

N
R1
. (1)

Let the parameter curves (c1) and (c2) of a timelike surface be two curves that intersect at any angle. Let any
curve (c) pass through the point where (c1) and (c2) intersect. Six different cases appear on these surface
with different combinations of the characters of the elements of the Darboux frames of (c), (c1) and (c2), [30].
Many equations have been obtained for these six cases on the surface. I do not see any harm in adding only
the following ones, which will be used in this study, to this section. There is the equation below between
the Darboux vectors w, w1 and w2 of (c) , (c1) and (c2) on the timelike surface, respectively,
Case 1.

w = −
sinh

(
θ − ϕ

)
coshθ

w1 +
coshϕ
coshθ

w2 −
dϕ
ds

N. (2)

For other cases, you can examine the paper [30]. For radii of principal curvature R1 and R2 of (c1) and (c2)
and radii of geodesic and normal be Rn and T1 of the surface, there are the equations below:
Case 1.

sinh
(
θ − ϕ

)
R1

=
sinh

(
θ − ϕ

)
Rn

−

cosh
(
θ − ϕ

)
T1

, (3)

coshϕ
R2

=
coshϕ

Rn
+

sinhϕ
T1
, (4)

Case 2.

cosh
(
θ − ϕ

)
R1

=
cosh

(
θ − ϕ

)
(Rn)0

+
sinh

(
θ − ϕ

)(
T1

)
0

, (5)
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sinhϕ
R2

=
sinhϕ
(Rn)0

−
coshϕ(

T1
)

0

. (6)

For other cases, you can examine the paper [30]. Let radii of normal curvature be (Rn)1, (Rn)2 and radii
of geodesic torsion be

(
T1

)
1
,
(
T1

)
2

of the curves (c1) and (c2) on x = x(u, v), respectively. For the geodesic
torsion at the direction t, there are following equations:

Case 1.
1

Tg
=

1
coshθ

−sinh
(
θ − ϕ

)
sinhϕ(

Tg

)
1

+
cosh

(
θ − ϕ

)
coshϕ(

Tg

)
2

−

sinh
(
θ − ϕ

)
coshϕ

(Rn)1
+

sinh
(
θ − ϕ

)
coshϕ

(Rn)2

 ,
(7)

Case 2.
1(

Tg

)
0

=
1

coshθ

cosh
(
θ − ϕ

)
coshϕ(

Tg

)
1

−

sinh
(
θ − ϕ

)
sinhϕ(

Tg

)
2

+
cosh

(
θ − ϕ

)
sinhϕ

(Rn)1
−

cosh
(
θ − ϕ

)
sinhϕ

(Rn)2

 .
(8)

For other cases, you can examine the paper [11]. Let radii of normal curvature be (Rn)1, (Rn)2 and radii of
geodesic torsion be

(
T1

)
1
,
(
T1

)
2

of the curves (c1) and (c2) on x(u, v), respectively. For the normal curvature
at the direction t of the surface, we get:

Case 1.
1

Rn
=

1
coshθ


 1(

Tg

)
1

+
1(

Tg

)
2

 sinh
(
θ − ϕ

)
coshϕ +

sinh
(
θ − ϕ

)
sinhϕ

(Rn)1
+

cosh
(
θ − ϕ

)
coshϕ

(Rn)2

 , (9)

Case 2.
1

(Rn)0
=

1
coshθ


 1(

Tg

)
1

+
1(

Tg

)
2

 cosh
(
θ − ϕ

)
sinhϕ +

cosh
(
θ − ϕ

)
coshϕ

(Rn)1
+

sinh
(
θ − ϕ

)
sinhϕ

(Rn)2

 .
(10)

For other cases, you can examine the paper [11]. Let radii of principal curvature of (c1) and (c2) be R1 and R2,
the radius of normal curvature be Rn, the radius of geodesic torsion of (c) be T1 and the radius of geodesic
torsion of (c0) perpendicular to (c) be

(
T1

)
0

on x(u, v), respectively. Then, we get:

Case 1.
( 1

Rn
−

1
R1

) ( 1
Rn
−

1
R2

)
= −

cosh
(
θ − ϕ

)
sinhϕ

sinh
(
θ − ϕ

)
coshϕ

1
T2

g
. (11)

For other cases, you can examine the paper [11].

