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Abstract. This work discusses the existence of weak solutions for a system of Kirchhoff-type involving
variable exponent (a1 (m), a,(1m))-Laplacian operators and under the Dirichlet boundary conditions. Under
appropriate hypotheses on the nonlinear terms and the Kirchhoff functions, the existence of weak solutions

is obtained on the spaces W1 (D) x Wy*2™ (D). The proof of the main result is based on a topological
degree argument for a class of demicontinuous operators of (S.)-type.

1. Introduction

The study of Kirchhoff-type systems is an active area of research in nonlinear analysis and mathematical
physics, such as the propagation of waves in media with variable density, stationary thermorheological
viscous flows, electrorheological fluids and the dynamics of thin elastic plates [42, 43, 35, 37, 32, 33]. The
survey of these systems involves the use of various techniques from nonlinear analysis, such as variational
methods, critical point theory, and bifurcation theory. We mention that Kirchhoff [24] studied an extension

of the D’Alembert wave equation for free vibrations of elastic strings, of the form
Pv ,po E (Fjovp, \ v
o3~ (v ], el s =0

given a specific set of physical parameters, including mass density p, initial tension pg, area of cross-
section h, Young modulus of the material E, and length of the string L, for more information we refer to
[16, 20, 8,19, 34, 3].

In this paper, we aim to investigate the existence of weak solutions for a nonlinear elliptic system
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involving the (a1(m), ap(m))-Kirchhoff-Laplacian operator of the form
=% f T3 dm)( Ayt — [l 2u) + 81[ulf ™20 = Ay fy(m, u, Vur) + iy fom, u) - in D,
D

(4% ap(m)—. m)— . 11
—Wz(f I dm)(Aaz(m)v — || zv) + 8,0 1M2g = A2g1(m, v, V) + uago(m,v) in D, 1.1
D

u=0v=0 ondd,
where 7' and 7;? are given by

V| 0m) 4 g\ (m)
Ilezl | ] and Ip?:
o (m)

az(m) as(m)
_ Vol + 0|

ap(m)

7

with D is a bounded smooth domain in RVN(N > 2) and A, 6;, ui (i = 1,2) are reel parameters, K, fi, gi(i =
1,2) are functions that test hypotheses that will be defined at a later stage.

The a(m)-Laplacian operator Aygyu := div(|Vu[*™~2Vu) is a nonlinear partial differential operator that
generalizes the classical a-Laplacian operator (see [29, 30, 11, 12, 13, 10]). The a-Laplacian is a well-known
operator in mathematical analysis that has many important applications in various fields, including physics,
engineering and finance. Motivated by [26, 28, 1,27, 31, 36, 6, 5], our main object is to establish the existence
of weak solutions for a nonlocal elliptic system involving the (a1(m), az(m))-Kirchhoff-Laplacian operators
depending on six real parameters under Dirichlet boundary condition with convection term, by using
another approach based on a topological degree of Berkovits in the framework of Sobolev space with
variable exponent.

Let us quickly summarize the contents of the paper. In the Section 2, we briefly review some basic
preliminaries on the functional framework and we present several types of generalized (S.) operators,
together with the topological Berkovits degree. At last, in the Section 3, we state our assumptions together
with technical lemmas and we also prove the main result.

2. Preliminaries

2.1. Variable exponent Sobolev spaces

In order to start discussing problem (1.1), we need some theories on spaces W4(") (D) which we call
generalized Sobolev spaces. Let us shortly recall some basic facts about the setup for generalized Lebesgue-
Sobolev spaces, for more information see for instance [22, 25, 40, 14] and [41]. Let

C.(D) = {a ca e C(D), a(y) > 1forevery y € 5}

Forany a € C.(D), we establish
a’ = max {a(y), AS Z_)} , @ :=min {a(y), yE Z_)}

For any a € C,(D) we define the generalized Lebesgue spaces L*")(D) by
LY(D) = {U : D — R measurable fanction, fz) lo(m)|*™dm < +oo}.

