Filomat 37:28 (2023), 9679-9692

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2328679C

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Existence and Hyers-Ulam stability for boundary value problems of
multi-term Caputo fractional differential equations

Chen Chen?, Li Liu**, Qixiang Dong?

?School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. The present paper is devoted to discussing a class of nonlinear Caputo-type fractional differential
equations with two-point type boundary value conditions. We investigate the existence and uniqueness of
the solutions by virtue of the classical Schauder alternative principle and the Banach contraction principle.
Furthermore, by means of a novel Gronwall-type inequality, we prove the Hyers-Ulam stability of boundary

value problems of multi-term Caputo fractional differential equations. Finally, some numerical examples
are given to illustrate the results.

1. Introduction

The study of differential equations was mainly in the field of mathematics in the last century. However,
in the past few decades, fractional differential equations have been increasingly used to describe the
mechanical system, thermal system, control system, rheology, materials, optical, signal processing and
other areas. In addition, a variety of fractional derivatives have been developed by scholars to study
mathematical models abstracted from the actual situation. For more information and results, we refer to
[1-10].

If an equation contains more than one fractional differential term, it can be named a multi-term fractional
differential equation. It is universally acknowledged that this type of equation can play a vital role in
solving some practical problems. However, the investigations on the application of multi-term fractional

differential equations are still relatively scarce (see, e.g., [11-13]). A well-known model is the Bagley-Torvik
(B-T) equation, which was formulated by Bagley and Torvik in [14]

My (t) + 2Dy () + Asy(t) = f(8),

where A; (i = 1,2,3) are given real numbers and f from [0,1] into R is a given function with certain
constraints. According to further research in [15], the B-T equation has been extensively developed and
applied. In [16, 17], the authors discussed the existence of solutions for a class of two-term Caputo type
fractional differential equations satisfying a initial value condition or certain boundary value conditions.
And this equation can be regarded as a generalized form of the B-T equation.
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The research on Hyers-Ulam stability has developed rapidly in the past thirty years. Initially, this
concept of stability was proposed by Hyers [18] and Ulam [19] in the last century. Roughly speaking, if
a system is Hyers-Ulam stable, it means that an exact solution of the equation can be found around the
approximate solution of the equation. So far, the research and discussion on the Hyers-Ulam stability have
existed in the fields of algebra, functions, differentiation, integration, equations, and other areas. In addition,
Hyers-Ulam stability is dedicated to studying the entire system of the equation, which is quite different from
studying the stability of traditional solutions. We suggest the readers consult [20, 21] and their references.
In [22], the authors investigated the existence of solutions for a class of differential equations with mixed
Riemann-Liouville type fractional integral and derivative boundary conditions. More importantly, a proof
of the Heyers-Ulam stability for differential equations with two-point type boundary value conditions was
provided by the authors.

Inspired by the above content, a class of multi-term nonlinear fractional differential equations involving
Caputo derivative operators are taken into consideration as follows.

{ DV(t) — ED (1) + f(t () =0, 0<t<1, (1)
©(0) + (1) = o,

where £ and ¢g are given constants. The operators .D”* and .D?? represent the Caputo fractional derivatives.
In particular, the coefficients of the operators satisfy 0 < y» < 91 < 1, and f from [0,1] into R is a given
function with certain constraints. The differential equation (1) with the fractional derivatives of order y;
and y; is a kind of generalization of the B-T equation. As a consequence, some new existence conclusions
of the equation (1) can be viewed as a partial extension of the B-T equation in [23, 24]. We discuss the
existence and uniqueness of the solutions for the boundary value problems (BVP) of fractional differential
equations (1). Additionally, we study the Hyers-Ulam stability of the fractional differential equation (1)
with the boundary value condition ¢(0) + ¢(1) = @o. The Hyers-Ulam stability of differential equations
with initial value conditions is easy to prove. However, the situation is quite different when the restriction
conditions are changed from the initial value problems to the boundary value problems. Due to the
limitation of boundary value conditions, the research of the Hyers-Ulam stability of equation (1) becomes
more complicated. Generally, we make use of the Laplace transform and the classical Gronwall inequality
to verify the Hyers-Ulam stability of the equation system. But, it is difficult to give concise proof of the
Hyers-Ulam stability at the point ¢t = 1 in the present paper. Therefore, the existing Gronwall inequality is
not sufficient to solve this kind of boundary value problem, which means that we need to find a suitable
method to solve this type of problem. To solve the Hyers-Ulam stability of BVP (1), we construct a novel
integral-type Gronwall inequality, which can be considered as a generalization of the results in [25].

