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Abstract. Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph of order n and size m. Denote
by γ+1 ≥ γ

+
2 ≥ · · · ≥ γ

+
n ≥ 0 the normalized signless Laplacian eigenvalues of G, and by σα(G) the sum of

α-th powers of the normalized signless Laplacian eigenvalues of a connected graph. The paper deals with
bounds of σα. Some special cases, when α = 1

2 and α = −1, are also considered.

1. Introduction

Let G = (V,E), V = {v1, v2, . . . , vn}, be a simple connected graph with n vertices, m edges and a sequence
of vertex degrees ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(vi). With i ∼ j we denote the adjacency of vertices vi
and v j in graph G.

Let A = (ai j)n×n and D = diag(d1, d2, . . . , dn) be the adjacency and the diagonal degree matrix of G,
respectively. Then L = D − A is the Laplacian matrix of G. Because graph G is assumed to be connected, it
has no isolated vertices and therefore the matrix D−1/2 is well-defined. The normalized Laplacian is defined
as L = D−1/2LD−1/2 = I − D−1/2AD−1/2 = I − R, signless Laplacian matrix as L+ = D + A, and normalized
signless Laplacian as L+ = D−1/2L+D−1/2 = I + D−1/2AD−1/2 = I + R, where R is the Randić matrix [5].
For more information on these matrices one can refer to [11, 13, 18]. Each of these matrices completely
represents the graph. However, for a graph with large number of nodes it requires a large amount of
memory to store the matrix. As an alternative we might study the eigenvalues of the matrix. Eigenvalues
of the corresponding graph matrix form the spectrum of G. These eigenvalues (spectra) give us some useful
information about the matrix which can be translated into useful information about the graph [7].

Let γ1 ≥ γ2 ≥ · · · ≥ γn−1 > γn = 0 be the normalized Laplacian eigenvalues of G. Some well known
properties of these eigenvalues are [30]:

n−1∑
i=1

γi = n and
n−1∑
i=1

γ2
i = n + 2M∗

2(G),
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Ş. B. Bozkurt Altındağ et al. / Filomat 37:28 (2023), 9487–9496 9488

where

M∗

2(G) =
∑
i∼ j

1
did j
,

is a graph invariant known as modified second Zagreb index [24]. It is also met under the name general
Randić index R−1,(see [8, 26]).

For a real number α, the sum of α-th powers of normalized Laplacian eigenvalues of a connected graph
was defined by [2]

Sα(G) =
n−1∑
i=1

γαi .

More details about this subject can be found in [1, 12, 20]. For α = 1
2 , S1/2(G) = LIE (G) which is known as

Laplacian incidence energy (see [21, 28]) is obtained. For α = −1, the Kemeny’s constant,

K(G) = S−1(G) =
n−1∑
i=1

1
γi
,

defined in [17] (see also [6, 19, 21]) is obtained. Let us note that a graph invariant

K∗f (G) = 2mK(G) ,

defined in [9] is known as the degree Kirchhoff index.
Let γ+1 ≥ γ

+
2 ≥ · · · ≥ γ

+
n ≥ 0 be the normalized signless Laplacian eigenvalues of G. Denote by Nk the

following auxiliary quantity

Nk =

k+1∑
i=2

γ+i ,

where 1 ≤ k ≤ n − 2.
By analogy with Kemeny’s constant, for the connected non–bipartite graphs, we introduce “signless

Kemeny’s” constant

K+(G) =
n∑

i=1

1
γ+i
.

For a real number α, the sum of α-th powers of the normalized signless Laplacian eigenvalues of a
connected graph was defined in [3] as

σα(G) =
n∑

i=1

(
γ+i

)α
.

For α = 1
2 , σ1/2(G) = IRE(G), which is known as Randić (normalized) incidence energy (see [3, 4]), and

for α = −1, σ−1(G) = K+(G). Notice that the normalized Laplacian and normalized signless Laplacian
eigenvalues coincide in the case of bipartite graphs [3]. Therefore, for connected bipartite graphs, Sα(G) is
equal to σα(G), LIE (G) is equal to IRE(G) and K(G) is equal to K+(G).