We define the so-called Luxemburg norm, on this space by the formula

folagn) = inf{k > 0 | pagn(3) < 1},
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where, the modular pam : L*™(D) — R defiend by

Paim)(0) = f@ lo(m)|*™dm, Yo € L*™(D),
and verify some useful properties listed below.
Proposition 2.1. [22, 9] Let (vi) and v € L8™(D), then
[Olagmy < L(resp. =1;> 1) © paumy(v) < L(resp. =1;> 1),
[Olagy > 1 = 1003 < Paem)(©) < 10l%,),
[Olagy <1 = [0l < Pan (V) < 013y,
I}l_)rg [k = Vlagny =0 © I}l_)rg Pa(my(vx —0) = 0.
Remark 2.2. Notice that, by (2.2), (2.3), we can infer the inequalities
[Olagn) < Pam)(@) +1,
Patn)(©) < [0l +101%-

Proposition 2.3. [25, 17] L*")(D) is a separable and reflexive Banach spaces.

Proposition 2.4. [25, 15] Define L " (D) as the space conjugate of L™ (D), where

For any f € L*™(D) , and g € L¥™)(D), we have the Holder inequality

11
‘ f fg dm' < (= + = flaem)lGlar omy < 21 flagm)|Glar m)-
» a— o«

9695

@.1)
2.2)

2.3)
(2.4)

(2.5)

(2.6)

=1forallme D.

2.7)

Remark 2.5. If a1, a € C+(Z_)) with ay(m) < ax(m) for any m € D, then there exists the continuous embedding

Lm(D) — LA(D).

New, we defien the spaces W (D) by
WD) = fo € L*™(D) | Vol € L(D)},

equipped with the norm

”U”a(m) = |v|a(m) + |vv|a(m)-

We indicate by W(l)’a(m)(i)) the closure of C3(D) respect to the norm of W(D).

Proposition 2.6. [38] If the exponent a(m) satisfies the log-Holder continuity condition, i.e. 3 T > 0 such that for

eacha, be D, a # bwith |a—b| < 5 we have

T
() — a(b)l < Tlogla b’

then there exists a constant Cg o > 0 such that

1,
[0lagn) < Cg,alV0lagny, ¥ 0 € Wy (D).

2.8)

2.9)
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We could use the following equivalent norm on Wé’”("” (D)
[911,a(m) = [VOlagm),

is equivalent to |[v]la(m).-
Proposition 2.7. [25, 21] The spaces W“*")(D) and W(l)’“("’)(D) are separable and reflexive Banach spaces.

Remark 2.8. The dual space of Wy*" (D) denoted W= 0")(D), is equipped with the norm

N
[0]-1,ar(my = inf{lvola'(m) + Z |Uj|a’(m)}/
=

where the infinimum is performed on all possible separations v = vo—divLwithvy € LY "™(D)and L = (v, ...,0n) €
(L (D).

In the following discussions, we will use the product space
W) = WD) x W (D),

which is equipped with the norm

10t )lgsnzon = M2 {1}

where || - ||, (m) is the norm of Wé’“] ™(D) and || - llay(my is the norm of Wé'“Z(m)(D).
The space (’ng(m)'”(m)) is the dual space of W™ corresponding to the Orlicz-Sobolev space

W, 4 (m)(Z)) X W, 1’a;(m)(i)) equipped with the norm

(Wwww))* := max{|| - [l-1,a;m, Il - [1-1,a50m) -
0

The continuous pairing between the dual spaces W'™**" and (ng(m)’“Z(m)) given by

( ‘s )m,az = ( ‘s >1,ar1(m) + < o >1,a2(m)-

2.2. Topological degree theory

Now, we would like to review a few definitions and fundamental characteristics of Berkovits degree
theory for demicontinuous operators in a real reflexive space.
Let G be a real separable reflexive Banach space and & be a nonempty subset of G. The symbol (-, - )g
means what the usual dual paring between G* and G.

Definition 2.9. Let E be a second real Banach space. A mapping A:EC G — Eis

o bounded, If it transforms any bounded set into a bounded set.

o demicontinuous, if for any (vy) C &, vy — v then A(vy) = A() .

o compact, if A is continuous and for any A C G bounded we have A(A) is relatively compact.
Definition 2.10. An operator A:E C G — G is called

e of type (S.), if for any (vx) C E with vy — v and lim sup{A(vy), v — v) < 0, we will have v — v.

k—c0
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e quasimonotone, if for any sequence (vy) C & with vy — v, we will have lim sup(A(v), vy —v) > 0.

k—o0

Definition 2.11. Let Z : & C G — G* be a bounded mapping with & C &;. For any operator A: EC G — G, we
claim that

o Asatisfies condition (S4)z, if for any (vx) C Ewith v — v, uy := Z(vx) — u and lim sup(A(vy), uxr—u) <0,
k—o0
we have v — 0.
o A possess the property (QM)z, if for any sequence (vy) C & with vy — v, wx = Z(vx) — u, we have
lim sup{A(vg), u — ux) > 0.