The rest of the paper is organized as follows. We are going to present some important definitions and
lemmas in section 2. Then, the uniqueness and existence conclusions of BVP (1) will be given in section 3.
In section 4, we discuss the Hyers-Ulam stability of the fractional differential equations under the boundary
condition ¢(0) + (1) = ¢o. Finally, two numerical examples will be listed to understand the existence and
Hyers-Ulam stability of the fractional differential equation (1) in section 5.

2. Preliminaries and lemmas

Some basic lemmas and definitions which are used throughout the article will be presented in this section.
Let C([a, b], R) be a Banach space of all continuous functions ¢ : [4,b] — R with the norm ||¢|| = ma>l§ lp(t)l.
ast<

Additionally, I () denotes the gamma function.

Definition 2.1. [5] Let y1 € (0,+00) and h : [a,b] — R. The integral ] is defined as

¢
IVh(t) = %Vl)f (t—s)""h(s)ds, telab].
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Definition 2.2. [5] Let y1 € (0, +o0) and h : [a,b] — R. The derivative D' is defined as

1 an

D, h(t) = D)'J;" " h(t) = F(m——yl)ﬁ

¢
f (t—s)" " (s)ds, telab],

where m € N, and y, € (im —1,m].

Definition 2.3. [5] Let y; € (0, +0) and I : [a,b] — R. The derivative .D)" is defined as

1 t
yal — _ o\m=y1—1y,(m)
D, h(t) Ty ) fa‘ (t-s) K™ (s)ds, te€la,b],

where m € N, and 1 € (m — 1, m). By the way, D} is the Caputo fractional differential operator.

Lemma 2.4. [5] Let y1 > 0 be a fixed constant. Then the equation DV @(t) = 0 has a general solution ¢, and it can

be expressed as
m—=1

o) = Z at, i €R, (i=12,.,m-1), m=[y]+1
i=0

Additionally, if further assume that ¢ € C"([0, b]; R), then we can get

m—1

DVt = p(t) + Y cit, ¢ € R, (1=1,2,..,m=1), m =[]+ 1,
i=0

Lemma 2.5. Given a function g € C([0,1], R) and a constant & # 2T'(y1 — y2 + 1), the solution ¢ of the linear
differential equation

DV(t) = EDq(t) + g(t) = 0, @)
(0) + (1) = o,
satisfies
1 1
et =00+ f H;i(t,s)p(s)ds — f Hj(t,s)g(s)ds,
0 0
where
T —T(y1—y2+1)
o(t) = ( Ny 0
5 - 2F()/1 -2 + 1)
&2 T(r—yat]) —yae -
- 6| SRS g, 0ssrsl,
Lo =72 | S @ -9, 0<t<s<l,
and
Halt,s) = — { el (D DI O<s<t<l,
2\L, - N\ ET2-T(y1—y2+1) _
O v V) L 0<t<s<l

Proof. Since 0 <y, < y1 <1, according to Lemma 2.4, we have

] D" (t) = @(t) + co,

where ¢y € Ris a constant. Integrating the left and right sides of the differential equation (1) by the operator
], we can get

] Dp(t) = £ D2e(t) - ] g(t), £ €[0,1]. €)
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Since
[ DVg(t) = (D) = I (p() + o) = TVl + =,
IF'yr—y2+1)

we can obtain

— ét)q_yz 1=)2 — 1
P = =0+ F g0+ 7 0 = ] () @
So we have
QO(O) = —Co,
(1) = o + im0 + (1) - ] ().