This paper deals with bounds of σα and special cases α = 1
2 and α = −1.
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2. Preliminaries

In this section we recall some results from the literature that will be used hereafter.

Lemma 2.1. [10] Let G be a graph of order n with no isolated vertices. Then

n∑
i=1

γ+i = n and
n∑

i=1

(γ+i )2 = n + 2M∗

2(G) .

The basic result for γ+1 was obtained in [15].

Lemma 2.2. [15] For any connected graph G, the largest normalized signless Laplacian eigenvalue is

γ+1 = 2 .

Lemma 2.3. [15] Let G be a graph of order n ≥ 2 with no isolated vertices. Then

γ+2 = γ
+
3 = · · · = γ

+
n =

n − 2
n − 1

,

if and only if G � Kn.

Lemma 2.4. [14] Let G be a connected graph with n > 2 vertices. Then γ2 = γ3 = · · · = γn−1 if and only if G � Kn
or G � Kp,q.

The following was proved in [27] for an arbitrary square matrix A of order n × n with only real valued
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn.

Lemma 2.5. [27] Let A be an n×n matrix with only real eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Suppose that λ1 is known.
Let 1 ≤ k ≤ n − 2. Then

k+1∑
i=2

λi ≤
k(trA − λ1)

n − 1
+

√
k(n − k − 1)1(A)

n − 1
,

where

1(A) = tr
(
A −

trA
n

I
)2

−
n

n − 1

(
λ1 −

trA
n

)2

.

3. Main results

Lemma 3.1. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then, for 1 ≤ k ≤ n − 2,

Nk ≥
(n − 2)k

n − 1
. (1)

The equality in (1) is achieved for G � Kn.

Proof. By Lemmas 2.1 and 2.2, it is elementary to see that

Nk

k
=

∑k+1
i=2 γ

+
i

k
≥

∑n
i=k+2 γ

+
i

n − k − 1
=

n − 2 −Nk

n − k − 1
,

that is (1).
By Lemma 2.3 one can easily check that the equality in (1) is achieved for G � Kn.
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From Lemmas 2.1, 2.2, 2.3 and 2.5 the following result can be proved.

Lemma 3.2. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then, for 1 ≤ k ≤ n − 2,

Nk ≤
(n − 2)k +

√
k(n − k − 1)(2(n − 1)M∗

2(G) − n)

n − 1
. (2)

The equality in (2) is achieved for G � Kn.

Theorem 3.3. Let G be a connected non–bipartite graph with n ≥ 3 vertices and k, 1 ≤ k ≤ n − 2, be a positive
integer.

(i) If 0 ≤ α ≤ 1, then

σα ≤ 2α +
(n − 2)α

(n − 1)α−1 , (3)

with equality if and only if either α = 0, or α = 1, or G � Kn.

(ii) If α ≥ 1, then

σα ≥ 2α +
(n − 2)α

(n − 1)α−1 , (4)

with equality if and only if α = 1 or G � Kn.

(iii) If α ≤ 0, then

σα(G) ≤ 2α + k1−α

 (n − 2) k +
√

k (n − k − 1) (2 (n − 1) M2 ∗ (G) − n)
n − 1

α (5)

+ (n − k − 1)1−α


(n − 2) (n − k − 1) −

√
(n − k − 1)k

(
2(n − 1)M∗

2(G) − n
)

n − 1


α

.

with equality achieved for α = 0 or G � Kn.

Proof. (i) We start with the case 0 ≤ α ≤ 1. From the power mean inequality, see for example [22], we
have 

∑k+1
i=2 (γ+i )α

k


1/α

≤
Nk

k
,

that is

k+1∑
i=2

(γ+i )α ≤ k1−αNαk , (6)

where the equality holds if and only if γ+2 = γ
+
3 = · · · = γ

+
k+1.