k—o0

In the follow-up, we take into account the following groups of operators:
T1(E) = {ﬂ : & = G| Aisbounded, demicontinuous and of type (S+)},

Tz(E) = {ﬂ : & > G| Ais demicontinuous, satifies condition (S+)Z},

T25(E) = {ﬂ : & > G| Aisbounded, demicontinuous and satifies condition(S+)z},

for any & c D(A) , where D(A) indicates the domain of A, and any Z € 71(E).
Let © be the collection of all bounded open sets in G.

T(G) = {AcT0)|0€®, ZeT1(0)),

where, Z € ‘7'1(5) is known as essential inner map to A.

Lemma 2.12. [23]Let Z € T1(0) is continuousand J : D(J) C G* — G is demicontinuous such that Z(6) c D(J),
where 0 is a bounded open set in a real reflexive Banach space G. Therefore, the assertions below are correct:

e IfJ is quasimonotone, then I + J o Z € T4(6), where the identity operator is indicated by 1.

o If Jisofclass (Sy), then J o Z € T4(6).

Definition 2.13. Consider that 0 is bounded open subset of a real reflexive Banach space G, Z. € T1(0) is continuous
and let A, J € T7(0). The affine homotopy H : [0,1] X O — G defined by

H(t,v):=(1-HAv+tJo, for (t,v)e[0,1]x0O
is called an admissible affine homotopy with the common continuous essential inner map Z.
Remark 2.14. [23, 18] The above affine homotopy satisfies condition (5,)z.
Next, as in [23] we present the topological degree for the class 7 (G).

Theorem 2.15. Let _ _
D={,0,n)| 00, ZeTi(0), T € T25(0), h ¢ T(20)).

Hence, there exists a unique degree function d : D — Z that satisfies the following properties:

1. (Normalization) For any h € J(0), we find that

(1, 0,h) = 1.
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2. (Homotopy invariance) If H : [0,1] x 8 — G is a bounded admissible affine homotopy with a common
continuous essential inner map and h: [0,1] — G is a continuous path in G such that h(t) ¢ H(t, d0) for all
t €[0,1], then
A(H(t,-),0,h(t)) = Cforall t € [0,1].

3. (Existence) If d(J, 6, h) # O, then the equation Jv = h has a solution in 6.
Definition 2.16. [23] The above degree is defined as follows:
d(j/ 9/ h) = dB(jléol 90/ h)/

where dy is the Berkovits degree [2] and 0 is any open subset of 6 with J~'(h) C 6y and J is bounded on 6.

3. Hypotheses and Main results

In this section, we will discuss the existence of a weak solution of (1.1). To do so, we give the hypotheses
related to our problem. Assumed D c RN(N > 2) to be a bounded domain with a Lipschitz boundary. In
addition, we suppose that a1, ay, € C+(E) satisfying (2.8) and p, g € C+(5) with 2 < p~ < p(m) < p* < oy
and 2 < q~ < g(m) < g* < a;. For more detais we suppose the following assumptions:

(A1) f1,91: DxRxRN - Rand f2,92 : DXR — Rare four functions satisfying the Carathéodory condition.
(A2) There exists C1,C; > 0and y1, )2 € Ly (D) such that

|fi(m, n, @) < C1(y1(m) + [ + @) and  |fa(m, )| < Ca(ya(m) + [n2™),

fora.e. me Dandall (7,®) € RxRN, where2 <] <ri(m) <rf <a; and 2<r, <r(m)<rj <aj.
(A3) There exists C}, C; > 0 and )}, 7} € L*")(D) such that

lg10m,n, @) < C(yy(m) + [P~ + @ ™) and g2 (m, )l < C(yy(m) + [,

fora.e. m € Dand all (,@) € R x RN, where 2 < s; <s1(m) <sf <a; and 2<s; <s(m)<s] <a,.
(Mp) We suppose that the Kirchhoff functions K; : [0, +00) — [0, +00) (i = 1,2) are continuous and increasing
functions such that

altcl(m)—l < Wl(t) < aztm(m)—l/

b1t < FG (1) < byt

where g;, b;(i = 1,2) are real numbers such that a; < ay, b1 < by, and c1(m), ca(m) > 1.
In this paper, we will use the definition of the weak solution of (1.1) in the following sense:

