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Abstract. In this paper we define and study the classes of the essentially left and right generalized Drazin
invertible operators and of the left and right Weyl-g-Drazin invertible operators by means of the analytical
core and the quasinilpotent part of an operator. We show that the essentially left (right) generalized Drazin
invertible operator can be represented as a sum of a left (right) Fredholm and a quasinilpotent operator.
Analogously, the left (right) Weyl-g-Drazin invertible operator can be represented as a sum of a left (right)
Weyl and a quasinilpotent operator. We also characterize these operators in terms of their generalized Saphar
decompositions, accumulation and interior points of various spectra of operator pencils. Furthermore, we
expand the results from [10], on the left and right generalized Drazin invertible operators. Special attention
is devoted to the investigation of the corresponding spectra of operator pencils.

1. Introduction

Let L(X) denote the Banach algebra of all bounded linear operators acting on an infinite-dimensional
Banach space X. If T ∈ L(X) and M and N are two closed T-invariant subspaces of X such that X = M ⊕N,
we say that T is completely reduced by the pair (M,N) and it is denoted by (M,N) ∈ Red(T). In this case we
write T = TM ⊕ TN and say that T is the direct sum of TM and TN. A closed subspace M of X is said to be
complemented if there is a closed subspace N of X such that X =M ⊕N.

The concept of Drazin inverse, first defined in 1958. for semigroups [9], has since developed considerably
and gained a large the number of applications as well as generalizations. An operator T ∈ L(X) is Drazin
invertible if there exists S ∈ L(X) that satisfies

ST = TS, STS = S and T − TST is nilpotent.

Koliha [15] generalized this concept by replacing the third condition of the previous definition with the
condition that the operator T − TST is quasinilpotent, thus defining a generalized Drazin inverse of T. For
T ∈ L(X), H0(T) is the quasinilpotent part of T and K(T) is the analytical core of T [2]. The most important
properties of generalized Drazin invertible operators are listed in the following theorem.
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Theorem 1.1. [8, 11, 15, 18] For T ∈ L(X) the following statements are equivalent:

(i) T is generalized Drazin invertible;

(ii) 0 < acc σ(T);

(iii) X = H0(T) ⊕ K(T) with at least one of the component spaces closed;

(iv) Both H0(T) and K(T) are closed and X = H0(T) ⊕ K(T), TK(T) is invertible, TH0(T) is quasinilpotent;

(v) There exists (M,N) ∈ Red(T) such that TM is invertible, TN is quasinilpotent;

(vi) There exists a projection P ∈ L(X) such that PT = TP, T + P is invertible, TP is quasinilpotent.

One of the generalizations of this class of operators are the left (right) generalized Drazin invertible
operators introduced by D. E. Ferreyra, F. E. Levis and N. Thome in [10]. An operator T ∈ L(X) is called
left generalized Drazin invertible if H0(T) is closed and there exists a closed subspace M of X such that
(M,H0(T)) ∈ Red(T) and T(M) is a complemented subspace of M. If K(T) is closed and there exists a closed
subspace N of X, N ⊂ H0(T), such that (K(T),N) ∈ Red(T) and K(T) ∩ N(T) is complemented in K(T), then
T is called right generalized Drazin invertible. D. E. Ferreyra, F. E. Levis and N. Thome proved that every
left (right) generalized Drazin invertible operator can be decomposed as a sum of a left (right) invertible
operator and a quasinilpotent one. The essentially left (right) Drazin invertible operators are recently
defined and characterized in [22], where it is shown that they can be represented as a sum of a left (right)
Fredholm and a nilpotent operator.

In the third section we consider new classes of operators called the essentially left (right) generalized
Drazin invertible operators. An operator T ∈ L(X) is essentially left generalized Drazin invertible if there
exists (M,N) ∈ Red(T) such that N ⊂ H0(T), N(T)∩M is finite-dimensional and T(M) is complemented in M,
while T is essentially right generalized Drazin invertible if there exists (M,N) ∈ Red(T) such that N ⊂ H0(T),
M ⊃ K(T), R(T)∩M is of finite codimension in M and N(T)∩M is complemented in M. We show that every
essentially left (right) generalized Drazin invertible operator can be decomposed as a sum of a left (right)
Fredholm and a quasinilpotent operator. In the same manner we generalize the class of the left (right)
Weyl-Drazin invertible operators from [22] by defining the left (right) Weyl-g-Drazin invertible operators,
and show that they can be represented as a sum of a left (right) Weyl and a quasinilpotent operator. For the
newly defined classes of operators we proceed to investigate properties analogue to those in Theorem 1.1.

If for an operator T ∈ L(X) there exists a pair (M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpo-
tent, we say that T admits a generalized Saphar decomposition. Using generalized Saphar decomposition
we give some characterizations of essentially left (right) generalized Drazin invertible operators, as well as
left (right) Weyl-g-Drazin invertible operators. We also observe the similar characteristics of the left (right)
generalized Drazin invertible operators, thus extending the results of [10]. By comparing Theorems 3.2 and
3.19, reader should note how many ”nice” properties of the left generalized Drazin invertible operators
no longer hold for the essentially left generalized Drazin invertible operators. Moreover, we show that
if T ∈ L(X) admits a generalized Saphar decomposition, then its dual operator T′ ∈ L(X′) also admits a
generalized Saphar decomposition, which is the improvement of [1, Theorem 1.43]. We further apply this
result to the observed operators. Theorem 3.23 at the end of the third section illustrates the importance of
SVEP by showing how adding a request for a SVEP at a point erases the differences between some classes
of operators. Throughout the paper we use various types of spectra of bounded linear operator pencils
which have the form T − λS, where λ ∈ C, T,S ∈ L(X).

By applying the results from the third section, in the forth section we establish relations between some
known types of spectra of linear operator pencils and the newly defined ones, by observing their boundaries,
convex hulls, accumulation points and isolated points. We devote special attention to the S-generalized
Saphar spectrum σ1S(T,S) and its relation to the S-essential spectra, especially in the context of isolated
points.

The paper is organized into four sections. Section 2 contains basic terminology and notations, including
some important results that we often refer to in our later work. Our main results concerning operators,
their definitions and characterizations, are gathered in Section 3, while in Section 4 we observe various
types of spectra of operator pencils and how they relate to each other.
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2. Basic notation

Throughout this paper we useN (N0) to denote the set of all positive (non-negative) integers and C to
denote the set of all complex numbers. If K ⊂ C, then ∂K is the boundary of K and acc K, int K and iso K
are the sets of accumulation points, interior points and isolated points of K, respectively. The connected
hull of a compact subset K of the complex plane C, denoted by ηK, is the complement of the unbounded
component of C \K [13, Definition 7.10.1]. A hole of K is a bounded component of C \K, and so a hole of K
is a component of ηK \K. We racall that for compact subsets H,K ⊂ C, the following implication holds ([13,
Theorem 7.10.3]):

∂H ⊂ K ⊂ H =⇒ ∂H ⊂ ∂K ⊂ K ⊂ H ⊂ ηK = ηH . (1)

For T ∈ L(X) we use N(T) and R(T), respectively, to denote the null-space and the range of T. It is
well-known that T ∈ L(X) is left invertible if and only if T is injective and R(T) is a complemented subspace
of X. Meanwhile, T ∈ L(X) is right invertible if and only if T is onto and N(T) is a complemented subspace
of X. We use Gl(X) and Gr(X), respectively, to denote the semigroups of left and right invertible operators
on X.

If S ∈ L(X) such that S , 0, then the S-spectrum of T, the S-left spectrum of T, the S-right spectrum of T,
the S-point spectrum of T, the S-approximate point spectrum of T and the S-surjective spectrum of T, are
defined respectively as

σ(T,S) = {λ ∈ C : T − λS is not invertible},
σl(T,S) = {λ ∈ C : T − λS is not left invertible},
σr(T,S) = {λ ∈ C : T − λS is not right invertible},
σp(T,S) = {λ ∈ C : T − λS is not injective},
σap(T,S) = {λ ∈ C : T − λS is not bounded below},
σcp(T,S) = {λ ∈ C : T − λS does not have dense range},
σsu(T,S) = {λ ∈ C : T − λS is not surjective}.

Nullity of T ∈ L(X) is defined by α(T) = dimN(T) in case of a finite dimensional null-space and by α(T) =
∞ when N(T) is infinite dimensional. Similarly, defect of T is defined as β(T) = dimY/R(T) = codimR(T) if
Y/R(T) is finite dimensional, and β(T) = ∞ otherwise. An operator T ∈ L(X) is called upper semi-Fredholm,
or T ∈ Φ+(X), if α(T) < ∞ and R(T) is closed, while T ∈ L(X) is called lower semi-Fredholm, or T ∈ Φ−(X),
if β(T) < ∞. The set of semi-Fredholm operators is defined by Φ±(X) = Φ+(X) ∪ Φ−(X), while the set of
Fredholm operators is defined by Φ(X) = Φ+(X) ∩Φ−(X).

If T ∈ Φ±(X), the index of T is defined by i(T) = α(T) − β(T). The set of upper semi-Weyl operators,
denoted byW+(X), is the set of upper semi-Fredholm operators with non-positive index. The set of lower
semi-Weyl operators, denoted byW−(X), is the set of lower semi-Fredholm operators with non-negative
index. The set of Weyl operators is defined byW(X) =W+(X) ∩W−(X) = {T ∈ Φ(X) : i(T) = 0}.