Considering Lemmas 2.1 and 2.2 with the same idea as in the above

n∑
i=k+2

(γ+i )α ≤ (n − k − 1)1−α(n − 2 −Nk)α , (7)

where the the equality holds if and only if γ+k+2 = γ
+
k+3 = · · · = γ

+
n .
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Then by Eqs. (6) and (7), we obtain

σα(G) = 2α +
k+1∑
i=2

(γ+i )α +
n∑

i=k+2

(γ+i )α ≤

≤ 2α + k1−αNαk + (n − k − 1)1−α(n − 2 −Nk)α .

For x ≥ k(n−2)
n−1 , let

f (x) = 2α + k1−αxα + (n − k − 1)1−α(n − 2 − x)α .

It is easy to see that f is decreasing for x ≥ k(n−2)
n−1 , since 0 ≤ α ≤ 1. Therefore, by Lemma 3.1

σα ≤ 2α + k1−α

(
(n − 2)k

n − 1

)α
+ (n − k − 1)

(n − 2
n − 1

)α
= 2α +

(n − 2)α

(n − 1)α−1 .

Hence, we get the upper bound in (3). If the equality holds in (3), then γ+2 = γ
+
3 = · · · = γ

+
k+1,

γ+k+2 = γ
+
k+3 = · · · = γ

+
n and Nk =

(n−2)k
n−1 . This implies that γ+2 = γ

+
3 = · · · = γ

+
n =

n−2
n−1 . Thus, by Lemma

2.3, we arrive at G � Kn. Conversely, if G � Kn, it can be easily seen that the equality holds in (3).

(ii) Note that f is increasing for x ≥ (n−2)k
n−1 , since α ≥ 1. Then, for α ≥ 1, by power mean inequality and

Lemmas 2.1, 2.2 and 3.1, we have

σα(G) ≥ 2α + k1−α

(
(n − 2)k

n − 1

)α
+ (n − k − 1)

(n − 2
n − 1

)α
= 2α +

(n − 2)α

(n − 1)α−1 .

Hence, the lower bound in (4) holds. Similarly to the above, one can show that the equality in (4)
holds if and only G � Kn.

(iii) Note that f is increasing for x ≥ (n−2)k
n−1 , since α ≤ 0. By Lemmas 3.1 and 3.2

(n − 2)k
n − 1

≤ Nk ≤
(n − 2)k +

√
k(n − k − 1)(2(n − 1)M∗

2(G) − n)

n − 1
.

Therefore, we get

σα(G) ≤ f

 (n − 2)k +
√

k(n − k − 1)(2(n − 1)M∗

2(G) − n
n − 1

 .
This leads to the upper bound in (5). By Lemma 2.3, one can easily check that equality in (5) is
achieved for G � Kn.

From Theorem 3.3, we have:

Corollary 3.4. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then

IRE(G) ≤
√

2 +
√

(n − 1)(n − 2) . (8)

Equality holds if and only if G � Kn.

The inequality (8) was proven in [10, 15].
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Corollary 3.5. Let G be a connected non-bipartite graph with n ≥ 3 vertices and k, 1 ≤ k ≤ n − 2, be a positive
integer. Then

K+(G) ≤
1
2
+

k2(n − 1)

(n − 2)k +
√

k(n − k − 1)(2(n − 1)M∗

2(G) − n)
+

+
(n − k − 1)2(n − 1)

(n − 2)(n − k − 1) −
√

k(n − k − 1)(2(n − 1)M∗

2(G) − n)
.

Equality is achieved for G � Kn.

Remark 3.6. The bipartite graph case of Theorem 3.3 can be found in Theorem 3.7 of [20].

In the next theorem we establish a relationship between σα(G) and σα−1(G).

Theorem 3.7. Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then, for any real α, α ≤ 1 or α ≥ 2,
holds

σα(G) ≤ 2σα−1(G) −
(n − 2M∗

2(G))α−1

nα−2 . (9)

When 1 ≤ α ≤ 2, the sense of inequality reverses. Equality holds if and only if either α = 1, or α = 2, or G � Kn.