Combined with the boundary conditions, we get

T =y2 + D(po = € 20(1) + ]g(1)
o= E-2(r—ya+1) ‘

Substituting the value of ¢ into the equation (2), we have

(&0 =T = 72 + D))o = £ 720(1) + [ (1))
E - 21"(7/1 -2 + 1)
_ (ét%—w ~T(y1—y2 + 1)) (T D)
\ E-2T(r -2+ D) O (E 2T —y2 + )T (1 - 72)
(8% =T -y2+ 1)) 1 1
_ gyl
E=2T(y1—y2+1) T(n) j(: (=) gle)as

t

+F(y1—y2) fo (t=s) P(s)ds ) 0(t 8)171g(s)ds

1 1
=9(t)+j; Hl(t,s)(p(s)ds—ﬁHz(t,s)g(s)ds.

p(t) = + T2 - ] g(t)

1
yfﬂ—WﬂT@®%
0

The lemma is thus proved. O
Lemma 2.6. [25] Given continuous functions o1(t), 02(t) and a differentiable function o3(t), further suppose

o3(t) < o1(Hos(t) + o2(t), t>a,
o3(a) < go.

Then the assertion given below

¢ ¢ ¢
o3(t) < ogexp (f al(s)ds) + f 02(s) exp (f o1 (T)dT) ds (6)

holds, where o is a constant and s € [a, +c0).

Based on the inequality introduced above and the model of differential equations in this paper, we
are going to construct and prove a new Gronwall-type inequality that can be used to study a class of
integro-differential equations with boundary conditions.
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Lemma 2.7. Let v(t) be a nonnegative function on [a, T]. Suppose that the inequality given below

t T
v(t) < G + sz v(s)ds + Cgf v(is)ds, G eR (i=1,2,3),

holds, and
qo = g—z(exp (QT-w)-1)<1.
Then, we have the following assertion
G
v(t) < - exp (Cz(T a)).

Proof. Let u(t) = ¢ + G L ' v(s)ds + (3 fa ! v(s)ds. Then we obtain
v(f) < (),

and

T
@) = G + G f Y(s)ds.

Hence, we obtain u/(t) = Cov(t) < Gp(t). By Lemma 2.6,

u(t) < p(a) exp (f Czds) = p(a) exp (Cz(t - a)).

Substituting (10) into (9) yields
T

T
p(a) =G + Csf v(s)ds < Gq + Caf

Hence,
u(a) (1 - %(exp (CaT - ) - 1)) <.
It follows that

(@) < G __G ,

1-S(exp(QT-0)-1) 1=

where go = %( exp (C2(T - a)) - 1). Substituting (10) into (9) yields

C
v(t) < I _1% exp (Cz(T - a)).

The lemma is thus proved. [

3. Existence results

1i(a) exp (Cz(s —~ a))ds <G+ y(a)%( exp (Cz(T - 61)) - 1)-

9683

(8)

(10)

The uniqueness and existence of the BVP (1) are discussed in this section. To begin with, an important

definition is given as follows.
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Definition 3.1. If ¢ satisfies the equation

1 1
o) =00+ [ Ht 9o~ [ H9f(spo)s <01,
0 0

then ¢ is the solution of BVP (1).
For convenience, we first list the hypotheses.

(H1) Function f:[0,1] x R — R is continuous.
(H2) There exists a fixed number k > 0 such that

[f(t, 1) = f(t, @)l <k|pr —a|, te[0,1],

for all 1,92 € R.
(H3) There exist nonnegative and continuous functions k(t) and /() such that

F(t @) < k(t) + 1) |

7

for each (t,¢) € [0,1] x R.
(H4) There exist continuous functions ¢ € C([0, 1], R*) and nondecreasing functions w : R — R* such that

If(t @)l < p(BHllel),
for each (t, ) € [0,1] X R.
Theorem 3.2. Suppose that conditions (H1) and (H2) hold. If further assume that
M;+kM, <1, te][0,1], (11)
then the BVP (1) has a unique solution.