Definition 3.1. We say that (1,0v) € W 1m0 s 0 weak solution of (1.1) if
% ( f I3 dm) f (IVu ™™ 2VUVS + |21 8)dm + TG f I32dm) f (IVoI20"2V0VC + [0l 20 C)dm
D D D D
= f ( — & |ulP 2y 4 A fi(m, u, Vu) + pq fo(m, U))Sdm + f ( — 85012y + Azg1(m, v, Vo) + paga(m, v))Cdm,
D D

foreach (9,C) € (ng(M),az(m)'

We now present a lemma and a proposition that will be utilized in demonstrating the main result.

Lemma 3.2. If (Mo) holds, then the operator S : Wi —, (‘ng(m)m(m))* defined by
(S(u,0),(9,0)

= 7% ( f I3 dm) f (V™ 2VUVS + |2 8)dm + T f I32dm) f (Vo2 2V0VL + [0 20 C)dm,
D D D D

is continuous, bounded, strictly monotone, coercive, and is of type (S.).
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Proof. Let (1,0) € W' (maz(m) the functional W Defined on W, 1),z (m) by
W(u,v) = % f I3dm) + 96 f I3dm)
D
where 7((5) f Ki(t)dr, (i=1,2) is continuously Gateaux differentiable whose Gateaux derivative at the
point (u,v) € ‘W"”(m 201 is the functional S := W’ (u,v) € ("Wal(m) 2 m)) given by
(S(u,0),(9,0)) = (Sa, (), (9)) + (Sa, (©), (O),

where

(S, (1), 9) = % f I3 dm) f (Il 2Vuv 9 + ™2y 9)dm,
D D

(Sa(0), ) = K fD I32dm) f (IVoI*=™2V0V L + [o*2M 20 C)dm.

D
So, 8§ is continuons, bounded and since S,, and S,, are strictly monotone (see [7, Theorem 2.1]), then S is
strictly monotone.
Let us show that S is coercive. By using (2.5) and (2.6), we have

(S(u,v), (u,v))
ll(u, )l
r](l(fjgldm)f (lvu|a1(m)+|u|m(m)) r](z(f_[gzdm)f (lvvlaz(m)+|v|a2(m))
= D D dm + D D dm
(e, O)II ll(u, )l
a7 (c7-1) ar+(cy-1)
o anin (2007l i ()
2 1
(e, )l
b 4 (5-1) | es(o-1)
()2 min (el ol ) min (e 1)
+ =2 '
(e, )|
This shows that, limyg,o)j—+eo W = 4090, then S is coercive on ‘ng(m)’“Z(m).

Now, we will show that the operator S is of type (S,).
Let (ug, vr) € Wi with (uy, v) — (u,0) and Jim (S (g, v5) = S(u,v), (1 — 1,0~ v)) < 0, we show

that (ug, o) > (,0).
If (uk/ Uk) - (M, U) and liInk—mo <S (Mk, Uk) - S(”r U), (Mk —U,v — U)> <0, then

l}lm <S (uk/ Uk) - S(M, U), (Mk —U,0 — U)> =0
Therefore,
(Sa, () = Sa, (), u — u) + (Sa, (V1) = Sa,(v), v —v) — 0.

Since S,, and S,, are monotone, then
(Sﬂq (Mk) - Sal (l/l), U — u) - 0/ <Saz (Uk) - Saz (U)/ Uk — U) — 0. (31)

Arguing as in [7], we obtain

(S () = S, (1), 1 — 1) > % ( f I3 dm)( f l(qukI“‘(’")_2—|Vu|“1(”’)’2)(|Vuk|2—|Vu|2)dm)

Z)

ay = ay(m)=2 _ ,,ja1(m)-2 2 1,02
+‘K1(fI dm)( fD g2 = 2) (jug? = [uP?) dm)

>0.