An operator T ∈ L(X) is relatively regular (or 1-invertible) if there exists S ∈ L(X) such that TST = T. It
is well-known that T is relatively regular if and only if R(T) and N(T) are complemented subspaces of X.
An operator T ∈ L(X) is called left Fredholm, or T ∈ Φl(X), if T is relatively regular upper semi-Fredholm.
Also, T ∈ L(X) is called right Fredholm, or T ∈ Φr(X), if T is relatively regular lower semi-Fredholm. If T
is left or right Fredholm, it belongs to the set Φl,r(X) = Φl(X) ∪ Φr(X). An operator T ∈ L(X) is left (right)
Weyl if T is left (right) Fredholm operator with non-positive (non-negative) index. We useWl(X) (Wr(X))
to denote the set of all left (right) Weyl operators. Evidently, T is left (right) Weyl if and only if T is upper
(lower) semi-Weyl and relatively regular.

For S ∈ L(X) such that S , 0 and H = Φ+,Φ−,Φl,Φr,Φl,r,Φ,W+,W−,Wl,Wr,W the corresponding
S-spectrum of T ∈ L(X) is defined by

σH(T,S) = {λ ∈ C : T − λS < H(X)}.
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For a bounded linear operator T and n ∈ N0 define Tn as the restriction of T to R(Tn) viewed as a map
from R(Tn) into R(Tn) (in particular, T0 = T). If T ∈ L(X) and if there exists an integer n for which the
range space R(Tn) is closed and Tn is Fredholm (resp. upper semi-Fredholm, lower semi-Fredholm, Weyl,
upper semi-Weyl, lower semi-Weyl), then T is called a B-Fredholm (resp. upper semi-B-Fredholm, lower semi-B-
Fredholm, B-Weyl, upper semi-B-Weyl, lower semi-B-Weyl) operator [4–6]. If S ∈ L(X), S , 0, the S-B-Fredholm
spectrum, the S-upper semi-B-Fredholm spectrum, the S-lower semi-B-Fredholm spectrum, the S-B-Weyl
spectrum, the S-upper semi-B-Weyl spectrum, the S-lower semi-B-Weyl spectrum are denoted by σBΦ(T,S),
σBΦ+ (T,S), σBΦ− (T,S), σBW(T,S), σBW+

(T,S) and σBW−
(T,S), respectively.

We define the infimum of the empty set to be ∞. The ascent of an operator T ∈ L(X) is defined by
a(T) = inf{n ∈N0 : N(Tn) = N(Tn+1)}, and the descent of T is defined by d(T) = inf{n ∈N0 : R(Tn) = R(Tn+1)}.

For T ∈ L(X) and n ∈N0 we set

αn(T) = dimN(Tn+1)/N(Tn) and βn(T) = dimR(Tn)/R(Tn+1).

From [14, Lemmas 3.1 and 3.2] it follows that αn(T) = dim(N(T) ∩ R(Tn)) and βn(T) = codim (R(T) +N(Tn)).
For each n ∈ N0, T induced a linear transformation from the vector space R(Tn)/R(Tn+1) to the space

R(Tn+1)/R(Tn+2) and kn(T) denotes the dimension of the null space of the induced map. We recall from [12]
that

kn(T) = dim(R(Tn) ∩N(T))/(R(Tn+1) ∩N(T))

and

kn(T) = dim(R(T) +N(Tn+1))/(R(T) +N(Tn)).

This implies that kn(T) = αn(T) − αn+1(T) whenever αn+1(T) < ∞, and kn(T) = βn(T) − βn+1(T) whenever
βn+1(T) < ∞. If there is d ∈N0 for which kn(T) = 0 for n ≥ d, then T is said to have uniform descent for n ≥ d.

For T ∈ L(X) and every d ∈ N0, the operator range topology on R(Td) is defined by the norm ∥ · ∥d such
that for every y ∈ R(Td),

∥y∥d = inf{∥x∥ : x ∈ X, y = Tdx}.

For T ∈ L(X) if there is d ∈ N0 for which T has uniform descent for n ≥ d and if R(Tn) is closed in the
operator range topology of R(Td) for n ≥ d, then we say that T has eventual topological uniform descent and,
more precisely, that T has topological uniform descent for (TUD for brevity) n ≥ d [12].

For T ∈ L(X) we say that it is Kato if R(T) is closed and N(T) ⊂ R(Tn) for every n ∈ N. Every Kato
operator has TUD for n ≥ 0. An operator T ∈ L(X) is said to be Saphar if it is a relatively regular Kato
operator.

The essential ascent ae(T) and essential descent de(T) of T are defined by ae(T) = inf{n ∈ N0 : αn(T) < ∞}
and de(T) = inf{n ∈ N0 : βn(T) < ∞}. We remark that ae(T) = 0 if and only if α(T) < ∞, and de(T) = 0 if and
only if β(T) < ∞. So, T ∈ L(X) is Fredholm if and only if ae(T) = de(T) = 0.

If T,S ∈ L(X) such that S , 0, the S-descent spectrum of T, the S-essential descent spectrum of T are
defined, respectively, by:

σdsc(T,S) = {λ ∈ C : d(T − λS) = ∞},
σe

dsc(T,S) = {λ ∈ C : de(T − λS) = ∞}.

It is well known that T ∈ L(X) is Drazin invertible if and only if a(T) < ∞ and d(T) < ∞. An operator
T ∈ L(X) is called upper Drazin invertible operator if a(T) < ∞ and R(Ta(T)+1) is closed. If d(T) < ∞ and R(Td(T))
is closed, then T is called lower Drazin invertible. An operator T ∈ L(X) is an essentially upper Drazin invertible
operator if ae(T) < ∞ and R(Tae(T)+1) is closed. If de(T) < ∞ and R(Tde(T)) is closed, then T is called essentially
lower Drazin invertible.

If T,S ∈ L(X) such that S , 0, the S-upper Drazin spectrum of T, the S-lower Drazin spectrum of T,
the S-Drazin spectrum of T, the S-essentially upper Drazin spectrum of T, the S-essentially lower Drazin
spectrum of T are denoted as σD+ (T,S), σD− (T,S), σD(T,S), σe

D+
(T,S), σe

D−
(T,S), respectively.
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The following two subspaces we use to define the new sets of operators. The quasinilpotent part of an
operator T ∈ L(X) is defined by

H0(T) = {x ∈ X : lim
n→∞
∥Tnx∥1/n = 0}.

Obviously, N(T) ⊂ H0(T) and it is well known that an operator T ∈ L(X) is quasinilpotent if and only if
H0(T) = X. The analytical core of T, denoted by K(T), is the set of all x ∈ X for which there exist δ > 0 and a
sequence (un)n in X satisfying

Tu1 = x, Tun+1 = un for all n ∈N, ∥un∥ ≤ cn
∥x∥ for all n ∈N.

Clearly, K(T) is a subset of R(T). In general, the quasinilpotent part and the analytical core are not closed.
An operator T ∈ L(X) has the single-valued extension property at λ0 ∈ C, SVEP at λ0, if for every open

disc Dλ0 centered atλ0 the only analytic function f : Dλ0 → X which satisfies (T−λI) f (λ) = 0 for all λ ∈ Dλ0 ,
is the function f ≡ 0.

IfK ⊂ L(X) the commutant ofK is defined by

comm(K ) = {A ∈ L(X) : AB = BA for every B ∈ K}.

The commutant of T ∈ L(X) is comm(T) = comm(K ) with K = {T}, and the double commutant is defined
as comm2(T) = comm(comm(T)).

The following lemmas are repeatedly used throughout the paper.

Lemma 2.1. [21, 22] Let T ∈ L(X) and let there exist a pair (M,N) ∈ Red(T). Then the following statements hold:
(i) T is g-invertible if and only if TM and TN are g-invertible.
(ii) T is left (right) Fredholm if and only if TM and TN are left (right) Fredholm, and in that case i(T) = i(TM)+ i(TN).
(iii) If TM and TN are left (right) Weyl, then T is left (right) Weyl.
(iv) If T is left (right) Weyl and TM is Weyl, then TN is left (right) Weyl.

Lemma 2.2. [22] For T ∈ L(X) let there exist a pair (M,N) ∈ Red(T). Then T is Saphar if and only if TM and TN are
Saphar.

Lemma 2.3. Let E and F be sets of the complex plane. Then:
(i) If ∂F ⊂ E ⊂ F, then iso F ⊂ iso E.
(ii) If ∂F ⊂ E and F is closed, then ∂F ∩ iso E ⊂ iso F.

Proof. See [7, Lemma 2.2].

The dual space of X and the dual operator of T ∈ L(X) are denoted respectively by X′ and T′ ∈ L(X′). If
M is the subspace of X, the annihilator of M is the closed subspace of X′, denoted by M⊥ and defined by

M⊥ = { f ∈ X′ : f (x) = 0 for every x ∈M}.

Lemma 2.4. [22] Let X = X1⊕X2⊕· · ·⊕Xn where X1, X2, . . . ,Xn are closed subspaces of X and let Mi be a subspace
of Xi, i = 1, . . . ,n. Then the subspace M1 ⊕M2 ⊕ · · · ⊕Mn is a complemented subspace of X if and only if Mi is a
complemented subspace of Xi for each i ∈ {1, . . . ,n}.