Proof. Define an operator # on C([0, 1], R) by

1 1
Po(t) = O(t) + fo Hy(t, s)q(s)ds — fo Hy(t, ) (s, () ds.

for ¢ € C([0, 1], R). Since f and ¢ are continuous, and H; and H, are integrable, it is easy to prove that Pe
is continuous on [0, 1], i.e., £ maps C([0, 1], R) into itself. According to the definition of the operator P, if
there exists a unique fixed point ¢ € P, then ¢ is the solution of BVP (1). Taking any @1, ¢, € C([0, 1], R),
then the condition (H2) implies

1 1
Por(6)=Pea < [ I 9Npr(9) = s+ [ 1Hale 9N 11(s, 016) — (s 0209
1 1
<|le1 - o fo |Hi (t, 5)lds + k|1 — ga| fo |Ha(t, s)|ds
< (M1 + kMz) ||(p1 - (PZH .

Hence,
[Pp1 = Pall < (My + kM) |1 = @2 -

According to condition (11), # is a mapping of contraction. By the principle of Banach contraction, we can
get the conclusions immediately. The theorem is thus proved. O
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Theorem 3.3. Suppose that conditions (H1) and (H3) hold. If further assume that
M+ M|l <1, te]0,1], (12)
then there exists at least one solution of BVP (1).

Proof. This theorem can be verified by the following three steps.

Step 1 According to the definition of the operator £ and the well-known Lebesgue dominated conver-
gence theorem, # is a continuous operator. The detailed proof will not be listed here.

Step 2 Next, we need to verify that # is a compact operator. Taking any bounded subset H € C([0, 1], R),
then there exists a constant 1 > 0 satisfying that H C T,, = {p € C([0,1], R) : ”(p” < 17}. Obviously, the subset
T, is convex, bounded and closed in C([0, 1], R). So we get

1 1
ool <1001+ [ (Nl + [ 1Hate 91 £(s, 000
< My + My (1Kl + ) + Ms,

which implies that [|Pel| < nM; +M; (|Ikl| + n ||l]l) + M3. This indicates that T, is uniformly bounded. Given
any 0 <t; <t; <1land any u € T,, then

+

1 1
j(; (Hl(tZI s) — Hi(ty, s))(p(s)ds f (Hz(tzl s) — Hy(t1, s))f(s, @(S))ds

gz(ﬂ’l*h _ t)/l Vz
1 —=g)r 72— 1 d
T(y1 =220 (1 — )/2+1)—5| f 1-s9) l(s)Ids
t) "
+ % f (t2 —s)Vl—Vz—l(p(s)ds—f (1 _S)yl_)/z_l(p(s)ds
ST — 172
1—=s)1~ -1 d
T(V1)I2T(7/1 v+ 1)=& f (1= )" 1f(s,(s))lds

el az—whlquxwds—j"al—@ﬂlquvﬁ)

=Lh+L+I3+1+15,

[Po(t2) — Pp(t)l < |0(t2) — O(t)] +

< 0(t2) = O(t1)| +

where

I = |0(t2) — 6(t1)l,
EZ(t;/l_VZ _ t7/1 VZ

= 1- Vl -y2-1 d
Ty =y2)2T(r1 = y2+1) = £ f -9 lp(s)lds,

ts
= ﬁ | (t2 — s)1 772 Lp(s)ds — f (ty —8)" 77 L p(s)ds

LT = )
T TOmREGn - n+n_afﬂ 8 f(s 0(s))ids,
1 f2
Is = ryl) ’L (tz - s)}’l_lf(s, (p(s))ds - fo‘ (tl — S))’l_lf(s’ (P(S))ds