N»—\
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With this information and (3.1), Vug(m) — Vu(m) and u(m) — u(m) for a.e. m € D. Using Fatou’s lemma,
we get

(|Vuk|a1 (m) 4 |uk|a1(m)) (qu|"” (m) 4 |u|"‘1(’”))
limf dm Zf
D D

aq(m) aq(m)

dm. (3.2)

k—o0

In the same way, we can obtain

lim

k—oo

dm. (3.3)

(|ka|az<m> + |~Uk|a2(m)) (|VU|<¥2(’”) ¥ |v|az(m))
f dm > f
D D

an(m) an(m)
However, we also have
Lim (Sa, (), 4k = 1) + (S (v0), 0 = ©) = Lim (S (g, i), (115, 0) = (1,0))
= lim (S(ug, ) = S(a,9), (g, 0) = (1,) = 0
We can see using Young's inequality that,
(S (i), wx = 1) + (Sa, (04), vk — 0)
f [Vagg |10 4 [y | (om) dm)( jz‘) (quk|a1(m) + |uk|“1(’"))dm _ L (IVukI‘“(’”)‘ZVuk Vi + Iukl‘“(m)‘zuku)dm)

aq(m)

Vo + o=
( Vod [0 )(f(lek|“2("’)+|vk|“2(m))dm—f (IVka“Z(m)_ZVvk.Vv+Ika“Z(’”)‘zvkv)dm)
ap(m) D D

Vg [0 4 gy, |1 (m) Vg [0 4 |qy @1 (m) V| 0m) 4 gyl (m)
7(l(f| l Jo4l dm)(f| l o4l dm—fl | ] dm)
a (m) D ay(m) D a1 (m)

Vo @ 4| az(m) Vo |02 4 |y, |[a20m) Vol 4 |p|aam)
+7(2( Vol vk )( N o™ . _ [ Vel [v] dm)
D D

v

az(m) ap(m) a(m)
-1 V ay(m) + a (m) V oy (m) + o (m)
(f (Ivuk|a1 " 4 |uk|a1(m))d )C1 ( [V |14y | dm — [Vu| [u dm)
D a(m) D aa(m)

-1 Vo, |220m) 4 |y, |@20m) Vole2(m) 4 |p|azim)
( f Vo™ + o dm)* - ( Vo O™ o - f Vol o dm).
D D az(m) D a(m)

\%

(0(I )C] -1

b1

+ -
(0[2")62 -1

Combining (3.2) and (3.3) we get

(quk|a1(m) + |uk|a1(m)) (lvu|a1(m) " |u|"‘1(m))
dm = f
D

lim dm,
k—o0 D al(m) al(m)

and

(|V0k|“z(m) + |Z)k|az(m)) (lvv|az(m) + |U|a2(m))

limf dm:f dm.
k—co 0(2(711) D 0[2(1’}1)

Then
lim (quk|a1(m)+|uk|a1(m))dm: f (|Vu|a1(m) +|u|a1(m)) dm,
n—oo D

and

lim [ (Vo™ + foel*2) dm = f (IVo1= + [oj2) dm
D D

n—o0
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Using a technique comparable to that of [22], we find that

lim (quk = Vul 0 4y — ul“l(’”)) dm =0,
D

n—o0

and

lim f (lek — V|2 4 o — vl“Z(’”)) dm = 0.
D

Therefore, (u, vx) — (1,v), i.e Sis of type (54).
Proposition 3.3. Under the assumptions (A1) — (As), the operator C : (ng(m)’“Z(m) - (‘ng(m)"”(m))* defined by

<C(ur U)/ (‘9/ C)> = (f(_61|u|l7(m)—2u + /\lfl(mr u, Vu) + /Jle(mr M))‘9
D
+ (_62|U|q(m)—2.0 + /\291 (mr o, VU) + [u2g2(ml U))Cdm),

is compact.

Proof. In order to prove this lemma, we proceed in four steps.
Step 1: Let Yy, ,, : W32 — [0100)(D) x %0 (D) be an operator defined by

Yfl:ﬁ (1/[, U) = (_Alfl (m/ u, Vu)/ —/\2!71(771/ 0, VU)) = (Tf1 (1/[), T{]z (U))

In this step, we prove that the operator Y, ;, is bounded and continuous.
First, let (1,0) € W 1maim) (e have

X f1,00 (1, O]y ey = MAX (‘ — A fi(m,u, Vu)’ = Aagr(m, v, VU)L; o )

o, m)’
< | = A1 fiGm,u, V)| . |~ Aagi(m, 2, Vo) .
Dll m 0(2 m
With (2.5), (2.6), (A2) and (A3), we get
o (m) ay(m)
Y 7,q. (1, v)ILa;(mea&m < | - M fi(mu, Vu)| dm + ' — Aaga(m, v, Vv)| dm+2
D D
< C(MI + A1) (g ) (1) + Periomy (1) + Py (V1))
+ C(l/\2|a; + |/\2|“’2+)<Pa; Wl)(yi) + le(m)(v) + Pz (m) (VZ))) +2
<l