Lemma 2.5. [22] Let M be complemented subspace of X and let M1 be a closed subspace of X such that M ⊂ M1.
Then M is complemented in M1.

Lemma 2.6. Let M be a complemented subspace of X. Then M⊥ is a complemented subspace of X′.

Proof. Let N be a closed subspace of X such that X = M ⊕ N, and let P ∈ B(X) be the projection of X such
that R(P) = M and N(P) = N. Then P′ ∈ B(X′) is a projection, N(P′) = R(P)⊥ = M⊥ is closed, and since
R(P) is closed then R(P′) = N(P)⊥ = N⊥ is closed. Thus X′ = R(P′) ⊕ N(P′) = N⊥ ⊕M⊥, and hence M⊥ is
complemented in X′.



M. D. Dimitrijević, S. Č. Živković-Zlatanović / Filomat 37:28 (2023), 9511–9529 9516

3. The essentially left and right generalized Drazin invertible operators

If for an operator T ∈ L(X) there exists a pair (M,N) ∈ Red(T) such that TM is Kato and TN is quasinilpotent,
we say that T admits a generalized Kato decomposition, or shortly T admits a GKD(M,N). Furthermore, if TM
is Saphar we say that T admits a generalized Saphar decomposition, or T admits a GSD(M,N).

Definition 3.1. An operator T ∈ L(X) is essentially left generalized Drazin invertible if there exists (M,N) ∈ Red(T)
such that N ⊂ H0(T), N(T) ∩M is finite-dimensional and T(M) is complemented in M.

If the operator T ∈ L(X) is essentially left generalized Drazin invertible, we will write T ∈ 1DΦl(X). This
notation is justified by part (ii) of the following theorem.

Theorem 3.2. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is essentially left generalized Drazin invertible;
(ii) There exists (M,N) ∈ Red(T) such that TM is a left Fredholm operator and TN is quasinilpotent;
(iii) There exists a projection P ∈ L(X) such that TP = PT, T + P is left Fredholm and TP is quasinilpotent;
(iv) T admits a GSD and 0 < acc σΦl (T,S);
(v) T admits a GSD and 0 < int σΦl (T,S);
(vi) T admits a GSD and 0 < acc σΦ+ (T,S);
(vii) T admits a GSD and 0 < int σΦ+ (T,S);
(viii) T admits a GSD and 0 < acc σe

D+
(T,S);

(ix) T admits a GSD and 0 < int σe
D+

(T,S).

Proof. (i)=⇒(ii) Let N ⊂ H0(T) and let M be a closed subspace of X such that (M,N) ∈ Red(T), N(T) ∩M
is finite-dimensional and T(M) is complemented in M. The operator TN is quasinilpotent since H0(TN) =
H0(T) ∩N = N. For the operator TM we have α(TM) = dimN(TM) = dim(N(T) ∩M) < ∞ and R(TM) = T(M)
is closed and complemented in M. Therefore, TM is left Fredholm.

(ii)=⇒(i) Suppose that there exists a pair (M,N) ∈ Red(T) such that TM is a left Fredholm operator and TN
is quasinilpotent. Since TN is quasinilpotent, we have that N = H0(TN) ⊂ H0(T) is closed and complemented
subspace of X. Furthermore, if TM is left Fredholm, we have that dim(N(T)∩M) = dimN(TM) = α(TM) < ∞
and T(M) = R(TM) is closed and complemented in M.

(ii)=⇒(iii) Suppose that there exists (M,N) ∈ Red(T) such that TM is left Fredholm and TN is quasinilpo-
tent. Let P ∈ L(X) be the projection such that N(P) = M and R(P) = N. Obviously, TP = PT since M and N
are T-invariant. Both TP and T+P are reduced by the pair (M,N) and we get the following decompositions

TP = 0 ⊕ TN and T + P = TM ⊕ (TN + IN). (2)

Operator TP is quasinilpotent as a direct sum of quasinilpotent operators. This we can acquire by calculating
its spectrum σ(TP) = σ(0) ∪ σ(TN) = {0}. Moreover, since TN is quasinilpotent we know that TN + IN is
invertible. Hence, by Lemma 2.1(ii) we conclude that T + P is left Fredholm.

(iii)=⇒(ii) Let P ∈ L(X) be the projection such that TP = PT, TP is quasinilpotent and T + P is a left
Fredholm operator. If M = N(P) and N = R(P), then (M,N) ∈ Red(T). From (2) we have that TN is
quasinilpotent on N since {0} = σ(TP) = σ(0)∪σ(TN) = {0}∪σ(TN) and TM is left Fredholm by Lemma 2.1(ii).

(ii)=⇒(iv) Suppose that there exists (M,N) ∈ Red(T) such that TM is left Fredholm and TN is quasinilpo-
tent. Lemma 2.1(i) and [17, Theorem 16.21] imply that there exists (M1,M2) ∈ Red(TM) such that dimM2 < ∞,
TM1 is Saphar and TM2 is nilpotent. Then, (M1,M2 ⊕N) ∈ Red(T), TM1 is Saphar and TM2⊕N is quasinilpotent.
Hence, T admits a GSD.

Let P ∈ L(X) be the projection such that N(P) = M and R(P) = N. Then TP = PT, and hence SP = PS,
which implies that (M,N) ∈ Red(S). As S is invertible, it follows that SM and SN are invertible. Since
TNSN = SNTN, from [17, Theorem 2.11] it follows that

σ(TN − λSN) ⊂ σ(TN) − λσ(SN) = −λσ(SN), for every λ ∈ C. (3)
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Since 0 < σ(SN), from (3) it follows that TN − λSN is invertible for every λ ∈ C, λ , 0. From the openness
of the set Φl(M) follows the existence of ϵ > 0 such that TM − λSM is left Fredholm for |λ| < ϵ. Now, for
0 < |λ| < ϵ, from the decomposition

T − λS = (TM − λSM) ⊕ (TN − λSN), (4)

and Lemma 2.1(ii), we get that T − λS is left Fredholm for 0 < |λ| < ϵ. Hence, 0 < acc σΦl (T,S).
Implications (iv)=⇒(vi)=⇒(viii)=⇒(ix) and (iv)=⇒(v)=⇒(vii)=⇒(ix) are clear.
(ix)=⇒(ii) Suppose that T admits a GSD and 0 < int σe

D+
(T,S). Then there exists a decomposition

(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. Since TM has TUD for n ≥ 0, according to
[12, Theorem 4.7] we conclude that there exists an ϵ > 0 such that for every λ ∈ C, the following implication
holds:

0 < |λ| < ϵ =⇒ αn(TM − λSM) = α(TM), for every n ∈N0. (5)

Also from [12, Theorem 4.7] it follows that σe
D+

(T,S) is closed. Since 0 < int σe
D+

(T,S), we conclude that there
exists µ ∈ C such that 0 < |µ| < ϵ and T − µS is essentially upper Drazin invertible. Hence there is n ∈ N0
such that αn(TM−µSM) < ∞. Now according to (5) we obtain that α(TM) < ∞. As TM is Saphar we conclude
that TM is left Fredholm.

Remark 3.3. Suppose that T ∈ L(X) is essentially left generalized Drazin invertible, i.e. there exists (M,N) ∈
Red(T) such that N ⊂ H0(T), N(T) ∩M is finite-dimensional and T(M) is complemented in M. Notice that
if N = H0(T) then N(T) ∩M ⊂ H0(T) ∩M = {0} since (N,M) ∈ Red(T). In this case, T is a left generalized
Drazin invertible operator, defined in [10], decomposable to a sum of a left invertible and a quasinilpotent
operator. •

Example 3.4. Observe a backward unilateral shift operator V ∈ ℓ2(N) defined by

V(x1, x2, . . . ) = (x2, x3, . . . ).

Obviously, V is not injective, and yet from [23, Theorem 3.5] we see that 0 < σΦl (V), so V is left Fredholm.
Therefore, V is essentially left generalized Drazin invertible, but is not left generalized Drazin invertible.

Definition 3.5. An operator T ∈ L(X) is essentially right generalized Drazin invertible if there exists (M,N) ∈
Red(T) such that N ⊂ H0(T), M ⊃ K(T), R(T) ∩M is of finite codimension in M and N(T) ∩M is complemented in
M.

We denote by 1DΦr(X) the set of essentially right generalized Drazin invertible operators acting on X.

Theorem 3.6. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is essentially right generalized Drazin invertible;
(ii) There exists (M,N) ∈ Red(T) such that TM is a right Fredholm operator and TN is quasinilpotent;
(iii) There exists a projection P ∈ L(X) such that TP = PT, T + P is right Fredholm and TP is quasinilpotent;
(iv) T admits a GSD and 0 < acc σΦr (T,S);
(v) T admits a GSD and 0 < int σΦr (T,S);
(vi) T admits a GSD and 0 < acc σΦ− (T,S);
(vii) T admits a GSD and 0 < int σΦ− (T,S);
(viii) T admits a GSD and 0 < acc σe

D−
(T,S);

(ix) T admits a GSD and 0 < int σe
D−

(T,S);
(x) T admits a GSD and 0 < acc σe

dsc(T,S);
(xi) T admits a GSD and 0 < int σe

dsc(T,S).
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Proof. (i)=⇒(ii) Suppose that there exist closed subspaces N ⊂ H0(T) and M ⊃ K(T) such that (M,N) ∈ Red(T),
R(T) ∩M is of finite codimension in M and N(T) ∩M is complemented in M. Then T = TM ⊕ TN and TN
is quasinilpotent. For the operator TM we have β(TM) = codim R(TM) = dimM/(R(T) ∩ M) < ∞ and
N(TM) = N(T) ∩M is complemented in M. Therefore, TM is right Fredholm.