On the one hand, thanks to 6 is a polynomial function, it can be verified that

2

7

lim Iy = lim |0(t2) - 0(t)| = 0.
2~

ty—t1—0



C. Chen et al. / Filomat 37:28 (2023), 9679-9692 9686

On the other hand, according to the conditions (H1) and (H3), we have
cfz(tyl_yz _ t}’l )/z
— g)r1—r2-1
L1 =y2)R2T(n —y2+1) = ¢ el f (=) *
T]‘Sz (t}’l—}’z _ t7/1—)/2)'
T =y2+ DRI =2 +1) = €] 2 !

With the same conditions, we also have

mf ‘(tz—s)h y2-1 —(ty —s)7” 1||(p(s)|ds+ f |(t2—S y1—ya— 1||q0(s)|ds
1€l [l o N € |||<p|| L
S T0n - yz)f (G2 = 9777 = (= ds T -2 )f (2 = 577 ds
nlél S e s
v G A Ul

Similarly, we can draw the bounds of the terms I; and Is.

el -6 '
Iy < 1 =) ([k(s)| + |I(s ds
T e toey? fo (1= 59 (ki) + 1) o)
< (K + n 1) 1) @y

T+ DRI —y2+1) =€ !

(Il + 7 11211 f _ 4 (11Kl + n [121T) ftz 1
< —m= tr nl (=) ds + ——— 2 th — )17 ds
TV G o0 J, (=9

< (|1l +n||l“)(t”1 _p
I“()/l + 1) 2
Obviously, I; (i = 2,3,4,5) tend to 0 as t, — t; — 0, and

lim Ipr(tz) Po(ty) =

-t —

4

+2(tr — tl)yl).

as a consequence, there is no doubt that #T), is equicontinuous. Combined with the results above, we can
obtain that T}, is compact by applying the Arzela-Ascoli theorem.

Step 3 It has been verified that ¥ satisfies the complete continuity, then we will complete the proof of
the whole theorem by reduction to absurdity. According to the condition M; + M; ||l|| < 1, we can deduce
that there exists a fixed constant N > 0 such that

MiN + M, ”k” + M, ||ZI|N + M3 < N.

Define the set & = {p € C([0,1],R) : ||(p“ < N}. So, the operator P : & - C([0, 1], R) satisfies the complete
continuity. Assume the equation @ = AP holds for some ¢ € & and A € (0,1). Then we obtain

lp(Ol = INPe®)] < [Pp(t)l
1 1
< fo Hi(t, s)q(s)ds fo Hy(t, ) (s, @(s) )ds| + [0(8)]

< M ||| + Mz (Il + 1l J]]) + M.

+

Hence,
= llpll < My || + Mz lIkll + Mzl llgll + Ms < N,

which implies a contradiction. So we get ¢ # APg, for any u € & and A € (0,1). By the Leray-Schauder
alternative, we infer that there exists at least a fixed point ¢ in . On account of that the fixed point ¢ can
also represent the solution of the BVP (1), the proof of the theorem is finished. [
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Theorem 3.4. Suppose that conditions (H1) and (H4) hold. If further assume that

M + M, ”yb”rh_)rglosup@ <1, telo,1], (13)

then there exists at least one solution of BVP (1).