+ c(|y1 T |v| ot [

T O LAt +|Vu|€(m)

Dé](m) e (m) e (m) e (m)

+ Vol + Vo )+2,

z1(m) z1(m) z1(m)

where ey (m) = (r1(m) — D)aj(m) < ar(m), z1(m) = (s1(m) — D)aj(m) < ar(m). Using L1 s [alm) [aim)
L7 and (2.9), we find
a™* er
|Yf1,g1 (I/l, v)lLai(m)XL(xé(m) S C(l')/1| ! + |u|11,0(1(m) + |1/£|1 " (WZ)) + C(l)/l () + |U|10( (m) + |U|1 L (m)) 2

ey 1 as’ 1 1
< CmaX(Wl'a o 1y oy * |”|1,a1<m) + 11z |”|1,az<m> + |v|1,az<m>) +2,

then, Y, ,, is bounded on W' "2 ().
Let us also show that Y, 5, is continuous. Let (i, v,) — (4,v) in ‘ng(m)"”(m)(i)), therefore, there exists a
subsequence (ux, vy) of (14, v,) and (g1, 02) in LYM(D) x L20M(D), (03, 01) in (L1(D) x L2M(D))N with

ux(m) — u(m), vg(m) — v(m) and Vuyr(m) — Vu(m), Vor(m) — Vo(m), (3.4)
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lu(m)| < o1(m), [oe(m)| < g2(m) and [Vur(m)| < |os(m)], [Vor(m)] < |oa(m)l.
So, using (A1) and (3.4), we obtain, as k — o
( fr(m, u(m), Vug(m)), g1 (m, v (m), VzJk(m))) — (fi(m, u(m), Vu(m)), g1(m, v(m), Vo(m)))

a.e. meD.
Furthermore, according to (A2), (A3), and (3.5) we get

| fi.(m, we(m), Vig(m))| < C1(y1(m) + lo1 (m)[" ™7 + g3 (m)[2M71)),

|91(m, v(m), Vor(m))] < Cy(;(m) + loa(m)1 01 + |gy(m)r 1),
Since

Y1+ o7 + |3 (m)[1 T € L9ON(D),

y2 + 0ol 17 + |og(m) 1 € L2(D),

and

Pas m)(X (i) = Y () = j;) A1 fr(m, w(m), Vug(m)) = Ay fr(m, u(m), Vu(m)| " dm,

Par(m)(Y gy (Vi) — Y, (0)) = f |A2g1(m, v(m), Vor(m)) — Aagy (m, v(m), Vo(m))| > dm.
D
Then, by Lebesgue’s theorem and (2.4), we have
i, () = Yp(u) in LY*"(D) and Yy, (vx) = Yy, (0) in L2(D).

Then Yy, 4, is continuous.
Step 2 : We define the operator @ : ‘W Hmyaalm) _, paitm)(qy) x L%m(D) by

D(u,v) = (1|ulP™ 2w, 80" 0).

We will prove that @ is bounded and continuous.
It is clear that @ is continuous. Next we show that @ is bounded.
Let (u,v) € Wy Hmaalm - ysing (2.5) and (2.6), we obtain

[P, )l om g S f [O1 |l 2ul " dm + f 16210120/ dim + 2
D D

< (1811 + 16115 ) pr (1) + (1021 + 1021 o1y (0) + 2
o a't I; ll+ al” alt Iy l;
< (1001 + 10015 Y(lul o + 1) ) + (1821 + 1621 )02,y + 1017 )

where l1(m) = (p(m) — 1)a’(m) and ly(m) = (q(m) — 1), (m).
Hence, we deduce from L") < [h0m) [axm) <y [L0m) and (2.9) that

I It

1
D, V)| g L) 140y )

! (m) S C(|u|

<%

) + C(|v|llg,az(m) + |v|l; )) +2.

1,a,(m

Then @ is bounded on (ng(m),az(m).
Step 3: Let Yy g, : Wy (myalm) _, [i0m)(D) x L% (D) be an operator defined by

Yy, (1, 0) = (=g fo(m, 1), —pi2g2(m, 0)) = (Yp, (1), Y, (0)).