(ii)=⇒(i) Suppose that there exists a pair (M,N) ∈ Red(T) such that TM is a right Fredholm operator and
TN is quasinilpotent. Then N ⊂ H0(T) and codim R(TM) = β(TM) < ∞, i.e. R(T) ∩M is of finite codimension
in M. Easily we see that N(T) ∩ M = N(TM) is complemented in M. Since (M,N) ∈ Red(T) and TN is
quasinilpotent from the proof of [1, Theorem 1.41 (i)] it follows that K(T) = K(TM) ⊂M.

Proofs of (ii)=⇒(iii), (iii)=⇒(ii) and (ii)=⇒(iv) can be derived analogously to the proof of Theorem 3.2.
Implications (iv)=⇒(vi)=⇒(viii)=⇒(x)=⇒(xi) and (iv)=⇒(v)=⇒(vii)=⇒(ix)=⇒(xi) are clear.
(xi)=⇒(ii) Suppose that T admits a GSD and 0 < int σe

dsc(T,S). Then there exists a decomposition
(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. From [12, Theorem 4.7] it follows that
σe

dsc(T,S) is closed. Again according to [12, Theorem 4.7] we conclude that there exists ϵ > 0 such that for
every λ ∈ C, the following implication holds:

0 < |λ| < ϵ =⇒ βn(TM − λSM) = β(TM), for every n ∈N0. (6)

Since 0 < int σe
dsc(T,S), there exists µ ∈ C such that 0 < |µ| < ϵ and T − µS has finite essential descent. Hence

there is n ∈ N0 such that βn(TM − µSM) < ∞. Now according to (6) we obtain that β(TM) < ∞. As TM is
Saphar we conclude that TM is right Fredholm.

Remark 3.7. Let T ∈ L(X) be essentially right generalized Drazin invertible, i.e. there exists (M,N) ∈ Red(T)
such that N ⊂ H0(T), M ⊃ K(T), R(T) ∩M is of finite codimension in M and N(T) ∩M is complemented in
M. If K(T) = M, then T is a right generalized Drazin invertible operator, defined in [10], decomposed as a
sum of a right invertible and a quasinilpotent operator. Indeed, K(T) ∩N(T) = M ∩N(T) is complemented
in K(T) and hence T is right generalized Drazin invertible. •

Example 3.8. The forward unilateral shift U ∈ ℓ2(N) defined by

U(x1, x2, . . . ) = (0, x1, x2, . . . )

is obviously not surjective. However, from [23, Theorem 3.4] we can see that U is right Fredholm. Therefore,
U is essentially right generalized Drazin invertible, but is not right generalized Drazin invertible.

Theorem 3.9. Let T ∈ L(X). If T admits a GSD(M,N), then T′ admits a GSD(N⊥,M⊥).

Proof. There exists a pair (M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. Let PM be
the projection of X onto M along N. Then TPM = PMT, and hence T′P′M = P′MT′. As R(P′M) = N⊥ and
N(P′M) = M⊥, we obtain that (N⊥,M⊥) ∈ Red(T′). From the proof of [1, Theorem 1.43] it follows that T′N⊥ is
Kato. Moreover, we have that

R(T′N⊥ ) = R(T′) ∩N⊥ = N(T)⊥ ∩N⊥ = (N(T) +N)⊥

= (N(TM) ⊕N)⊥ (7)

and

N(T′N⊥ ) = N(T′) ∩N⊥ = R(T)⊥ ∩N⊥ = (R(T) +N)⊥

= (R(TM) ⊕N)⊥ (8)

Since TM is Saphar, it follows that N(TM) and R(TM) are complemented in M. According to Lemma 2.4 we
conclude that N(TM)⊕N and R(TM)⊕N are complemented in X. Lemma 2.6 ensures that (N(TM)⊕N)⊥ and
(R(TM) ⊕N)⊥ are complemented in X′. As N⊥ is a closed subspace of X′ which contains (N(TM) ⊕N)⊥ and
(R(TM) ⊕ N)⊥, applying Lemma 2.5 we conclude that (N(TM) ⊕ N)⊥ and (R(TM) ⊕ N)⊥ are complemented
in N⊥. Now according to (7) and (8) we have that R(T′N⊥ ) and N(T′N⊥ ) are complemented in N⊥, and hence
T′N⊥ is Saphar.
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If PN = I − PM, then (M,N) ∈ Red(TPN), TPN = PNT, TPN = 0M ⊕ TN, and so TPN is quasinilpotent.
Consequently, T′P′N = P′NT′ is quasinilpotent and (N⊥,M⊥) ∈ Red(T′P′N). As R(P′N) = N(PN)⊥ = M⊥

and N(P′N) = R(PN)⊥ = N⊥, we conclude that T′P′N = (T′P′N)N⊥ ⊕ (T′P′N)M⊥ = 0N⊥ ⊕ T′M⊥ . Hence T′M⊥ is
quasinilpotent. Consequently, T′ admits a GSD(N⊥,M⊥).

Proposition 3.10. Let T ∈ L(X). If T is essentially left generalized Drazin invertible then T′ is essentially right
generalized Drazin invertible.

Proof. If T is essentially left generalized Drazin invertible, by (i)⇐⇒(iv) in Theorem 3.2 it admits a GSD(M,N)
for some closed T-invariant subspaces M and N and 0 < acc σΦl (T,S). From Theorem 3.9 it follows that T′

admits a GSD(N⊥,M⊥).
If 0 < acc σΦl (T,S) then there exists ϵ > 0 such that for every 0 < |λ| < ϵ the operator T − λS is left

Fredholm. Hence, T − λS is upper semi-Fredholm and relatively regular. From [19, Lemma 2.8] it follows
that T′ − λS′ is lower semi-Fredholm. It is a known fact that if T − λS is relatively regular then T′ − λS′

is also relatively regular. Therefore, T′ − λS′ is right Fredholm for every 0 < |λ| < ϵ and we conclude that
0 < acc σΦr (T′,S′).

From (i)⇐⇒(iv) in Theorem 3.6 it follows that T′ is essentially right generalized Drazin invertible.

For T ∈ L(X) we say that T is Fredholm-g-Drazin invertible, and write T ∈ 1DΦ(X), if there exists a pair
(M,N) ∈ Red(T) such that TM is Fredholm and TN is quasinilpotent.

Proposition 3.11. Let T ∈ L(X). Then T ∈ L(X) is essentially left and right generalized Drazin invertible if and
only if T is a Fredholm-g-Drazin invertible.

Proof. Suppose that T is essentially left and right generalized Drazin invertible. From the equivalences
(i)⇐⇒(ii) in Theorems 3.2 and 3.6 it follows that there exists (M1,N1) ∈ Red(T) such that TM1 is left Fredhom
and TN1 is quasinilpotent, TM2 is right Fredholm and TN2 is quasinilpotent. From [3, Proposition 2.5] (i) it
follows that TM1 and TM2 are Fredholm, and so T ∈ 1DΦ(X).

The converse follows again from the equivalences (i)⇐⇒(ii) in Theorems 3.2 and 3.6.

Definition 3.12. Operator T ∈ L(X) is left Weyl-g-Drazin invertible if there exists (M,N) ∈ Red(T) such that
N ⊂ H0(T), T(M) is complemented in M and N(T) ∩M is of finite dimension no greater than the dimension of
M/T(M).

The set of left Weyl-g-Drazin invertible operators on X will be denoted by 1DWl(X).

Theorem 3.13. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is left Weyl-g-Drazin invertible;
(ii) There exists (M,N) ∈ Red(T) such that TM is a left Weyl operator and TN is quasinilpotent;
(iii) There exists a projection P ∈ L(X) such that TP = PT, T + P is left Weyl and TP is quasinilpotent;
(iv) T admits a GSD and 0 < acc σWl (T,S);
(v) T admits a GSD and 0 < int σWl (T,S);
(vi) T admits a GSD and 0 < acc σW+

(T,S);
(vii) T admits a GSD and 0 < int σW+

(T,S);
(viii) T admits a GSD and 0 < acc σBW+

(T,S);
(ix) T admits a GSD and 0 < int σBW+

(T,S).

Proof. (i)=⇒(ii) Let N ⊂ H0(T) and let M be a closed subspace of X such that (M,N) ∈ Red(T), T(M)
is complemented in M and N(T) ∩ M is finite-dimensional subspace of M, for which dim(N(T) ∩ M) ≤
dimM/T(M). Then the operator TN is quasinilpotent and from Theorem 3.2 TM is left Fredholm. We also
have

i(TM) = α(TM) − β(TM) = dim(N(T) ∩M) − dimM/T(M) ≤ 0.
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Therefore, TM is left Weyl.
(ii)=⇒(i) Suppose that there exists a pair (M,N) ∈ Red(T) such that TM is a left Weyl operator and TN is

quasinilpotent. Then from i(TM) ≤ 0 we get that

dim(N(T) ∩M) = dimN(TM) = α(TM) ≤ β(TM) = dimM/T(M).

