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Essentially left and right generalized Drazin invertible operators and
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Abstract. In this paper we define and study the classes of the essentially left and right generalized Drazin
invertible operators and of the left and right Weyl-g-Drazin invertible operators by means of the analytical
core and the quasinilpotent part of an operator. We show that the essentially left (right) generalized Drazin
invertible operator can be represented as a sum of a left (right) Fredholm and a quasinilpotent operator.
Analogously, the left (right) Weyl-g-Drazin invertible operator can be represented as a sum of a left (right)
Weyland a quasinilpotent operator. We also characterize these operators in terms of their generalized Saphar
decompositions, accumulation and interior points of various spectra of operator pencils. Furthermore, we
expand the results from [10], on the left and right generalized Drazin invertible operators. Special attention
is devoted to the investigation of the corresponding spectra of operator pencils.

1. Introduction

Let L(X) denote the Banach algebra of all bounded linear operators acting on an infinite-dimensional
Banach space X. If T € L(X) and M and N are two closed T-invariant subspaces of X such that X = M @& N,
we say that T is completely reduced by the pair (M, N) and it is denoted by (M, N) € Red(T). In this case we
write T = Ty @ Ty and say that T is the direct sum of Ty; and Ty. A closed subspace M of X is said to be
complemented if there is a closed subspace N of X such that X = M @& N.

The concept of Drazin inverse, first defined in 1958. for semigroups [9], has since developed considerably

and gained a large the number of applications as well as generalizations. An operator T € L(X) is Drazin
invertible if there exists S € L(X) that satisfies

ST =TS, STS = Sand T — TST is nilpotent.

Koliha [15] generalized this concept by replacing the third condition of the previous definition with the
condition that the operator T — TST is quasinilpotent, thus defining a generalized Drazin inverse of T. For
T € L(X), Ho(T) is the quasinilpotent part of T and K(T) is the analytical core of T [2]. The most important
properties of generalized Drazin invertible operators are listed in the following theorem.
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Theorem 1.1. [8, 11, 15, 18] For T € L(X) the following statements are equivalent:

(i) T is generalized Drazin invertible;

(ii) 0 ¢ acco(T);

(iif) X = Ho(T) ® K(T) with at least one of the component spaces closed;

(iv) Both Ho(T) and K(T) are closed and X = Ho(T) & K(T), Tx(r) is invertible, Tr, (1) is quasinilpotent;
(v) There exists (M, N) € Red(T) such that Ty is invertible, Ty is quasinilpotent;

(vi) There exists a projection P € L(X) such that PT = TP, T + P is invertible, TP is quasinilpotent.

One of the generalizations of this class of operators are the left (right) generalized Drazin invertible
operators introduced by D. E. Ferreyra, F. E. Levis and N. Thome in [10]. An operator T € L(X) is called
left generalized Drazin invertible if Hy(T) is closed and there exists a closed subspace M of X such that
(M, Ho(T)) € Red(T) and T(M) is a complemented subspace of M. If K(T) is closed and there exists a closed
subspace N of X, N C Hy(T), such that (K(T), N) € Red(T) and K(T) N N(T) is complemented in K(T), then
T is called right generalized Drazin invertible. D. E. Ferreyra, F. E. Levis and N. Thome proved that every
left (right) generalized Drazin invertible operator can be decomposed as a sum of a left (right) invertible
operator and a quasinilpotent one. The essentially left (right) Drazin invertible operators are recently
defined and characterized in [22], where it is shown that they can be represented as a sum of a left (right)
Fredholm and a nilpotent operator.