9702

(3.5)

(3.6)
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In this step, we prove that the operator Y, ;, is bounded and continuous.
First, let (u,v) € W, 1ma1(m) o6 have

|Yfz,yz (T/l, v)lL“i(me‘Xé('”) = max (| - Hle (m/ u)|“i (m)l

= Ha2g2(rm, U)la;(m))
< ’ — w1 fa(m, u)’ai o | = H2g2(m, v)‘% -

With (2.5), (2.6), (A2) and (A3), we get

a’ (m) o) (m)
| Ylegz (M, ’U)lLa'l(m)XLaé(m) < f | — [.lez(TYZ, 0)’ ! dm + f ‘ — y1g2(m, Z))‘ dm+2
D D
< 1™ + 111" ) (Pag ) (72) + Peaiony@0)) + CIu2l ™ + 11121 )Py (5) + Paty (0)) + 2

e (1 Flul2,,) + (3L, + lol )+2,

ex(m) a(m)

.
€
ex(m)

N
%
22(m)

Z
22(m)

+ ul +[o]

a(m)
where e;(m) = (r2(m) — 1)} (m) < a1(m), z2(m) = (s2(m) — Day(m) < az(m). Using LY e [22(m) [2201) ey
L2 and (2.9), we find

’+
@

aff et e zt 2z~
1Y fog2 (4, Ol g o < € (|V1|a1<m> [0l gy |”|1,a1<m)) + Oyl + 10 gy * 108 ) +2
ag*

ay(m

Z
1,a(m)

Z+
S+l + 1ol

1,a(m)

ay* et e~ ’
< Conax(17215 gy + 1405y + 1485y + D3] )+2,

according to this, Y}, 4, is bounded on W' *2"(D).
Let us also show that Y, ;, is continuous. Let (i, v,) — (u,0) in ‘ng(m)m(m)(l)), therefore, there exists a
subsequence (uix, v¢) of (14, v,) and (w1, wy) in LY (D) x L2M(D), with

ur(m) — u(m) and vg(m) — v(m), (3.7)

lu(m)| < w1(m) and [ox(m)| < wa(m). (3.8)
So, as a (A1) and (3.7) , we obtain, as k — oo

(falm, wem)), ga(m, 0(m))) —> (falm, u(m)), ga(m, v(m)))

ae meD.
Furthermore, according to (A;), (A3) and (3.8) we get

|f2(ﬂ’l, lek(m))l < Cz()/z(m) + |w1(m)|72(m)_1)’

192, 0(m))| < Cy(yi(m) + |wa(m)207).

Since
Yo+ lor 27 e LAN(D), 9L + w21 e L2M(D),

and

pal(m)(YfZ (Mk) - Yfz(u)) = jz; “’lle(m/ Mk(m)) - Hlfz(m/ u(m))|a1(m)dm,

Pasom(Yg, (06) = Yy, (0)) = fD |t2g2(m, vi(m)) — paga(m, v(m))|1*2™ dm.
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Then, by Lebesgue’s theorem and (2.4), we have
Yy, () > Yp() in LYU(D) and Yy, (v5) = Yy, (0) in L2N(D).

Then Yy, 4, is continuous.
Step 4:

Let I' : LY(D) x L20M(D) — (ng('”)’“Z('”) (Z)))* be the adjoint operator for the embedding

[ Wea( D) — L) x L20(D),

We then define
I'o Yfl,gl . (ng(m),az(m)(z)) N (rwgl(m),az(m)(z)))*,

Fod: ngl(m)raz(m)(D) N <(ng(m)ra2(m)(D))*,

and

I*o Yfz,gz : fng(m),az(m)(D) = ((ng(m),az(m)(z)))

Since I the embedding is compact, it is known that the adjoint operator I* is also compact. Therefore, the
operators I'o Yy, 5, I'o® and [I'o7Yy, are compact, thatmeans C =I"o Yy ; + "o @ +I" 0 Yy, 5 is
compact.

We now provide our main result.

Theorem 3.4. Under the assumptions (A1) — (As) and (My), the system (1.1) has a weak solutions (u,v) in
(Wm (m),ap(m)
0 .

Proof. First, (u,v) € ng(m)"“(m)(i)) is a weak solution of (1.1) if and only if
S(u,v) = -C(u,v), (3.9)

the operators S : WD) —s (W22 (D)) and € : WS (D) —s (WD) x WE(D))
are defined in Lemmas 3.2 and 3.3 respectively.