3. On Gaussian Curvature of Timelike Surfaces in Lorentz-Minkowski 3-Space

In this section, the various expressions of the Gaussian curvature of the timelike surface are obtained and
special cases are examined. Let the Gaussian curvatures of the curves (c) and (c0) perpendicular to (c) be
K and K0 on the surface x(u, v), respectively. Let the hyperbolic angle between the tangent vector t1 of the
parameter curve (c1) and the tangent vector t of any curve (c) be ϕ, and the tangent vectors t1 and t2 of
parameter curves (c1) and (c2) intersect under the hyperbolic angle θ on timelike surface x = x(u, v).
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Theorem 3.1. Let radii of principal curvature of (c1) and (c2) be R1 and R2, radii of normal curvature and geodesic
torsion of (c) be Rn and T1, radii of normal curvature and geodesic torsion of (c0) perpendicular to (c) be (Rn)0 and(
T1

)
0

on x(u, v), respectively. The Gaussian curvature is given by follows:

Cases 1 - 2.

K = K0 =
1

R1R2
=

1

T1
(
T1

)
0

+
1

Rn (Rn)0
=

1(
T1

)
1

1(
T1

)
2

+
1

(Rn)1

1
(Rn)2

+
sinhθ
coshθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1

 . (12)

Cases 3 - 4.

K = K0 =
1

R1R2
=

1

T1
(
T1

)
0

+
1

Rn (Rn)0
=

1(
T1

)
1

1(
T1

)
2

+
1

(Rn)1

1
(Rn)2

−
sinhθ
coshθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1

 .
Cases 5 - 6.

K = K0 =
1

R1R2
=

1

T1
(
T1

)
0

+
1

Rn (Rn)0
= −

1(
T1

)
1

1(
T1

)
2

+
1

(Rn)1

1
(Rn)2

+
coshθ
sinhθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1

 .
Proof.

For Cases 1 - 2. Firstly, if we multiply (3) and (6) side by side, we get

sinh
(
θ − ϕ

)
sinhϕ

R1R2
=

sinh
(
θ − ϕ

)
sinhϕ

Rn (Rn)0
+

cosh
(
θ − ϕ

)
coshϕ

T1
(
T1

)
0

(13)

and if we multiply the expressions (4) and (5) side by side, we get

cosh
(
θ − ϕ

)
coshϕ

R1R2
=

cosh
(
θ − ϕ

)
coshϕ

Rn (Rn)0
+

sinh
(
θ − ϕ

)
sinhϕ

T1
(
T1

)
0

. (14)

So, if we add the expressions (13) and (14) side by side, we have

1
R1R2

=
1

Rn (Rn)0
+

1

T1
(
T1

)
0

. (15)

On the other hand, if we multiply the expressions (9) and (10) side by side, we get

1
Rn (Rn)0

=
1

cosh2 θ

cosh
(
θ − ϕ

)
coshϕ sinh

(
θ − ϕ

)
sinhϕ


 1(

T1
)

1

+
1(

T1
)

2


2

+
1

(Rn)2
1

+
1

(Rn)2
2


+

cosh
(
θ − ϕ

)
sinh

(
θ − ϕ

) (
cosh2 ϕ + sinh2 ϕ

)
(Rn)1

 1(
T1

)
1

+
1(

T1
)

2


+

coshϕ sinhϕ
(
cosh2

(
θ − ϕ

)
+ sinh2

(
θ − ϕ

))
(Rn)2

 1(
T1

)
1

+
1(

T1
)

2


+

(
cosh2

(
θ − ϕ

)
cosh2 ϕ + sinh2

(
θ − ϕ

)
sinh2 ϕ

) 1
(Rn)1 (Rn)2

]
(16)
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and if we multiply the expressions (7) and (8) side by side, we get

1

T1
(
T1

)
0

=
1

cosh2 θ

− cosh
(
θ − ϕ

)
coshϕ sinh

(
θ − ϕ

)
sinhϕ

 1(
T1

)
1

+
1(

T1
)