In the third section we consider new classes of operators called the essentially left (right) generalized
Drazin invertible operators. An operator T € L(X) is essentially left generalized Drazin invertible if there
exists (M, N) € Red(T) such that N ¢ Hy(T), N(T) " M is finite-dimensional and T(M) is complemented in M,
while T is essentially right generalized Drazin invertible if there exists (M, N) € Red(T) such that N ¢ Hy(T),
M > K(T), R(T) N M is of finite codimension in M and N(T) N M is complemented in M. We show that every
essentially left (right) generalized Drazin invertible operator can be decomposed as a sum of a left (right)
Fredholm and a quasinilpotent operator. In the same manner we generalize the class of the left (right)
Weyl-Drazin invertible operators from [22] by defining the left (right) Weyl-g-Drazin invertible operators,
and show that they can be represented as a sum of a left (right) Weyl and a quasinilpotent operator. For the
newly defined classes of operators we proceed to investigate properties analogue to those in Theorem 1.1.

If for an operator T € L(X) there exists a pair (M, N) € Red(T) such that Ty is Saphar and Ty is quasinilpo-
tent, we say that T admits a generalized Saphar decomposition. Using generalized Saphar decomposition
we give some characterizations of essentially left (right) generalized Drazin invertible operators, as well as
left (right) Weyl-g-Drazin invertible operators. We also observe the similar characteristics of the left (right)
generalized Drazin invertible operators, thus extending the results of [10]. By comparing Theorems 3.2 and
3.19, reader should note how many “nice” properties of the left generalized Drazin invertible operators
no longer hold for the essentially left generalized Drazin invertible operators. Moreover, we show that
if T € L(X) admits a generalized Saphar decomposition, then its dual operator T" € L(X’) also admits a
generalized Saphar decomposition, which is the improvement of [1, Theorem 1.43]. We further apply this
result to the observed operators. Theorem 3.23 at the end of the third section illustrates the importance of
SVEP by showing how adding a request for a SVEP at a point erases the differences between some classes
of operators. Throughout the paper we use various types of spectra of bounded linear operator pencils
which have the form T — AS, where A € C, T, S € L(X).

By applying the results from the third section, in the forth section we establish relations between some
known types of spectra of linear operator pencils and the newly defined ones, by observing their boundaries,
convex hulls, accumulation points and isolated points. We devote special attention to the S-generalized
Saphar spectrum o0,5(T, S) and its relation to the S-essential spectra, especially in the context of isolated
points.

The paper is organized into four sections. Section 2 contains basic terminology and notations, including
some important results that we often refer to in our later work. Our main results concerning operators,
their definitions and characterizations, are gathered in Section 3, while in Section 4 we observe various
types of spectra of operator pencils and how they relate to each other.
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2. Basic notation

Throughout this paper we use IN (INp) to denote the set of all positive (non-negative) integers and C to
denote the set of all complex numbers. If K C C, then JK is the boundary of K and accK, intK and iso K
are the sets of accumulation points, interior points and isolated points of K, respectively. The connected
hull of a compact subset K of the complex plane C, denoted by 7K, is the complement of the unbounded
component of C \ K [13, Definition 7.10.1]. A hole of K is a bounded component of C \ K, and so a hole of K
is a component of K \ K. We racall that for compact subsets H, K C C, the following implication holds ([13,
Theorem 7.10.3]):

JHCKcH=JHCJKcKcHcnK=nH. (1)

For T € L(X) we use N(T) and R(T), respectively, to denote the null-space and the range of T. It is
well-known that T € L(X) is left invertible if and only if T is injective and R(T) is a complemented subspace
of X. Meanwhile, T € L(X) is right invertible if and only if T is onto and N(T) is a complemented subspace
of X. We use G(X) and G,(X), respectively, to denote the semigroups of left and right invertible operators
on X.

If S € L(X) such that S # 0, then the S-spectrum of T, the S-left spectrum of T, the S-right spectrum of T,
the S-point spectrum of T, the S-approximate point spectrum of T and the S-surjective spectrum of T, are
defined respectively as

o(T,S) = {AeC:T-ASisnotinvertible},

o(T,S) = {AeC:T-ASisnotleftinvertible},
o/(T,5) = {A€C:T-ASisnotright invertible},
0p(T,S) = {Ae€C:T- ASisnotinjective},
osp(T,5) = {Ae€C:T- ASisnotbounded below},
op(T,S) = {A€C:T- AS does not have dense range},
osu(1,S5) = {Ae€C: T~ ASisnotsurjective}.