Proof. Similar to the proof of Theorem 3.3, it is not difficult to verify that the operator # is continuous.
Additionally, subset T, is convex, bounded and closed in C([0, 1], R). Then we get

1 1
P <0 Hi(t, d Ho(t, , d
ool <1601+ [ (Nl + [ (e 91 £(s, 009
< T]Ml + M, ||1,b||w(1]) +M3,

which implies ||Pul| < nM; + M, “(p” w(n) + M3. This indicates that T, is uniformly bounded. Given any
0<t <tp<landu €T, then

[Po(t2) — Pp(t)l < |0(t2) — O(t)] + +

1
f(; (HZ(tZ/ s) — Hp(t1, S))f(s, (p(s))ds

1
](; (Hl(tz,s) - Hl(t1,S))q0(s)ds

éZ(t}/l*VZ _ t)/l VZ

<10(t) — O(t1)| + q f (1 =) 72 p(s)lds

Ly —y2)I2I (1 - V2+1)—

]"(7/1 7/2) f (ta —s)772" 1(p(s)ds—f (t1 —s) 2™ 1(P(S)ds
SN - £ »
r(y1>|2r(y1 Y2t 1)=& f (1= )" 1f(s,(s))lds

il " (ta = 77 (s, s - f (9" f(s,9©)ds

;h+h+h+h+b

Owing to that 0 is a polynomial function, it can be verified that

Jdim i = lim [6(t2) - 6(t1)] = 0.

—t—

It follows from the conditions (H1)) and (H4) that

52(1.)/1_)/2 _ t)l’l_)/Z) 1 )
< 1—s)17727ds
O N /TN G PR A W ”(p”fo -9

< né (72— ),
C(y1 =2+ D20 =2+ 1) = &2 !

As for the term J[3, the conditions indicate that

ty
Js < I"O/JL—')&) f |(t2 = sy 17271 = (8 = s)71 72" 1||(p(s)lds+ - f |(t2 = 5)7 727 |p(s)lds
|£|||(PH Y1=y2~-1 y1=y2~1 |5|||(P|| y1=y2~1
F(Vl Vz)f 2= ~ -3 |5 + T(y1—72) f ¢2-9) |4
el

S———— (877 ="+ 2(t, — )" 7).
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Similar calculations with respect to J4 and J5 can be shown as follows.

N — £ - w() |[wl] €]
4s T)REG =72 + 1) &l f (=57l lelhas < T+ DIREGr —y2+1) - <‘£I(tZ —h:
w(n) w(n)
< ”#;liyl)n f (b2 =571 = (b1 =57 ds + HﬂM)U ftl (b2 = 5" [ ds
[ )

t“—tV1 2ty — £)1).
F()/1+1)( (t2 — t1) )

Obviously, J; (i =2,3,4,5) tend toO as t, —t; — 0 and

Lim |Pu(ty) — Pu(t)| =0,
ty—t1—>0

as a consequence, there is no doubt that ’TB,, is equicontinuous. Combined with the results above, we can
obtain that T}, is compact by applying the Arzela-Ascoli theorem.

It has been verified that P satisfies the complete continuity, then we will complete the proof of the whole
theorem by reduction to absurdity. According to the condition

Mi +M; [y lim sup@ <1,

we can deduce that there is a fixed number N > 0 such that M1N + M, |)1p|) w(N) + M3 < N. Define the
set & = {p € C([0,1],R) : H(p” < NJ. So the operator P : & — C([0,1], R) satisfies the complete continuity.
Assume the equation @ = AP¢ holds for some ¢ € Eand A € (0,1). Then we obtain

Pl = APp(B)] < Pt
1 1
fo Ha(t, 9)p(e)ds fo Hat, 5) (s, 0(5))ds

<M o] + 2 [ o(lolp + Ms.

<O+ +

Hence N = ||(p|| < M “(p” + M, Hl/}H a)(”(p“) + M3 < N, which implies a contradiction. So, we get ¢ # APgp
for any u € & and A € (0,1). By the Leray-Schauder alternative, we infer that there exists at least a fixed

point ¢ in £. On account of that the fixed point ¢ can also represent the solution of the BVP (1), proof of
the theorem is finished. 0O

4. Stability analysis

The Hyers-Ulam stability of the differential equation given below is discussed and proved in this section:

{ D(t) = EDp(®) + f(Lp(H) =0, te[0,1], ”
P(0) + (1) = @o

Definition 4.1. The BVP (14) is Hyers-Ulam stable if there exists a fixed positive constant c, such that for any € > 0,
and for each function ¢, that satisfies the inequality

DVga(t) = ED"pa(t) + f(L pa0)| <&, te[0,1],

there exists a solution @1 of the BVP (14) with |p,(t) — @1(t)| < ce, t € [0, 1], where @1, @2 are continuous functions.
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Theorem 4.2. Further assume that My < 1, & # 2I'(y1 — y2 + 1) and conditions (H1), (H2) hold. Then the BVP
(14) is Hyers-Ulam stable.