As a result of characteristics of the operator S presented in Lemma 3.2 also considering the Minty-Browder
Theorem (see [39, Theorem 26 A], the inverse operator

U:=8": (rwgl(m)ﬂz(m)(z)))* N (Wm(m),az(m)(ﬂ)
. . 0 7
is bounded, continuous and of class (S).

Secondly, the operator C is bounded, continuous, and quasimonotone (see Proposition 3.3). Due to this,
equation (3.9) is equivalent to

(1,0) = U, 0 and (9,0 +(CoUYS,0) = 0and (3,0) € (W™= (D)) (3.10)
Use of the topological degree theory in subsection 2.2 To solve (3.10). For this, create

M:={(3,0) € (wgl‘"“”“ﬂm)(p))* : At €[0,1] such that (8,0) + HC o U)(S,0) = o}.
Afterward, we prove that M is bounded in (‘M/gl(m)’“Z(m) (Z)))*.

Let (9, C) € M and put (1,v) := U, C), then
U, C)Ilwglwmz(m = I(u, U)”ng("')/az(”ﬂ = max{|[ulla; m), 19llay(m)}- Taking into account that || - [la,(my = [V + la; (m)-
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Case 1: If ”(L{(S C)” vl(rn)az(m) = |u”a1(m) - |Vu|£¥1(m)
Case 1.1: If [Vt g, () < 1 then [|U(S, O, ) is bounded.
Case 1.2: If [Vl () > 1, then by (2.2), (Az) (2.1), (2.6) and the Young inequality, we get

U, Ol = Vul,

aq(m)
< Py m) (V)
< {(Su,u)
=(3,US)
= —t{(CoU)S, UI)

_ tf ( — SylulP 2y 4 A, w, Vi) + pa fo(x, u))udm
D

< Comn(ppon @) + [ st + p @+ [ 19 S+ [yt + pri 1)

< max(|u|p(m 1l + D71ty + D] 4 Tl 2 Tl
1
+ /__prl(m)(vu) + rl—_Prl(m)(M) + |7/2|a1(m)lu|a1(m))
r
<%MMW+MWﬁwwmH%M+MWWWMWH%W+WMW)

By (2.9), L1 s [p0m) | [a10m) <y [n(m  and  [10m) ey [0 we obtain

U, Ol (I‘U(S)I FIUS i) + UG, 0 + UG

1,01 (m) 1,9 (m) 14 (m))

le (m),ap(m) —

then ”’L{(S C)” vl(nz) ay () iS bounded.
Case 2: If || U(9, C)II amazin) = = |9llaymy = IVOlayimy.-
Case 2.1: If |[V0laym) < 1, then || TU(S, C)II gt is bounded,

Case 2.2: If [V0|y,(my > 1, then in the same way by (2.2), (A3), (2.1), (2.6) and the Young inequality, we find
that

LU, Ol < CUQN, 0y + U+ HUO )+ YO )

So, we infer that {‘LI(S, I, Q) € M} is bounded.
Since the operator C is bounded, and by (3.10), there exists R > 0 such that

163, Ollgysmescn gy, < R forall (8,0) € M.

Therefore

(8,0) + HC o UN(S,0) £ 0 forall (8,0) € IMr(0) and all ¢ € [0,1],

where Mg(0) is the ball of center 0 and radius R in (W”” (m) a2 (m) (D))*.
Moreover, from Lemma 2.12 we have also

[+CoU e Ty(Mn(0) and T=SoU € To(Mg(0).
Next, we define the homotopy H : [0,1] X Mg(0) — (“VVg l(7")’“2("1)(2)))* by

H(, (9,0) := (3,0 + HC o U)(®,0).
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By Theorem 2.15(homotopy invariance), we conclude that the value of d(H(t, -), Mg(0), 0) is constant for all
te[0,1].
Since H(1,) = I+ Co U and H(0,-) = I, then

d(I + C o U, Mr(0),0) = d(I, Mr(0), 0). (3.11)
Applying also the normalization properties of the degree d as in Theorem 2.15, we have

a(I, Mg(0), 0) = 1. (3.12)
Combining (3.11) and (3.12) we get

d(I + C o U, Mr(0),0) = d(I, Mg(0), 0) =1 #0.

Since d(I + C o U, Mr(0),0) # 0, then by the existence property of the degree d stated in Theorem 2.15, we
find (9, C) € Mg(0) such as

3,0+ (CoU)3,0) =0.

At last, we deduce that (1, v) = U(Y, C) is a weak solution of (1.1). The proof is completed.
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