2

+

(
1

(Rn)1
−

1
(Rn)2

)2


−

cosh
(
θ − ϕ

)
sinh

(
θ − ϕ

) (
cosh2 ϕ + sinh2 ϕ

)(
T1

)
1

(
1

(Rn)1
−

1
(Rn)2

)

+
coshϕ sinhϕ

(
cosh2

(
θ − ϕ

)
+ sinh2

(
θ − ϕ

))(
T1

)
2

(
1

(Rn)1
−

1
(Rn)2

)

+
(
cosh2

(
θ − ϕ

)
cosh2 ϕ + sinh2

(
θ − ϕ

)
sinh2 ϕ

) 1(
T1

)
1

(
T1

)
2

 . (17)

So, if we add the expressions (16) and (17) side by side, we have

1
Rn (Rn)0

+
1

T1
(
T1

)
0

=
1

(Rn)1

1
(Rn)2

+
1(

T1
)

1

1(
T1

)
2

+
sinhθ
coshθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1

 . (18)

From the equality of (15) and (18), the proof is obtained. The proof of other cases is done in a similar
way.

Proposition 3.2. If t1 and t2 are Lorentzian orthogonal vectors in Theorem 3.1, then for the Gaussian curvature, we
obtain:

Special Cases 1 - 2 - 3 and 4.

K = K0 =
1

R1R2
=

1
Rn (Rn)0

+
1

T1
(
T1

)
0

=
1

(Rn)1

1
(Rn)2

+
1(

T1
)

1

1(
T1

)
2

.

There is no special cases 5 - 6.

Corollary 3.3. Another expression of the Gaussian curvature in Theorem 3.1 is as given below:

Cases 1 - 2.

K = K0 =
1

R1R2
= −

[〈
∂t1

∂s1
,
∂t2

∂s2

〉
+

〈
∂11

∂s1
,
∂12

∂s2

〉]
+

sinhθ
coshθ

[〈
∂t1

∂s1
,
∂12

∂s2

〉
+

〈
∂t2

∂s2
,
∂11

∂s1

〉]
, (19)

Cases 3 - 4.

K = K0 =
1

R1R2
= −

[〈
∂t1

∂s1
,
∂t2

∂s2

〉
+

〈
∂11

∂s1
,
∂12

∂s2

〉]
−

sinhθ
coshθ

[〈
∂t1

∂s1
,
∂12

∂s2

〉
+

〈
∂t2

∂s2
,
∂11

∂s1

〉]
,

Cases 5 - 6.

K = K0 =
1

R1R2
=

[〈
∂t1

∂s1
,
∂t2

∂s2

〉
+

〈
∂11

∂s1
,
∂12

∂s2

〉]
+

coshθ
sinhθ

[〈
∂t1

∂s1
,
∂12

∂s2

〉
+

〈
∂t2

∂s2
,
∂11

∂s1

〉]
.

Proof.
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For Cases 1 - 2. From the Darboux derivative formulas, we know the following equations:

∂t1

∂s1
=

1(
R1

)
1

11 −
1

(Rn)1
N,

∂t2

∂s2
=

1(
R1

)
2

12 +
1

(Rn)2
N,

∂11

∂s1
=

1(
R1

)
1

t1 +
1(

T1
)

1

N,
∂12

∂s2
=

1(
R1

)
2

t2 −
1(

T1
)

2

N,

(20)

[21]. From the expression (20), we write the following equations:〈
∂t1

∂s1
,
∂t2

∂s2

〉
+

〈
∂11

∂s1
,
∂12

∂s2

〉
=

2 sinhθ(
R1

)
1

(
R1

)
2

−
1

(Rn)1 (Rn)2
−

1(
T1

)
1

(
T1

)
2

, (21)

〈
∂t1

∂s1
,
∂12

∂s2

〉
+

〈
∂t2

∂s2
,
∂11

∂s1

〉
=

2 coshθ(
R1

)
1

(
R1

)
2

+
1

(Rn)1

(
T1

)
2

+
1

(Rn)2

(
T1

)
1

. (22)

If (21) and (22) are substituted in (19), the expressions (12) and (19) appear to be equal. So, the proof is
completed. The proof of other cases is done in a similar way.

Proposition 3.4. If t1 and t2 are Lorentzian orthogonal vectors in Corollary 3.3, for the Gaussian curvature, we
obtain the equation below:

Special Cases 1 - 2 - 3 and 4.