Nullity of T € L(X) is defined by a(T) = dimN(T) in case of a finite dimensional null-space and by a(T) =
oo when N(T) is infinite dimensional. Similarly, defect of T is defined as (T) = dimY/R(T) = codimR(T) if
Y/R(T) is finite dimensional, and S(T) = oo otherwise. An operator T € L(X) is called upper semi-Fredholm,
or T € ®,.(X),if a(T) < co and R(T) is closed, while T € L(X) is called lower semi-Fredholm, or T € ®_(X),
if B(T) < oco. The set of semi-Fredholm operators is defined by @.(X) = @, (X) U ®_(X), while the set of
Fredholm operators is defined by ®(X) = @, (X) N d_(X).

If T € ®.(X), the index of T is defined by i(T) = a(T) — B(T). The set of upper semi-Weyl operators,
denoted by W.(X), is the set of upper semi-Fredholm operators with non-positive index. The set of lower
semi-Weyl operators, denoted by W_(X), is the set of lower semi-Fredholm operators with non-negative
index. The set of Weyl operators is defined by W(X) = W.(X) N W_(X) ={T € &(X) : i(T) = 0}.

An operator T € L(X) is relatively regular (or g-invertible) if there exists S € L(X) such that TST = T. It
is well-known that T is relatively regular if and only if R(T) and N(T) are complemented subspaces of X.
An operator T € L(X) is called left Fredholm, or T € ®(X), if T is relatively regular upper semi-Fredholm.
Also, T € L(X) is called right Fredholm, or T € @,(X), if T is relatively regular lower semi-Fredholm. If T
is left or right Fredholm, it belongs to the set ®;,(X) = ©)(X) U ®,(X). An operator T € L(X) is left (right)
Weyl if T is left (right) Fredholm operator with non-positive (non-negative) index. We use ‘W;(X) (W:(X))
to denote the set of all left (right) Weyl operators. Evidently, T is left (right) Weyl if and only if T is upper
(lower) semi-Weyl and relatively regular.

For S € L(X) such that S # 0 and H = ®,,D_, O, D, Oy, D, W, W_, W, W,, W the corresponding
S-spectrum of T € L(X) is defined by

ou(T,S) = {A € C: T—AS ¢ H(X)).
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For a bounded linear operator T and n € INy define T), as the restriction of T to R(T") viewed as a map
from R(T") into R(T") (in particular, To = T). If T € L(X) and if there exists an integer n for which the
range space R(T") is closed and T, is Fredholm (resp. upper semi-Fredholm, lower semi-Fredholm, Weyl,
upper semi-Weyl, lower semi-Weyl), then T is called a B-Fredholm (resp. upper semi-B-Fredholm, lower semi-B-
Fredholm, B-Weyl, upper semi-B-Weyl, lower semi-B-Weyl) operator [4-6]. If S € L(X), S # 0, the S-B-Fredholm
spectrum, the S-upper semi-B-Fredholm spectrum, the S-lower semi-B-Fredholm spectrum, the S-B-Weyl
spectrum, the S-upper semi-B-Weyl spectrum, the S-lower semi-B-Weyl spectrum are denoted by opa(T, S),
oo, (T,S), 0ga_(T,S), opw(T,S), opw,(T,S) and opaw_(T, S), respectively.

We define the infimum of the empty set to be co. The ascent of an operator T € L(X) is defined by
a(T) = inf{n € Ny : N(T") = N(T"*!)}, and the descent of T is defined by d(T) = inf{n € Ny : R(T") = R(T"*1)}.

For T € L(X) and n € INy we set

a,(T) = dimN(T")/N(T") and B,(T) = dimR(T")/R(T"*1).

From [14, Lemmas 3.1 and 3.2] it follows that a,(T) = dim(N(T) N R(T")) and B,(T) = codim (R(T) + N(T")).