Proof. For any ¢ > 0, and each ¢, that satisfies the following inequality
D" a(t) — ED7at) + (1, <pz(t))| <e tel01],
a function g(t) =, D" @y (t) — E.D72@a(t) + f(t goz(t)) can be found, then we get |g(t)| < ¢. It implies

Pa(t) = £ 72t — I (1, (1)) + 7 g (1)

T2 —T(y1—y2+1) _

=& (1) + T AL, @2(1)) = T g(1)).
T, ) P e+ (L) - 1 g(D)
According to the theorem 3.2, it has been verified that there is a unique solution ¢ of BVP (14), which
satisfies the boundary value condition ¢(0) + ¢(1) = ¢g, then ¢; can be given by the following integral
equation

o —T(y1—ya+1)
é — 2T(y1 - Y2+ 1)

P1(H) = EP 2 u(t) = I (L pr() + (o = 7 7201(1) + 1 (1, 1(1))).

Then

|pa(t) = r(®)] < 1€ 72 o) — @1 (O] + ]
S22+ T (1 —y2+1)
&= 2T (1 —y2 + 1)
WMW+Nw—n+D@1
|cf —2L(y1—y2 + 1)|
lEl1772 +T(y1 —y2+ 1)
|§ —2L(y1—y2+ 1)|

— sy Lk (t_s)yl—l) )
|é|f( T(y1—v2) Icfl T(y1) |p2(s) = p1(s)| ds

I + T (1 —y2 + 1) f ((1 —gra- 1)
' d
<] £ = 2T (1 =2+ 1) T — |p2(5) — p1(5)| ds

LT AT =y +1) [ (k_(1 — syl
|& = 20(y1 =2 + 1) T(y1)

[E72 +T(y1 —y2 +1) f (1—syt f (t-
d d
ML T —— Ty s+ |mg|s

I N () L
|é|f( T(Vsl) y2) |5|( F(j/)) )|(P2(S)—(P1(S)(ds

IEl+T(y1—y2+1) (1 sy 1)
e g v 1) ( T - [p2(5) = 1(5)] s

1€+ (1 —y2 + 1) 1&0—9%*
|E—=2I(y1 —y2 + 1) I'(y1)

N [|5| +T(y1—y2+1) N 1) 1
|& =200 —y2 +1)| Ty + 1)

f(tpa(t)) = f (t,1()]
(117772 |pa() = @2 (D)])

F(1LpaD)) - f(l'gol(l))')

4

g+ 7 )]

N@@—@@w

)|(p2(5) - (p1(5)| ds
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— gyl k(t_s))/]—l) )
|é|f ( Tor—72) & T [92(5) = pa(s)| ds

(1=t k (1=t
+ |5|L0‘fo ( T0h = 72) + B )|(p2(s) - (p1(5)|ds + Me,

where

_ e+ Lo =yt 1 (1+|5||5I+F(y1—y2+1))
O E—2T( —y2 + 1) T T +1) |E—2T(1n —y2 + 1)I)