K = K0 =
1

R1R2
= −

[〈
∂t1

∂s1
,
∂t2

∂s2

〉
+

〈
∂11

∂s1
,
∂12

∂s2

〉]
.

There is no special cases 5 - 6.

Theorem 3.5 (Enneper Formula). Let radii of geodesic torsion of (c) and (c0) perpendicular to (c) be T1 and
(
T1

)
0

on x(u, v), respectively. There is the relation below between the torsion T (or T0) of the asymptotic lines of the timelike
surface passing through a point P and the Gaussian curvature on the surface at the same point:

Case 1.

K = −
cosh

(
θ − ϕ

)
sinhϕ

sinh
(
θ − ϕ

)
coshϕ

1
T2
1

= −
cosh

(
θ − ϕ

)
sinhϕ

sinh
(
θ − ϕ

)
coshϕ

1
T2 ,

Case 2.

K0 = −
sinh

(
θ − ϕ

)
coshϕ

cosh
(
θ − ϕ

)
sinhϕ

1(
T1

)2

0

= −
sinh

(
θ − ϕ

)
coshϕ

cosh
(
θ − ϕ

)
sinhϕ

1
T2

0

,

Case 3.

K = −
sinh

(
θ − ϕ

)
coshϕ

cosh
(
θ − ϕ

)
sinhϕ

1
T2
1

= −
sinh

(
θ − ϕ

)
coshϕ

cosh
(
θ − ϕ

)
sinhϕ

1
T2 ,

Case 4.

K0 = −
cosh

(
θ − ϕ

)
sinhϕ

sinh
(
θ − ϕ

)
coshϕ

1(
T1

)2

0

= −
cosh

(
θ − ϕ

)
sinhϕ

sinh
(
θ − ϕ

)
coshϕ

1
T2

0

,
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Case 5.

K = −
cosh

(
θ − ϕ

)
coshϕ

sinh
(
θ − ϕ

)
sinhϕ

1
T2
1

= −
cosh

(
θ − ϕ

)
coshϕ

sinh
(
θ − ϕ

)
sinhϕ

1
T2 ,

Case 6.

K0 = −
sinh

(
θ − ϕ

)
sinhϕ

cosh
(
θ − ϕ

)
coshϕ

1(
T1

)2

0

= −
sinh

(
θ − ϕ

)
sinhϕ

cosh
(
θ − ϕ

)
coshϕ

1
T2

0

.

Proof.

Case 1. We know that
1

Rn
= 0 on the asymptotic lines. Besides, since the hyperbolic angle between the

principal normal of an asymptotic line and the normal of the timelike surface is always constant,
1

T1
=

1
T

is

obtained, [21]. If these values are substituted in (11), the proof is obtained. The proof of other cases is done
in a similar way.

Proposition 3.6 (Enneper Formula). If t1 and t2 are Lorentzian orthogonal vectors in Theorem 3.5, that is θ = 0,
then, for the Gaussian curvature, we obtain follows:

Special Cases 1 - 3.

K =
1

T2
1

=
1

T2 ,

Special Cases 2 - 4.

K0 =
1(

T1
)2

0

=
1

T2
0

.

There is no special cases 5 - 6.

Theorem 3.7. Let the Darboux vectors of (c) , (c1), (c2) and (c0) perpendicular to (c) be w, w1 , w2 and w0 on x(u, v),
respectively. If normal vector at any point P of the surface is N, the Gaussian curvature is given as below:

Cases 1 - 2 - 3 and 4.

K = K0 = (N,w0,w) cosh2 θ = (N,w1,w2) coshθ,

Cases 5 - 6.

K = K0 = (N,w,w0) sinh2 θ = (N,w2,w1) sinhθ.

Proof.