Proof. For any non–bipartite graph with n ≥ 3 vertices holds

2σα−1(G) − σα(G) =
n∑

i=1

(2 − γ+i )(γ+i )α−1 . (10)

Let p = (pi), i = 1, 2, . . . ,n, be a non negative real number sequence and a = (ai), i = 1, 2, . . . ,n positive real
number sequence. In [16] (see also [23]) it was proven that for any real r, r ≤ 0 or r ≥ 1, holds n∑

i=1

pi


r−1 n∑

i=1

piar
i ≥

 n∑
i=1

piai


r

. (11)

When 0 ≤ r ≤ 1 the opposite inequality is valid.
For r = α − 1, α ≤ 1 or α ≥ 2, pi = 2 − γ+i , ai = γ+i , i = 1, 2, . . . ,n, the inequality (11) becomes n∑

i=1

(2 − γ+i )


α−2 n∑

i=1

(2 − γ+i )(γ+i )α−1
≥

 n∑
i=1

(2 − γ+i )γ+i


α−1

,

Then, by Lemma 2.1

nα−2
n∑

i=1

(2 − γ+i )(γ+i )α−1
≥

(
n − 2M∗

2(G)
)α−1
. (12)

From the above inequality and identity (10) we obtain (9). The case when 1 ≤ α ≤ 2 can be proved
analogously.

Equality in (12) holds if and only if either α = 1, or α = 2, or 2 = γ+1 = · · · = γ
+
t > γ

+
t+1 = · · · = γ

+
n , for

some t, 1 ≤ t ≤ n − 1, or γ+2 = · · · = γ
+
n . By Lemma 2.3, this implies that equality in (9) holds if and only if

either α = 1, or α = 2, or G � Kn.

From Theorem 3.7, we have:



Ş. B. Bozkurt Altındağ et al. / Filomat 37:28 (2023), 9487–9496 9493

Corollary 3.8. Let G be a connected non-bipartite graph with n ≥ 3 vertices. Then

K+(G) ≥
n(n −M∗

2(G))
n − 2M∗

2(G)
.

Equality holds if and only if G � Kn.

Considering the similar proof techniques in Theorem 3.7 together with Lemma 2.4, we get:

Theorem 3.9. Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for any real α, α ≤ 1 or α ≥ 2, holds

Sα(G) = σα(G) ≤ 2σα−1(G) −
(n − 2M∗

2(G))α−1

(n − 2)α−2 . (13)

When 1 ≤ α ≤ 2, the sense of inequality reverses. Equality holds if and only if either α = 1, or α = 2, or G � Kp,q.

From Theorem 3.9, we obtain:

Corollary 3.10. Let G be a connected bipartite graph with n ≥ 3 vertices. Then

K(G) ≥
(n − 1) (n − 2M∗

2(G)) + (n − 2)2

2
(
n − 2M∗

2(G)
) .

Equality holds if and only if G � Kp,q.

Theorem 3.11. Let G be a connected non–bipartite graph, with n ≥ 3 vertices. Then for any real α holds

σα(G) ≤ 2α +
√

(n − 2)(σ2α−1(G) − 22α−1) . (14)

Equality holds if and only if α = 1 or G � Kn.

Proof. The following identities are valid for any real α

σ2α−1(G) − 22α−1 =

n∑
i=2

(γ+i )2α−1 =

n∑
i=2

(
(γ+i )α

)2

γ+i
. (15)

On the other hand, for positive real number sequences x = (xi) and a = (ai), i = 1, 2, . . . ,n, and arbitrary real
r ≥ 0, in [25] the following inequality was proved

n∑
i=1

xr+1
i

ar
i
≥

(∑n
i=1 xi

)r+1(∑n
i=1 ai

)r . (16)

For r = 1, xi = (γ+i )α, ai = γ+i , i = 2, . . . ,n, the above inequality transforms into

n∑
i=2

(
(γ+i )α

)2

γ+i
≥

(∑n
i=2(γ+i )α

)2∑n
i=2 γ

+
i

,

Then, by Lemmas 2.1 and 2.2

n∑
i=2

(
(γ+i )α

)2

γ+i
≥

(σα(G) − 2α)2

n − 2
. (17)

Combining (15) and (17) we obtain (14).