The rest of the proof is the same as in Theorem 3.2.
(ii)=⇒(iii) Suppose there exists (M,N) ∈ Red(T) such that TM is left Weyl and TN is quasinilpotent. Let

P ∈ L(X) be the projection such that N(P) =M and R(P) = N. Decompositions (2) hold, TP is quasinilpotent
and from Lemma 2.1(iii) it follows that T + P is left Weyl.

(iii)=⇒(ii) Let P ∈ L(X) be the projection such that TP = PT, TP is quasinilpotent and T + P is a left Weyl
operator. If M = N(P) and N = R(P), then from (2) and Lemma 2.1(iv) we get that TN is quasinilpotent and
TM is left Weyl.

(ii)=⇒(iv) Follows from the openness of the set of left Weyl operators and Lemma 2.1(iii), analogously
to the proof of Theorem 3.2.

Implications (iv)=⇒(vi)=⇒(viii)=⇒(ix) and (iv)=⇒(v)=⇒(vii)=⇒(ix) are clear.
(ix)=⇒(ii) Suppose that T admits a GSD and 0 < int σBW+

(T,S). Then there exists (M,N) ∈ Red(T) such
that TM is Saphar and TN is quasinilpotent. Operator TM has a TUD for n ≥ 0, so according to [12, Theorem
4.7] there exists an ϵ > 0 such that for every λ ∈ C, the following implication holds:

0 < |λ| < ϵ =⇒ αn(TM − λSM) = α(TM) (9)
βn(TM − λSM) = β(TM), for every n ∈N0. (10)

From [12, Theorem 4.7] it follows that σBW+
(T,S) is closed. Hence the assumption 0 < int σBW+

(T,S) implies
the existence of µ ∈ C, 0 < |µ| < ϵ such that T − µS ∈ BW+(X). Therefore, there exists m ∈ N0 such that
R((T − µS)m) is closed and the operator (T − µS)m : R((T − µS)m)→ R((T − µS)m) is upper semi-Weyl.

Since TN − µSN is invertible, (TN − µSN)n is also invertible for each n ∈N and we have the equality

αn(T − µS) = αn(TM − µSM) + αn(TN − µSN) = αn(TM − µSM),
βn(T − µS) = βn(TM − µSM) + βn(TN − µSN) = βn(TM − µSM).

Now we get

α((T − µS)m) = dim
(
N(T − µS) ∩ R((T − µS)m

)
= αm(T − µS) = αm(TM − µSM) (11)

and

β((T − µS)m) = dim
(
R((TM − µSM)m)/R((TM − µSM)m+1)

)
= βm(T − µS) = βm(TM − µSM). (12)

Using (9), (11), (12) and the fact that (T − µS)m is upper semi-Weyl we get

α(TM) = αm(TM − µSM) = α((T − µS)m) < ∞,
β(TM) = βm(TM − µSM) = β((T − µS)m)
i(TM) = α(TM) − β(TM) = i((T − µS)m) ≤ 0.

Since TM is Saphar, we have proved that TM is left Weyl.

Definition 3.14. Operator T ∈ L(X) is right Weyl-g-Drazin invertible if there exist closed subspaces N ⊂ H0(T) and
M ⊃ K(T) such that (M,N) ∈ Red(T), N(T)∩M is complemented in M and R(T)∩M is of finite codimension in M,
no greater then the dimension of N(T) ∩M.

By 1DWr(X) we denote the set of right Weyl-g-Drazin invertible operators on X.
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Theorem 3.15. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:

(i) T is right Weyl-g-Drazin invertible;

(ii) There exist (M,N) ∈ Red(T) such that TM is a right Weyl operator and TN is quasinilpotent;

(iii) There exists a projection P ∈ L(X) such that TP = PT, T + P is right Weyl and TP is quasinilpotent;

(iv) T admits a GSD and 0 < acc σWr (T,S);

(v) T admits a GSD and 0 < int σWr (T,S);

(vi) T admits a GSD and 0 < acc σW−
(T,S);

(vii) T admits a GSD and 0 < int σW−
(T,S);

(viii) T admits a GSD and 0 < acc σBW−
(T,S);

(ix) T admits a GSD and 0 < int σBW−
(T,S).

Proof. Analogously to Theorem 3.13.

Proposition 3.16. Let T ∈ L(X). If T is left Weyl-g-Drazin invertible, then T′ is right Weyl-g-Drazin invertible.

Proof. Suppose that T is left Weyl-g-Drazin invertible. From (i)⇐⇒(iv) in Theorem 3.13 it follows that T
admits a GSD(M,N) and 0 < acc σWl (T,S). From Theorem 3.9 we get that T′ admits a GSD(N⊥,M⊥). If
0 < acc σWl (T,S) then there exists ϵ > 0 such that T − λS is left Weyl for every 0 < |λ| < ϵ. Hence, T − λS is
left Fredholm with nonpositive index. From the proof of Proposition 3.10 we know that T′ − λS′ is a right
Fredholm operator. By applying [19, Lemma 2.8] we get i(T′ − λS′) = −i(T − λS) ≥ 0. Therefore, T′ − λS′ is
a right Weyl operator for every 0 < |λ| < ϵ and we have proved that 0 < acc σWr (T

′,S′). From (i)⇐⇒(iv) in
Theorem 3.15 T′ is a right Weyl-g-Drazin invertible operator.

For T ∈ L(X) we say that T is Weyl-g-Drazin invertible, and write T ∈ 1DW(X), if there exists a pair
(M,N) ∈ Red(T) such that TM is Weyl and TN is quasinilpotent.

Proposition 3.17. Let T ∈ L(X). Then T ∈ L(X) is left and right Weyl-g-Drazin invertible if and only if T is a
Weyl-g-Drazin invertible operator.

Proof. Follows from [3, Proposition 2.5] (ii) and the equivalence (i)⇐⇒(ii) in Theorems 3.13 and 3.15,
analogously to the proof of Proposition 3.11.

We say that T ∈ 1DΦl,r(X) if there exists a pair (M,N) ∈ Red(T) such that TM ∈ Φl,r(X) and TN is
quasinilpotent.

The following theorem can be proved analogously to Theorems 3.2 and 3.13.

Theorem 3.18. Let H ∈ {Φ,W,Φl,r}, T,S ∈ L(X) and let S be invertible and S ∈ comm2(T). The following
statements are equivalent:

(i) T ∈ 1DH(X);

(ii) There exists a projection P ∈ L(X) such that TP = PT, T + P ∈ H(X) and TP is quasinilpotent;

(iii) T admits a GSD and 0 < acc σH(T,S);

(iv) T admits a GSD and 0 < int σH(T,S).

The following two theorems provide some characterizations of left and right generalized Drazin invert-
ible operators introduced in [10].
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Theorem 3.19. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is left generalized Drazin invertible;
(ii) T admits a GSD and T has SVEP at 0;
(iii) T admits a GSD(M,N) and there exists p ∈N such that H0(T) = N(Tp);
(iv) T admits a GSD and H0(T) is closed;
(v) T admits a GSD and H0(T) ∩ K(T) = {0};
(vi) T admits a GSD and H0(T) ∩ K(T) is closed;
(vii) T admits a GSD and 0 < acc σl(T,S);

(viii) T admits a GSD and 0 < int σl(T,S);

(ix) T admits a GSD and 0 < acc σap(T,S);

(x) T admits a GSD and 0 < int σap(T,S);

(xi) T admits a GSD and 0 < acc σp(T,S);

(xii) T admits a GSD and 0 < int σp(T,S);

(xiii) T admits a GSD and 0 < acc σD+ (T,S);

(xiv) T admits a GSD and 0 < int σD+ (T,S).

Proof. (i)=⇒(ii) Suppose that T is left generalized Drazin invertible. According to [10, Theorem 3.3] there
exist a pair (M,N) ∈ Red(T) such that TM is left invertible and TN is quasinilpotent. Then TM is Saphar, and
hence T admits a GSD. From [1, Theorem 3.14] it follows that T has SVEP at 0.

(ii)=⇒(i) Suppose that T admits a GSD(M,N) and T has SVEP at 0. From [1, Theorem 2.49] it follows that
TM is injective, a since TM is Saphar, we obtain that TM is left invertible. From [10, Theorem 3.3] it follows
that T is left generalized Drazin invertible.

The equivalences (ii)⇐⇒(iii)⇐⇒(iv)⇐⇒(v)⇐⇒(vi) follow from [1, Theorem 3.14].
(i)=⇒(vii) Let T be left generalized Drazin invertible. Then there exist a pair (M,N) ∈ Red(T) such that

TM is left invertible and TN is quasinilpotent, and so T admits a GSD. Let P ∈ L(X) be the projection such
that N(P) =M and R(P) = N. As in the proof of Theorem 3.2, we draw the conclusion from the openness of
the set of left invertible operators and the equality (4), bearing in mind that the sum of an invertible and a
left invertible operator is left invertible.

The implications (vii)=⇒(viii)=⇒(x)=⇒(xii), (vii)=⇒(viii)=⇒(x)=⇒(xiv), (vii)=⇒(ix)=⇒(xi)=⇒(xii),
(vii)=⇒(ix) =⇒(xiii)=⇒(xiv) are clear.