Cases 1 - 2. From the following vectors

N =
t1 ∧ t2

coshθ
, (23)

w1 = −

 1(
T1

)
1

+
sinhθ

coshθ (Rn)1

 t1 +
t2

coshθ (Rn)1
+

N(
R1

)
1

,
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and

w2 =
t1

coshθ (Rn)2
+

 1(
T1

)
2

+
sinhθ

coshθ (Rn)2

 t2 −
N(

R1
)

2

,

[30], we get

⟨N,w2 ∧ w1⟩ =
1

coshθ

 1(
T1

)
1

1(
T1

)
2

+
1

(Rn)1

1
(Rn)2

+
sinhθ
coshθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1


 . (24)

Considering the expression (12) in the expression (24), we obtain

⟨N,w2 ∧ w1⟩ =
K

coshθ
=

K0

coshθ
. (25)

Besides, from the expression (23) and the vectors

w = −
sinh

(
θ − ϕ

)
coshθ

w1 +
coshϕ
coshθ

w2 −
dϕ
ds

N, (26)

w0 =
cosh

(
θ − ϕ

)
coshθ

w1 +
sinhϕ
coshθ

w2 −
dϕ
ds

N, (27)

[30], we get

⟨N,w ∧ w0⟩ =
1

cosh2 θ

 1(
T1

)
1

1(
T1

)
2

+
1

(Rn)1

1
(Rn)2

+
sinhθ
coshθ

 1(
T1

)
1

1
(Rn)2

+
1(

T1
)

2

1
(Rn)1


 . (28)

Considering the expression (12) in the expression (28), we have

⟨N,w ∧ w0⟩ coshθ =
K

coshθ
=

K0

coshθ
. (29)

From the equation of (25) and (29), the proof is obtained. On the other hand, from vectorial product of
vectors in (26) and (27), we get

w0 ∧ w =
w1 ∧ w2

coshθ
−

[(
cosh(θ − ϕ) + sinh(θ − ϕ)

coshθ

)
w1 ∧N +

(
sinhϕ − coshϕ

coshθ

)
w2 ∧N

]
dϕ
ds
. (30)

And if we inner product both sides of (30) with N, we have the following equation:

⟨N,w0 ∧ w⟩coshθ = ⟨N,w1 ∧ w2⟩. (31)

From the equation of (29) and (31), the proof is obtained. The proof of other cases is done in a similar
way.

Proposition 3.8. If t1 and t2 are Lorentzian orthogonal vectors in Theorem 3.7, then for the Gaussian curvature, we
get:

Special Cases 1 - 2 - 3 and 4.

K = K0 = (N,w0,w) = (N,w1,w2) .

There is no special cases 5 - 6.
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Corollary 3.9. If normal vector at the point P of timelike surface is N, then there is the following relationship between
of the normal vector, its derivatives and the Gaussian curvature:

Cases 1 - 2 - 3 and 4.

K = K0 = −

(
N,
∂N
∂s1
,
∂N
∂s2

)
coshθ,

Cases 5 - 6.

K = K0 =

(
N,
∂N
∂s1
,
∂N
∂s2

)
sinhθ.

Proof.

Cases 1 - 2 - 3 and 4. We know the following equations

∂N
∂s1
= w1 ∧N and

∂N
∂s2
= w2 ∧N, (32)

[30]. From the expressions (25) and (32), we write

∂N
∂s1
∧
∂N
∂s2
= (w1 ∧N) ∧ (w1 ∧N) = (N,w1,w2)N =

K
coshθ

N =
K0

coshθ
N. (33)

If we inner product both sides of (33) by N, the proof is completed. The proof of other cases is done in a
similar way.

Proposition 3.10. If t1 and t2 are Lorentzian orthogonal vectors in Corollary 3.9, that is θ = 0, for the Gaussian
curvature, we obtain:

Cases 1 - 2 - 3 and 4.

K = K0 = −

(
N,
∂N
∂s1
,
∂N
∂s2

)
.

There is no special cases 5 - 6.

Theorem 3.11. The Gaussian curvature is expressed by E, F and their derivatives on x(u, v) as follows:

Cases 1 - 2.

K = K0 =
D(t1, t2)
D(s1, s2)

=
1
√

EG

 ∂∂u

(√

G
)

u
+ sinhθ

(√
E
)

v
√

E

 − ∂∂v

(√

E
)

v
− sinhθ

(√
G
)

u
√

G


 ,

Cases 3 - 4.

K = K0 =
D(t1, t2)
D(s1, s2)

=
1
√

EG

− ∂∂u

(√

G
)

u
− sinhθ

(√
E
)

v
√

E

 + ∂∂v

(√

E
)

v
+ sinhθ

(√
G
)

u
√

G


 ,

Cases 5 - 6.