For each n € Ny, T induced a linear transformation from the vector space R(T")/R(T"*!) to the space
R(T™1)/R(T"*?) and k,(T) denotes the dimension of the null space of the induced map. We recall from [12]
that

kn(T) = dim(R(T") N N(T))/(R(T"*") N N(T))
and
ku(T) = dim(R(T) + N(T"1))/(R(T) + N(T™)).

This implies that k,(T) = a,(T) — au+1(T) whenever a,41(T) < oo, and k,(T) = pu(T) — pn+1(T) whenever
Bun+1(T) < oo. If there is d € INy for which k,(T) = 0 for n > d, then T is said to have uniform descent for n > d.

For T € L(X) and every d € Ny, the operator range topology on R(T") is defined by the norm || - |l; such
that for every y € R(T%),

Iylla = inf{llxdl : x € X, y = T"x).

For T € L(X) if there is d € INp for which T has uniform descent for n > d and if R(T") is closed in the
operator range topology of R(T?) for n > d, then we say that T has eventual topological uniform descent and,
more precisely, that T has fopological uniform descent for (TUD for brevity) n > d [12].

For T € L(X) we say that it is Kafo if R(T) is closed and N(T) c R(T") for every n € IN. Every Kato
operator has TUD for n > 0. An operator T € L(X) is said to be Saphar if it is a relatively regular Kato
operator.

The essential ascent a.(T) and essential descent d.(T) of T are defined by a.(T) = inf{n € Ny : a,(T) < oo}
and d,(T) = inf{n € Ny : B,(T) < oo}. We remark that 4,(T) = 0 if and only if a(T) < oo, and 4,(T) = 0 if and
only if B(T) < co. So, T € L(X) is Fredholm if and only if 4,(T) = d.(T) = 0.

If T,S € L(X) such that S # 0, the S-descent spectrum of T, the S-essential descent spectrum of T are
defined, respectively, by:

0asc(T,S) = {A€C:d(T—-AS) = oo},
GZSC(T, S) = {AeC:d,(T - AS) = c0}.

It is well known that T € L(X) is Drazin invertible if and only if a(T) < oo and d(T) < . An operator
T € L(X) is called upper Drazin invertible operator if a(T) < co and R(T*D*1) is closed. If d(T) < oo and R(T*D)
is closed, then T is called lower Drazin invertible. An operator T € L(X) is an essentially upper Drazin invertible
operator if a,(T) < co and R(T*(1*1) is closed. If d,(T) < co and R(T*) is closed, then T is called essentially
lower Drazin invertible.

If T,S € L(X) such that S # 0, the S-upper Drazin spectrum of T, the S-lower Drazin spectrum of T,
the S-Drazin spectrum of T, the S-essentially upper Drazin spectrum of T, the S-essentially lower Drazin
spectrum of T are denoted as op, (T, S), op_(T, S), op(T, S), aa(T, S), o}, (T, S), respectively.
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The following two subspaces we use to define the new sets of operators. The quasinilpotent part of an
operator T € L(X) is defined by

Ho(T) = {x € X : lim ||T"x||"'" = 0}.
n—00

Obviously, N(T) € Hy(T) and it is well known that an operator T € L(X) is quasinilpotent if and only if
Hy(T) = X. The analytical core of T, denoted by K(T), is the set of all x € X for which there exist 5 > 0 and a
sequence (), in X satisfying

Tuy =x, Tuyy1 =u, forall n € IN, |lu,|l < c"|lx|| forall n € IN.

Clearly, K(T) is a subset of R(T). In general, the quasinilpotent part and the analytical core are not closed.
An operator T € L(X) has the single-valued extension property at Ay € C, SVEP at Ay, if for every open
disc D), centered at Ay the only analytic function f : D, — X which satisfies (T-AI)f(A) =0 forall A € D,,,
is the function f = 0.
If K c L(X) the commutant of K is defined by

comm(K) = {A € L(X) : AB = BA for every B € K}.
The commutant of T € L(X) is comm(T) = comm(K) with K = {T}, and the double commutant is defined
as comm?(T) = comm(comm(T)).
The following lemmas are repeatedly used throughout the paper.