(xii)=⇒(i): Suppose that T admits a GSD and 0 < int σp(T,S). Then there exists a decomposition
(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. As before, (M,N) ∈ Red(S), TM has TUD
for n ≥ 0, and so by [12, Theorem 4.7] we obtain that there exists an ϵ > 0 such that for every λ ∈ C it holds:

0 < |λ| < ϵ =⇒ α(TM − λSM) = α(TM). (13)

From 0 < int σp(T,S) it follows that there exists µ ∈ C such that |µ| < ϵ and T − µS is injective, and hence
TM − µSM is injective. If µ = 0 we have that TM is injective. If µ , 0, from (13) it follows that α(TM) = 0, i.e.
TM is injective. Consequently, TM is left invertible, and according to [10, Theorem 3.3] it follows that T is
left generalized Drazin invertible.

(xiv)=⇒(i): Suppose that T admits a GSD and 0 < int σD+ (T,S). Then there exists a decomposition
(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. According to [12, Theorem 4.7] we
conclude that there exists an ϵ > 0 such that for every λ ∈ C, the following implication holds:

0 < |λ| < ϵ =⇒ αn(TM − λSM) = α(TM), for every n ∈N0. (14)

Also from [12, Theorem 4.7] it follows that σD+ (T,S) is closed, and since 0 < int σD+ (T,S), there exists a µ ∈ C
such that 0 < |µ| < ϵ and T−µS is upper Drazin invertible. Hence there is n ∈N0 such that αn(TM−µSM) = 0.
Now according to (14) we obtain that α(TM) = 0. As TM is Saphar we conclude that TM is left invertible.
Consequently, T is left generalized Drazin invertible.



M. D. Dimitrijević, S. Č. Živković-Zlatanović / Filomat 37:28 (2023), 9511–9529 9523

Theorem 3.20. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is right generalized Drazin invertible;
(ii) T admits a GSD and T′ has SVEP at 0;
(iii) T admits a GSD(M,N) and there exists q ∈N such that K(T) = R(Tq);
(iv) T admits a GSD and H0(T) + K(T) = X;
(v) T admits a GSD and H0(T) + K(T) is norm dense in X;
(vi) T admits a GSD and 0 < acc σr(T,S);
(vii) T admits a GSD and 0 < int σr(T,S);
(viii) T admits a GSD and 0 < acc σsu(T,S);
(ix) T admits a GSD and 0 < int σsu(T,S);
(x) T admits a GSD and 0 < acc σcp(T,S);
(xi) T admits a GSD and 0 < int σcp(T,S);
(xii) T admits a GSD and 0 < acc σdsc(T,S);
(xiii) T admits a GSD and 0 < int σdsc(T,S).

Proof. (i)=⇒(ii) Suppose that T is right generalized Drazin invertible. According to [10, Theorem 3.4] there
exist a pair (M,N) ∈ Red(T) such that TM is right invertible and TN is quasinilpotent. Then TM is Saphar,
and hence T admits a GSD. From [1, Theorem 3.15] it follows that T′ has SVEP at 0.

(ii)=⇒(i) Suppose that T admits a GSD(M,N) and T′ has SVEP at 0. From [1, Theorem 3.15] it follows
that TM is surjective, a since TM is Saphar, we obtain that TM is right invertible. From [10, Theorem 3.4] it
follows that T is right generalized Drazin invertible.

The equivalences (ii)⇐⇒(iii)⇐⇒(iv)⇐⇒(v) follow from [1, Theorem 3.14].
The proof of the implication (i)=⇒(vi) is similar to the proof of the implication (i)=⇒(vii) in Theorem

3.19.
The implications (vi)=⇒(vii)=⇒(ix)=⇒(xi), (vi)=⇒(vii)=⇒(ix)=⇒(xiii), (vi)=⇒(viii)=⇒(x)=⇒(xi),

(vi)=⇒(viii) =⇒(xii)=⇒(xiii) are clear.
(xi)=⇒(i): Suppose that T admits a GSD and 0 < int σcp(T,S). Then there exists a decomposition

(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. Then (M,N) ∈ Red(S). Using [12, Theorem
4.7] we obtain that there exists an ϵ > 0 such that for every λ ∈ C, it holds:

0 < |λ| < ϵ =⇒ R(TM − λSM) is closed and β(TM − λSM) = β(TM). (15)

From 0 < int σcp(T,S) it follows that there exists µ ∈ C such that |µ| < ϵ and R(T − µS) = X. Then
R(TM − µSM) =M, and since R(TM−µSM) is closed, we obtain that R(TM−µSM) =M. Now fromβ(TM−µSM) =
0 and (13) it follows that β(TM) = 0, i.e. TM is surjective. Hence TM is right invertible, and according to [10,
Theorem 3.4] we obtain that T is right generalized Drazin invertible.

(xiii)=⇒(i): Suppose that T admits a GSD and 0 < int σdsc(T,S). Then there exists a decomposition
(M,N) ∈ Red(T) such that TM is Saphar and TN is quasinilpotent. According to [12, Theorem 4.7] we
conclude that there exists an ϵ > 0 such that for every λ ∈ C, the following implication holds:

0 < |λ| < ϵ =⇒ βn(TM − λSM) = β(TM), for every n ∈N0. (16)

From [12, Theorem 4.7] it follows that σdsc(T,S) is closed and since 0 < int σdsc(T,S), there exists a µ ∈ C such
that 0 < |µ| < ϵ and d(T − µS) < ∞. Hence d(TM − µSM) < ∞ and there is n ∈N0 such that βn(TM − µSM) = 0.
From (16) it follows that β(TM) = 0, and so TM is surjective. As TM is Saphar, we conclude that TM is right
invertible, and hence T is right generalized Drazin invertible.

By 1DGl(X) (1DGr(X)) we denote the set of left (right) generalized Drazin invertible operators on X.
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Proposition 3.21. Let T ∈ L(X). If T is left generalized Drazin invertible, then T′ is right generalized Drazin
invertible.

Proof. Suppose T is left generalized Drazin invertible. From (i)⇐⇒(vii) in Theorem 3.19 it follows that
T admits a GSD(M,N) and 0 < acc σl(T,S). Theorem 3.9 implies that T′ admits a GSD(N⊥,M⊥). If 0 <
acc σl(T,S), there exists ϵ > 0 such that T − λS is left invertible for every 0 < |λ| < ϵ. Then T′ − λS′ is right
invertible for every 0 < |λ| < ϵ, implying that 0 < acc σr(T′,S′). From (i)⇐⇒(vi) in Theorem 3.20 we have
that T′ is right generalized Drazin invertible.

For T,S ∈ L(X), S , 0, we define the S-generalized Drazin spectrum by

σ1D(T,S) = {λ ∈ C : T − λS is not generalized Drazin invertible}.

Theorem 3.22. Let T,S ∈ L(X) and let S be invertible and S ∈ comm2(T). The following statements are equivalent:
(i) T is generalized Drazin invertible;
(ii) T admits a GSD and 0 < int σ(T,S);
(iii) 0 < acc σ(T,S).

Proof. (i)⇐⇒(ii): It follows from Theorem 1.1 analogously to the proof of Theorem 3.19.
(i)⇐⇒(iii): Since S is invertible and S ∈ comm2(T) we have that S−1 commutes with T − λS for every

λ ∈ C. As generalized Drazin invertible operators acting on X form a regularity [16, Theorem 1.2], from
[17, Proposition 6.2(iii)] we conclude that

λ < σ1D(T,S) ⇐⇒ T − λS is generalized Drazin invertible

⇐⇒ TS−1
− λ is generalized Drazin invertible

⇐⇒ λ < σ1D(TS−1).

Consequently, by using the equivalence (i)⇐⇒(ii) in Theorem 1.1 we obtain that σ1D(T,S) = σ1D(TS−1) =
acc σ(TS−1) = acc σ(T,S). Therefore, T is generalized Drazin invertible if and only if 0 < σ1D(T,S) =
acc σ(T,S).

Theorem 3.23. Let T ∈ L(X).
(i) If T has the SVEP at 0 then T ∈ 1DΦl(X)⇔ T ∈ 1DWl(X)⇔ T ∈ 1DGl(X).
(ii) If T′ has the SVEP at 0 then T ∈ 1DΦr(X)⇔ T ∈ 1DWr(X)⇔ T ∈ 1DGr(X).
(iii) If both T and T′ have the SVEP at 0 then T is generalized Drazin invertible if and only if T ∈ 1DΦ(X) if and

only if T ∈ 1DW(X).

Proof. (i): The implications T ∈ 1DGl(X) =⇒ T ∈ 1DWl(X) =⇒ T ∈ 1DΦl(X) follow from the equivalence
(a)⇐⇒(b) in [10, Theorem 3.3], the equivalence (i)⇐⇒(ii) in Theorem 3.13 and the equivalence (i)⇐⇒(ii) in
Theorem 3.2.

Suppose that T has the SVEP at 0 and that T ∈ 1DΦl(X). From Theorem 3.2 it follows that T admits a
GSD. Now from the equivalence (i)⇐⇒(ii) in Theorem 3.19 we conclude that T ∈ 1DGl(X).

(ii): It follows from [10, Theorem 3.4], Theorem 3.6 and Theorem 3.20, analogously to the proof of (i).
(iii): It follows from [10, Corollary 3.5], (i), (ii), Proposition 3.11 and Proposition 3.17.