K = K0 = −
D(t1, t2)
D(s1, s2)

= −
1
√

EG

 ∂∂u

(√

G
)

u
− coshθ

(√
E
)

v
√

E

 + ∂∂v

(√

E
)

v
− coshθ

(√
G
)

u
√

G


 .

Proof.
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Cases 1 - 2. We know the following equality

∂ ti

∂ s j
= w j ∧ ti, i, j = 1, 2, (34)

[30]. From the expressions (25) and (34), we get

K = K0 = ⟨t1 ∧ t2,w2 ∧ w1⟩ = −⟨t1,w2⟩⟨t2,w1⟩ + ⟨t1,w1⟩⟨t2,w2⟩ =

∣∣∣∣∣∣∣∣
w1 ∧ t1 w1 ∧ t2

w2 ∧ t1 w2 ∧ t2

∣∣∣∣∣∣∣∣ ,
K = K0 =

〈
∂t1

∂s1
,
∂t2

∂s2

〉
−

〈
∂t2

∂s1
,
∂t1

∂s2

〉
=

D(t1, t2)
D(s1, s2)

. (35)

Besides, we write the following equalities

∂t1

∂s1
=
∂t1

∂u
1
√

E
,

∂t2

∂s1
=
∂t2

∂u
1
√

E
,

∂t1

∂s2
=
∂t1

∂v
1
√

G
,

∂t2

∂s2
=
∂t2

∂v
1
√

G
,

[30]. If these values are substituted in (35), considering the equation

∂
∂v

(〈
t1,
∂t2

∂u

〉)
−
∂
∂u

(〈
⟨t1,
∂t2

∂v

〉)
=
∂
∂v


(√

E
)

v
− sinhθ

(√
G
)

u
√

G

 + ∂∂u
−

(√
G
)

u
− sinhθ

(√
E
)

v
√

E

 ,
[30], the proof is obtained. The proof of other cases is done in a similar way.

Proposition 3.12. If t1 and t2 are Lorentzian orthogonal vectors in Theorem 3.11, that is θ = 0, for the Gaussian
curvature, we have:

Cases 1 - 2.

K = K0 =
D(t1, t2)
D(s1, s2)

=
1
√

EG

 ∂∂u

(√

G
)

u
√

E

 − ∂∂v

(√

E
)

v
√

G


 ,

Cases 3 - 4.

K = K0 =
D(t1, t2)
D(s1, s2)

=
1
√

EG

− ∂∂u

(√

G
)

u
√

E

 + ∂∂v

(√

E
)

v
√

G


 .

There is no special cases 5 - 6.

Corollary 3.13. Let the Darboux vectors of (c1), (c2), (c) and (c0) perpendicular to (c) be w1 , w2, w and w0 on x(u, v),
respectively. There is the following relation between of the Darboux vectors and the Gaussian curvature:

Cases 1 - 2.

K = K0 = − (w,w1,w2) coshθ
ds
dϕ
= − (w0,w1,w2) coshθ

ds
dϕ
,

Cases 3 - 4.

K = K0 = (w,w1,w2) coshθ
ds
dϕ
= (w0,w1,w2) coshθ

ds
dϕ
,
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Cases 5 - 6.

K = K0 = (w,w1,w2) sinhθ
ds
dϕ
= (w0,w1,w2) sinhθ

ds
dϕ
.

Proof.

Cases 1 - 2. From (26), we get

(w,w1,w2) = −
〈
−

sinh
(
θ − ϕ

)
coshθ

w1 +
coshϕ
coshθ

w2 −
dϕ
ds

N,w1 ∧ w2

〉
=

dϕ
ds
⟨N,w1 ∧ w2⟩ (36)

and from the expression (27), we get

(w0,w1,w2) = −
〈cosh

(
θ − ϕ

)
coshθ

w1 +
sinhϕ
coshθ

w2 −
dϕ
ds

N,w1 ∧ w2

〉
=

dϕ
ds
⟨N,w1 ∧ w2⟩ . (37)

Considering (25) in (36) and (37), the proof is obtained. The proof of other cases is done in a similar way.