First and foremost, let x(t) := |p2(f) — ¢1(t)], choosing fixed constants p, g € (1, +c0) such that y1 —y, + % >1
and ;1—7 + % = 1. By Holder inequality, we can get

x(t)<Me+%(f (t—s)(yl‘yz_l)qu)q (f x”(s)ds) +T)/)(f (t =)~ qus) (fo x’”(s)ds)p
e ([ -] ( [ ) g v (e
F()/1—7/z) (f (1 =)= dg jo‘x’”(s)ds +1"()/1) j(;(l s)V1~ids ](;x”(s)ds
1 ;
< Me + Qg (f x”(s)ds) +Q2(f x”(s)ds) ,
0

where
0 = <] . k 1,
Ton=y)(1+G1-72-1g)"  To)(1+G1-1)0q)"
and
Q, = Lolél N Lok

o1 -1+ G1-y2-Dg) To(1+01-13)"

On the basis of the inequality above, by Jensen’s inequality, we conclude that

t ; 1 ;
xP(F) € [Me + Q1 (j(; x”(s)ds) + Qs (j(; x”(s)ds) ]
¢ : 1 5Y

=3 [%ME + %Ql ([) x”(s)ds) + %Qz (j(; x”(s)ds) ]

t 1
<3 (Me) +37'Q) fo X (s)ds + 3" Qh fo xP(s)ds.

p

Finally, applying the integral inequality in Lemma 2.7, we can obtain that

3 (Me) exp@'Q))
1-L(exp(31Q)) - 1)

P (F) <
It follows that
M(B’"1 exp(3p‘1Q’17))’;

x(t) < TE.
(1~ L exp10) 1)
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Set

M(?}p‘1 exp(3”‘1Q’i))’l’
c:=

(1 - Lg(exp(3P*1Q’l’) - 1))’1’ .

The inequality |p2(t) — @1(t)| < ce is confirmed, which means the theorem is proved. [J

5. Examples

Example 5.1. The following two-term Caputo fractional differential equation is taken into the consideration
{ Dip(t) - FDsp(t) + 1sinpt) =0, 0<t<1, (15)
P(0) + (1) =1,

where y1 = 3/4, y» =1/5, & =1/10, @9 = 1 and f(t, ) = (1/3)t? sin @(t). We are going to verify the uniqueness
and Hyers-Ulam stability of the BVP (15). Firstly, it can be easily proved that

1
lf(t, 1) — f(t, p2)l < §|(P1 — 2| <lp1 = @2,

which implies that condition (H2) is satisfied. So we can set k = 1/10. It is not difficult to figure out that M, < 0.1834
and M, < 1.7734. Hence, we can get
M + kM, < 0.3607 < 1.

According to Theorem 3.2, we can claim that BVP (15) has a unique solution on the interval (0,1). Additionally, set
p = q = 2, we can calculate that

Lh(exp(®'Q)) - 1) < 0.2969 < 1.
By lemma 2.7 and Theorem 4.2, the BVP (15) with ¢(0) + ¢(1) = 1 is Hyers-Ulam stable.

Example 5.2. Considering the nonlinear fractional differential equation with Caputo derivatives given below
{CD%(pa) —LDip(t) +§P? =0, 0<t<], (16)
¢(0) +¢(1) =0,

where y1 =1/2,v,=1/6,& =1/5, 9 = 0and f(t, ) = (1/4)t2q0(t). We will check the existence of solutions to the
BVP (16) in a different way of Example 5.1. Directly, we can get My < 0.2492 and M, < 1.9894 by calculating. Set
U(t) = (1/4)t2 and w(t) = @*(t). It indicates that

M + M, Hl,DH rli_)rgsup@ <1.

Therefore, according to Theorem 3.4, there exists at least one solution of BVP (16) on the interval (0,1).

6. Conclusion

In the present paper, we mainly discuss and investigate a class of nonlinear differential equations
with multi-term fractional derivatives. The Green’s function of the fractional equation is given at the
beginning of this paper. Some existence conclusions of the given integral equations are achieved by the
Banach contraction principle and Leray-Schauder alternative theorem. According to the characteristics of
the system, the Hyers-Ulam stability is studied. As a theoretical tool, we also introduce a Gronwall-type
inequality which can be used for studying differential and integral equations.
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