4. Spectra

If T,S ∈ L(X) such that S , 0, the S-Saphar spectrum and the S-generalized Saphar spectrum are denoted
respectively by σS(T,S) and σ1S(T,S), and defined by

σS(T,S) = {λ ∈ C : T − λS is not Saphar},
σ1S(T,S) = {λ ∈ C : T − λS does not admit generalized Saphar decomposition}.
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For T,S ∈ L(X), S , 0, and H ∈ {Gl,Gr,Φl,Φr,Φl,r,Φ,Wl,Wr,W}, we define for each H the appropriate
spectrum of operator pencil

σ1DH(T,S) = {λ ∈ C : T − λS < 1DH(X)}.

Theorem 4.1. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). If T admits a GSD(M,N), then there
exists ϵ > 0 such that T − λS is Saphar for each λ such that 0 < |λ| < ϵ.

Proof. Suppose that T admits a GSD(M,N). Then T = TM ⊕ TN, TM is Saphar and TN is quasinilpotent. If
M = {0}, then T is quasinilpotent. Since TS = ST, from [17, Theorem 2.11] it follows that

σ(T − λS) ⊂ σ(T) − λσ(S) = −λσ(S), for every λ ∈ C. (17)

As 0 < σ(S), from (17) it follows that T − λS is invertible for every λ ∈ C, λ , 0. Therefore, T − λS is Saphar
for all λ , 0.

Suppose that M , {0}. Let P ∈ L(X) be the projection such that N(P) = M and R(P) = N. Then TP = PT,
and hence SP = PS, which implies that (M,N) ∈ Red(S).

From [17, Corollary 12.4 and Lemma 13.6] it follows that there exists an ϵ > 0 such that for |λ| < ϵ,
TM − λSM is Saphar. Since TN is quasinilpotent and SN is invertible and commutes with TN, as in the
previous part of the proof we can conclude that TN −λSN is invertible for all λ , 0. Thus TN −λSN is Saphar
for all λ , 0. Lemma 2.2 provides that T − λS is Saphar for each λ such that 0 < |λ| < ϵ.

Corollary 4.2. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i) σ1S(T,S) is closed;
(ii) The set σS(T,S) \ σ1S(T,S) consists of at most countably many points.

Proof. (i) It follows from Theorem 4.1.
(ii): Suppose that λ0 ∈ σS(T,S) \ σ1S(T,S). Then T − λ0S admits a GSD and according to Theorem 4.1

there exists ϵ > 0 such that T − λS is Saphar for each λ ∈ C such that 0 < |λ − λ0| < ϵ. This implies that
λ0 ∈ iso σS(T,S). Therefore, σS(T,S) \ σ1S(T,S) ⊂ iso σS(T,S), which implies that σS(T,S) \ σ1S(T,S) is at most
countable.

The following corollary is an improvement of [22, Corollary 5.6].

Corollary 4.3. Let T ∈ L(X).
(i) If T has the SVEP, then all accumulation points of σl(T) belong to σ1S(T).
(ii) If T′ has the SVEP, then all accumulation points of σr(T) belong to σ1S(T).

Proof. (i): It follows from the equivalence (ii)⇐⇒(vii) in Theorem 3.19.
(ii): It follows from the equivalence (ii)⇐⇒(vi) in Theorem 3.20.

Theorem 4.4. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i)

∂ σ1DGl (T,S) ⊂ ∂ σ1DWl (T,S) ⊂ ∂ σ1DΦl (T,S)
⊂ ⊂ ⊂ ⊂

∂ σ1D(T,S) ⊂ ∂ σ1DW(T,S) ⊂ ∂ σ1DΦ(T,S) ⊂ ∂ σ1DΦl,r (T,S) ⊂ ∂ σ1S(T,S),
⊂ ⊂ ⊂ ⊂

∂ σ1DGr (T,S) ⊂ ∂ σ1DWr (T,S) ⊂ ∂ σ1DΦr (T,S)

(ii) ησ1S(T,S) = ησ∗(T,S) = ησ1D(T,S) where σ∗ ∈ {σ1DΦl , σ1DΦr , σ1DWl , σ1DWr , σ1DΦ, σ1DW, σ1DΦl,r , σ1DGl , σ1DGr }.
(iii) The set σ∗(T,S) consists of σ1S(T,S) and possibly some holes in σ1S(T,S) where σ∗ ∈ {σ1DΦl , σ1DΦr , σ1DWl , σ1DWr ,
σ1DΦ, σ1DW, σ1DΦl,r , σ1DGl , σ1DGr , σ1D}.

The set σ1D(T,S) consists of σ∗(T,S) and possibly some holes in σ∗(T,S) where σ∗ ∈ {σ1DΦl , σ1DΦr , σ1DWl , σ1DWr ,
σ1DΦ, σ1DW, σ1DΦl,r , σ1DGl , σ1DGr }.
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Proof. From the equivalence (i)⇐⇒(iv) in Theorem 3.2 we have

λ < σ1DΦl (T,S) ⇐⇒ T − λS admits a GSD ∧ 0 < acc σΦl (T − λS,S)
⇐⇒ λ < σ1S(T,S) ∧ λ < acc σΦl (T,S),

which proves the equality

σ1DΦl (T,S) = σ1S(T,S) ∪ acc σΦl (T,S). (18)

Similarly, from the equivalence (i)⇐⇒(v) in Theorem 3.2 we have

σ1DΦl (T,S) = σ1S(T,S) ∪ int σΦl (T,S). (19)

From Corollary 4.2 (i) and (18) we conclude that σ1DΦl (T,S) is closed. As σ1DΦl (T,S) ⊂ σ(T,S) = σ(TS−1) we
conclude that σ1DΦl (T,S) is bounded, and hence σ1DΦl (T,S) is compact.

We prove that

int σ1DΦl (T,S) = int σΦl (T,S). (20)

The equality (19) provides the inclusion int σΦl (T,S) ⊂ σ1DΦl (T,S) and so int σΦl (T,S) ⊂ int σ1DΦl (T,S). It is
obvious that σ1DΦl (T,S) ⊂ σΦl (T,S), from which follows that int σ1DΦl (T,S) ⊂ int σΦl (T,S).

Since σ1DΦl (T,S) is closed we have that ∂σ1DΦl (T,S) ⊂ σ1DΦl (T,S) and from the equalities (19) and (20) it
follows that

∂σ1DΦl (T,S) ⊂ σ1S(T,S). (21)

Analogously, for H ∈ {Φr,Wl,Wr,Φ,W,Φl,r,Gl,Gr} from Theorems 3.6, 3.13, 3.15, 3.18, 3.19, 3.20 we have
that

σ1DH(T,S) = σ1S(T,S) ∪ acc σH(T,S) (22)
= σ1S(T,S) ∪ int σH(T,S). (23)

From (22) we get that σ1DH(T,S) is closed, while from (23) it follows that int σ1DH(T,S) = int σH(T,S), and
hence

∂σ1DH(T,S) ⊂ σ1S(T,S). (24)

Since S is invertible and S ∈ comm2(T), according to the proof of Theorem 3.22 we have that σ1D(T,S) =
acc σ(T,S), and hence σ1D(T,S) is closed. From the equivalence (i)⇐⇒(ii) in Theorem 3.22 it follows that
σ1D(T,S) = σ1S(T,S) ∪ int σ(T,S) and int σ1D(T,S) = int σ(T,S), which implies that

∂σ1D(T,S) ⊂ σ1S(T,S). (25)

Since the following inclusions hold

σ1DΦl (T,S) ⊂ σ1DWl (T,S) ⊂ σ1DGl (T,S)
⊂ ⊂ ⊂ ⊂

σ1S(T,S) ⊂ σ1DΦl,r (T,S) ⊂ ⊂ σ1DΦ(T,S) ⊂ σ1DW(T,S) ⊂ σ1D(T,S),
⊂ ⊂ ⊂ ⊂

σ1DΦr (T,S) ⊂ σ1DWr (T,S) ⊂ σ1DGr (T,S)

and since all aforementioned sets are compact, according to (1) and by using (21), (24) and (25) we get the
desired result.

Corollary 4.5. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). If one of σ1S(T,S), σ1DΦl,r (T,S),
σ1DΦ(T,S), σ1DW(T,S), σ1D(T,S), σ1DΦ∗ (T,S), σ1DW∗

(T,S), σ1DG∗ (T,S), where ∗ ∈ {l, r}, is at most countable, then
all of them are equal.
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Proof. It follows from Theorem 4.4 (ii).

Corollary 4.6. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then there are inclusions:

iso σ1DGl (T,S) ⊂ iso σ1DWl (T,S) ⊂ iso σ1DΦl (T,S)
⊂ ⊂ ⊂ ⊂

iso σ1D(T,S) ⊂ iso σ1DW(T,S) ⊂ iso σ1DΦ(T,S) ⊂ iso σ1DΦl,r (T,S) ⊂ iso σ1S(T,S).
⊂ ⊂ ⊂ ⊂

iso σ1DGr (T,S) ⊂ iso σ1DWr (T,S) ⊂ iso σ1DΦr (T,S)

Proof. It follows from Theorem 4.4 and Lemma 2.3 (i).