Proposition 3.14. If t1 and t2 are Lorentzian orthogonal vectors in Corollary 3.13, then for the Gaussian curvature,
we get equation below:

Cases 1 - 2.

K = K0 = − (w,w1,w2)
ds
dϕ
= − (w0,w1,w2)

ds
dϕ
,

Cases 3 - 4.

K = K0 = (w,w1,w2)
ds
dϕ
= (w0,w1,w2)

ds
dϕ
.

There is no special cases 5 - 6.

4. Example

Let’s consider the timelike surface

x(v,u) =

(
cos[(n − 1)u] cos[(n − 1)v]

n − 1
−

cos[(n + 1)u] cos[(n + 1)v]
n + 1

,

cos[(n − 1)u] sin[(n − 1)v]
n − 1

−
cos[(n + 1)u] sin[(n + 1)v]

n + 1
, sin u sin v

)
.

The tangent vector of the parameter curve v = constant of the surface is

xu = (− sin[(n − 1)u] cos[(n − 1)v] + sin[(n + 1)u] cos[(n + 1)v],
− sin[(n − 1)u] sin[(n − 1)v] + sin[(n + 1)u] sin[(n + 1)v], cos u sin v) , (38)

and the tangent vector of the parameter curve u = constant of the surface is

xv = (− cos[(n − 1)u] sin[(n − 1)v] + cos[(n + 1)u] sin[(n + 1)v],
cos[(n − 1)u] cos[(n − 1)v] − cos[(n + 1)u] cos[(n + 1)v], sin u cos v) . (39)

From the inner product of the expressions (38) and (39),

⟨xu, xv⟩ = 3 cos u cos v sin u sin v , 0
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is obtained. Thus, it seen that the parameter curves of the timelike surface x(v,u) do not intersect perpen-
dicularly. The graphs of its parameter curves and this surface for certain intervals of the parameters u and
v are given in Figures 3, 4, 5 and 6.

Figure 3: Timelike Surface x(u, v) for u = −π/64n : π/120 : π/64n and v = −π/24n : π/120 : π/24n

Figure 4: Timelike Surface x(u, v) for u = −π/64n : π/120 : π/64n and v = −π/8n : π/120 : π/8n

Figure 5: Timelike Surface x(u, v) for u = −π/32n : π/120 : π/32n and v = −π/24n : π/120 : π/24n
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Figure 6: Timelike Surface x(u, v) for u = −π/32n : π/120 : π/32n and v = −π/8n : π/120 : π/8n

The Gaussian curvature of the surface is

K =


4(2A + C)2 cos(nu) sin(nu)(B cos u sin u +D cos(nu) sin(nu))

+4B cos u sin u(BD cos u sin u + (2A + C)2 cos(nu) sin(nu))

−16nAC cos2(nu) cos u sin u(B cos u sin u + (2A + C) cos(nu) sin(nu)) + 16n2A3 cos4(nu)


16A4 cos4(nu)(4 sin2(nu) − 1)2

,

where A = cos2 u sin2 v − sin2 u cos2 v, B = cos(2nv) − cos(2nu), C = cos(2v), D = sin2 u sin2 v − cos2 u cos2 v.
The graphs of the Gaussian curvature of the timelike surface x(u, v) are shown in Figure 7 and 8 in cases
where u = constant and v = constant for various n values, respectively. In addition, the distribution function
of the curvature is given in Figure 9.

Figure 7: The Gaussian curvature of x(u, v) for u = constant and n = 0, 5, 7, 9, respectively

Figure 8: The Gaussian curvature of x(u, v) for v = constant and n = 0, 3, 4, 8, respectively
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Figure 9: The distribution functions of the Gaussian curvature for u = constant and v = constant, respectively

5. Conclusions

We have shown in our [30] study that six different situations occur according to the causal character of
parameter curves that intersect at any angle on a time-like surface. In this paper, various expressions of
the Gaussian curvature on the timelike surface are examined, new theorems and new equivalents of well-
known formulas are given. This study can also be studied in spaces other than the Lorentz-Minkowski
3-space. At the same time, this paper can be studied by including studies in other related disciplines such
as architecture, physics, astronomy, singularity theory and submanifold theory, and interesting results can
be obtained, [15, 16, 31–35].
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