Equality in (17) holds if and only if α = 1 or
(γ+2 )α

γ+2
=

(γ+3 )α

γ+3
= · · · =

(γ+n )α

γ+n
. By Lemma 2.3, this implies

that equality in (14) holds if and only if α = 1 or G � Kn.
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Remark 3.12. It can be easily observed that for α = 1
2 , from (14) the inequality (8) is obtained.

By taking α = 0 in Eq. (14), we also have:

Corollary 3.13. Let G be a connected non–bipartite graph, with n ≥ 3 vertices. Then

K+(G) ≥
n(2n − 3)
2(n − 2)

.

Equality holds if and only if G � Kn.

Using the similar proof techniques in Theorem 3.11 together with Lemma 2.4, we obtain:

Theorem 3.14. Let G be a connected bipartite graph, with n ≥ 3 vertices. Then for any real α holds

Sα(G) = σα(G) ≤ 2α +
√

(n − 2)(σ2α−1(G) − 22α−1) . (18)

Equality holds if and only if α = 1 or G � Kp,q.

From Theorem 3.14, we get:

Corollary 3.15. [15] Let G be a connected bipartite graph with n ≥ 3 vertices. Then

LIE(G) = IRE(G) ≤
√

2 + n − 2 .

Equality holds if and only if G � Kp,q.

Corollary 3.16. [29] Let G be a connected bipartite graph, with n ≥ 3 vertices. Then

K∗f (G) ≥ (2n − 3) m.

Equality holds if and only if G � Kp,q.

Similarly as in previous theorems, the following results can be proved.

Theorem 3.17. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then, for any real α, α ≤ 0 or α ≥ 1,
holds

σα(G) ≤ 2σα−1(G) −
nα

(2K+(G) − n)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kn.

Theorem 3.18. Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for any real α, α ≤ 0 or α ≥ 1, holds

Sα(G) = σα(G) ≤ 2σα−1(G) −
(n − 2)α

(2K(G) − n + 1)α−1 .

When 0 ≤ α ≤ 1, the opposite inequality is valid. Equality holds if and only if either α = 0, or α = 1, or G � Kp,q.

Theorem 3.19. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then, for any real α holds

σα(G) ≤ 2α +

√
(σ2α+1(G) − 22α+1)

(
K+(G) −

1
2

)
.

Equality holds if and only if α = −1, or G � Kn.
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From Theorem 3.19, we get the following relation between K+ (G), M∗

2 (G) and IRE (G).

Corollary 3.20. Let G be a connected non–bipartite graph with n ≥ 3 vertices. Then(
K+(G) −

1
2

)
(n + 2M∗

2(G) − 4) ≥
(
IRE(G) −

√

2
)2
.

Equality holds if and only if G � Kn.

Theorem 3.21. Let G be a connected bipartite graph with n ≥ 3 vertices. Then, for any real α holds

Sα(G) = σα(G) ≤ 2α +

√
(σ2α+1(G) − 22α+1)

(
K(G) −

1
2

)
.

Equality holds if and only if α = −1, or G � Kp,q.

From Theorem 3.21, we have:

Corollary 3.22. Let G be a connected bipartite graph with n ≥ 3 vertices. Then(
K(G) −

1
2

)
(n + 2M∗

2(G) − 4) ≥
(
LIE(G) −

√

2
)2
.

Equality holds if and only if G � Kp,q.
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of graphs, Bull. Inter. Math. Virtual Inst. 11 (1) (2021) 135–146.
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