Theorem 4.7. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i) iso σ1DΦl (T,S) ⊂ iso σ1DΦ(T,S) ∪ int σe

dsc(T,S);
(ii) iso σ1DΦr (T,S) ⊂ iso σ1DΦ(T,S) ∪ int σe

D+
(T,S);

(iii) iso σ1DWl (T,S) ⊂ iso σ1DW(T,S) ∪ int σBW−
(T,S);

(iv) iso σ1DWr (T,S) ⊂ iso σ1DW(T,S) ∪ int σBW+
(T,S);

(v) iso σ1DGl (T,S) ⊂ iso σ(T,S) ∪ int σdsc(T,S);
(vi) iso σ1DGr (T,S) ⊂ iso σ(T,S) ∪ int σD+ (T,S).

Proof. (i) Let λ0 ∈ iso σ1DΦl (T,S)\int σe
dsc(T,S). There exists a sequence (λn) converging to λ0 such that

de(T−λnS) < ∞ and T−λnS is essentially left generalized Drazin invertible for every n ∈N. Fix an arbitrary
n ∈N. By Theorem 3.2, there exists (Mn,Nn) ∈ Red(T−λnS) such that T−λnS = ((T−λnS)Mn )⊕ ((T−λnS)Nn ),
where (T − λnS)Mn is left Fredholm and (T − λnS)Nn is quasinilpotent. From the equality

βm(T − λnS) = βm((T − λnS)Mn ) + βm((T − λnS)Nn ) (26)

for an arbitrary m ∈ N, since de(T − λnS) < ∞, we know that de((T − λnS)Mn ) < ∞. As (T − λnS)Mn is left
Fredholm then α((T−λnS)Mn ) < ∞, which implies that ae((T−λnS)Mn ) = 0. According to [17, Lemma 22.11],
de((T − λnS)Mn ) = ae((T − λnS)Mn ) = 0, i.e. β((T − λnS)Mn ) < ∞ and so (T − λnS)Mn is a Fredholm operator.
Therefore, T − λnS is Fredholm-g-Drazin invertible for every n ∈ N and hence λ0 ∈ ∂σ1DΦ(T,S). From
Theorem 4.4 (i) we have that ∂σ1DΦ(T,S) ⊂ σ1DΦl (T,S), which together with λ0 ∈ iso σ1DΦl (T,S)∩ ∂σ1DΦ(T,S)
implies that λ0 ∈ iso σ1DΦ(T,S), by Lemma 2.3 (ii).

(ii) Follows similarly to the proof of (i), since the equality

αm(T − λnS) = αm((T − λnS)Mn ) + αm((T − λnS)Nn ) (27)

holds for every m ∈N and ∂σ1DΦ(T,S) ⊂ σ1DΦr (T,S).
(iii) Letλ0 ∈ iso σ1DWl (T,S)\int σBW−

(T,S). There exists a sequence (λn) converging toλ0 such that T−λnS
is lower semi B-Weyl and left Weyl-g-Drazin invertible for every n ∈N. Take an arbitrary n ∈N. We can find
mn ∈N such that R((T −λnS)mn ) is closed and (T −λnS)mn : R((T −λnS)mn )→ R((T −λnS)mn ) is a lower semi-
Fredholm operator with nonnegative index. Also, we can find a pair of subspaces (Mn,Nn) ∈ Red(T − λnS),
such that the operator (T − λnS)Mn is left Weyl and (T − λnS)Nn is quasinilpotent.

As in Theorem 3.13, we have

αmn (T − λnS) = α((T − λnS)mn ), (28)
βmn (T − λnS) = β((T − λnS)mn ), (29)

and from (27) and (26) we have the inequalities

αmn (T − λnS) ≥ αmn ((T − λnS)Mn ), (30)
βmn (T − λnS) ≥ βmn ((T − λnS)Mn ). (31)

Since β((T − λnS)mn ) < ∞, from (29) and (31) we conclude that de((T − λnS)Mn ) ≤ mn < ∞. We also have
α((T − λnS)Mn ) < ∞, as the operator is left Weyl. Therefore, ae((T − λnS)Mn ) = 0 and so de((T − λnS)Mn ) =
ae((T − λnS)Mn ) = 0. Hence, (T − λnS)Mn is a Fredholm operator.
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From [3, Proposition 2.22], because T − λnS is lower semi B-Weyl, and a direct sum of a semi-Fredholm
operator and a quasinilpotent one, we have

i(T − λnS) = i((T − λnS)Mn ) ≤ 0. (32)

Also, since T − λnS is lower semi B-Weyl we have (see [3, Proposition 2.12, Definition 2.13])

i(T − λnS) = i((T − λnS)mn ) ≥ 0. (33)

Equalities (32) and (33) imply that T−λnS is Weyl-g-Drazin for every n ∈N and hence λ0 ∈ ∂σ1DW(T,S).
From Theorem 4.4 (i) we have that ∂σ1DW(T,S) ⊂ σ1DWl (T,S), which together with λ0 ∈ iso σ1DWl (T,S) ∩
∂σ1DW(T,S) implies that λ0 ∈ iso σ1DW(T,S), by Lemma 2.3 (ii).

(iv) Similarly to the proof of (iii).
(v) Let λ0 ∈ iso σ1DGl (T,S)\int σdsc(T,S). There exists a sequence (λn) converging to λ0 such that T − λnS

is left generalized Drazin invertible and d(T − λnS) < ∞. For an arbitrary fixed n ∈ N, there exists a pair
(Mn,Nn) ∈ Red(T−λnS) such that T−λnS = (T−λnS)Mn ⊕ (T−λnS)Nn , where (T−λnS)Mn is left invertible and
(T−λnS)Nn is quasinilpotent. The ascent of the operator (T−λnS)Mn is zero since it is injective, and the descent
is finite since d((T − λnS)Mn ) ≤ d(T − λnS) < ∞. From [2, Theorem 1.20], a((T − λnS)Mn ) = d((T − λnS)Mn ) = 0,
so the operator (T − λnS)Mn is invertible. Hence, λ0 ∈ ∂σ(T,S). Obviously, ∂σ(T,S) ⊂ σ1DGl (T,S) and
λ0 ∈ iso σ1DGl (T,S) ∩ ∂σ(T,S) implies that λ0 ∈ iso σ(T,S), by Lemma 2.3 (ii).

(vi) Similarly to the proof of (v).

Corollary 4.8. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i) σ1DΦ(T,S) = σ1DΦl (T,S) ∪ int σe

dsc(T,S);
(ii) σ1DΦ(T,S) = σ1DΦr (T,S) ∪ int σe

D+
(T,S);

(iii) σ1DW(T,S) = σ1DWl (T,S) ∪ int σBW−
(T,S);

(iv) σ1DW(T,S) = σ1DWr (T,S) ∪ int σBW+
(T,S).

Proof. (i) From the equivalence (i)⇐⇒(ix) in Theorem 3.6 we have that int σe
dsc(T,S) ⊂ σ1DΦr (T,S) ⊂ σ1DΦ(T,S)

and since σ1DΦl (T,S) ⊂ σ1DΦ(T,S), it follows that σ1DΦl (T,S) ∪ int σe
dsc(T,S) ⊂ σ1DΦ(T,S).

In order to prove the converse inclusion suppose that there exists some λ0 ∈ σ1DΦ(T,S) that does not
belong to the set σ1DΦl (T,S) ∪ int σe

dsc(T,S). Let (λn) be the sequence converging to λ0 such that T − λnS
is essentially left generalized Drazin invertible and de(T − λn) < ∞. From the proof of Theorem 4.7(i) we
can see that λ0 ∈ ∂σ1DΦ(T,S) ⊂ σ1DΦl (T,S) which contradicts the assumption that λ0 does not belong to
σ1DΦl (T,S).

Remaining inclusions can be proved analogously.

Corollary 4.9. Let T,S ∈ L(X), and let S be invertible and S ∈ comm2(T). Then
(i) iso σ1S(T,S) ⊂ iso σ1DΦl (T,S) ∪ int σe

D+
(T,S);

(ii) iso σ1S(T,S) ⊂ iso σ1DΦr (T,S) ∪ int σe
dsc(T,S);

(iii) iso σ1S(T,S) ⊂ iso σ1DWl (T,S) ∪ int σBW+
(T,S);

(iv) iso σ1S(T,S) ⊂ iso σ1DWr (T,S) ∪ int σBW−
(T,S);

(v) iso σ1S(T,S) ⊂ iso σ1DGl (T,S) ∪ int σD+ (T,S);
(vi) iso σ1S(T,S) ⊂ iso σ1DGl (T,S) ∪ int σp(T,S);
(vii) iso σ1S(T,S) ⊂ iso σ1DGr (T,S) ∪ int σdsc(T,S);
(vii) iso σ1S(T,S) ⊂ iso σ1DGr (T,S) ∪ int σcp(T,S).

Proof. (i) Let λ0 ∈ iso σ1S(T,S)\int σe
D+

(T,S). There exists a sequence (λn) that converges to λ0 and for
which T − λnS admits a GSD, while λn < σe

D+
(T,S). Then 0 < int σe

D+
(T − λnS,S) for each n ∈ N, hence

according to Theorem 3.2, T − λnS is essentially left generalized Drazin invertible. Therefore, we have that
λ0 ∈ ∂σ1DΦl (T,S)∩ iso σ1S(T,S) which together with ∂σ1DΦl (T,S) ⊂ σ1S(T,S) from Theorem 4.4 (i), by Lemma
2.3 (ii) implies that λ0 ∈ iso σ1DΦl (T,S).

All the remaining inclusions are proved similarly, by using Theorems 3.6, 3.13, 3.15, 3.19 and 3.20.
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