Lemma 2.1. [21, 22] Let T € L(X) and let there exist a pair (M, N) € Red(T). Then the following statements hold:
(i) T is g-invertible if and only if Ty and Ty are g-invertible.

(ii) T is left (right) Fredholm if and only if Tyg and Ty are left (right) Fredholm, and in that case i(T) = i(Ty) + i(Tn).
(iii) If Tag and Ty are left (right) Weyl, then T is left (right) Weyl.

(iv) If T is left (right) Weyl and Ty is Weyl, then Ty is left (right) Weyl.

Lemma 2.2. [22] For T € L(X) let there exist a pair (M, N) € Red(T). Then T is Saphar if and only if Ty and Ty are
Saphar.

Lemma 2.3. Let E and F be sets of the complex plane. Then:
(i) IfdF CE CF, thenisoF CisoE.
(ii) If OF C E and F is closed, then dF Niso E C iso F.

Proof. See [7, Lemma2.2]. O

The dual space of X and the dual operator of T € L(X) are denoted respectively by X’ and T” € L(X’). If
M is the subspace of X, the annihilator of M is the closed subspace of X’, denoted by M* and defined by

M* ={f e X": f(x) = 0 for every x € M}.

Lemma 2.4. [22]Let X = X1 Xo®---® X,, where X1, X, ..., X, are closed subspaces of X and let M; be a subspace
of Xi,i=1,...,n. Then the subspace M1 ® My @ --- ® M,, is a complemented subspace of X if and only if M; is a
complemented subspace of X; for eachi € {1,...,n}.

Lemma 2.5. [22] Let M be complemented subspace of X and let My be a closed subspace of X such that M C M.
Then M is complemented in M.

Lemma 2.6. Let M be a complemented subspace of X. Then M~ is a complemented subspace of X'.

Proof. Let N be a closed subspace of X such that X = M@ N, and let P € B(X) be the projection of X such
that R(P) = M and N(P) = N. Then P’ € B(X’) is a projection, N(P’) = R(P)* = M* is closed, and since
R(P) is closed then R(P’) = N(P)* = N* is closed. Thus X’ = R(P’) @ N(P’) = N+ & M*, and hence M* is
complemented in X’. O
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3. The essentially left and right generalized Drazin invertible operators

If for an operator T € L(X) there exists a pair (M, N) € Red(T) such that Ty, is Kato and T is quasinilpotent,
we say that T admits a generalized Kato decomposition, or shortly T admits a GKD(M, N). Furthermore, if Ty,
is Saphar we say that T admits a generalized Saphar decomposition, or T admits a GSD(M, N).

Definition 3.1. An operator T € L(X) is essentially left generalized Drazin invertible if there exists (M, N) € Red(T)
such that N € Ho(T), N(T) N M is finite-dimensional and T(M) is complemented in M.

If the operator T € L(X) is essentially left generalized Drazin invertible, we will write T € gD®;(X). This
notation is justified by part (ii) of the following theorem.

Theorem 3.2. Let T,S € L(X), and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is essentially left generalized Drazin invertible;

(ii) There exists (M, N) € Red(T) such that Ty, is a left Fredholm operator and Ty is quasinilpotent;

(iif) There exists a projection P € L(X) such that TP = PT, T + P is left Fredholm and TP is quasinilpotent;

(iv) T admits a GSD and 0 ¢ accoo, (T, S);

(v) T admits a GSD and 0 ¢ intoe, (T, S);

(vi) T admits a GSD and 0 ¢ accoo, (T, S);

(vii) T admits a GSD and 0 ¢ intoe, (T, S);

(viii) T admits a GSD and 0 ¢ accop, (T, S);

(ix) T admits a GSD and 0 ¢ int o5, (T, 5).

Proof. (i)==(ii) Let N € Hy(T) and let M be a closed subspace of X such that (M, N) € Red(T), N(T) n M
is finite-dimensional and T(M) is complemented in M. The operator Ty is quasinilpotent since Hy(Tn) =
Hy(T) N N = N. For the operator Ty we have a(Ty) = dimN(Ty) = dim(N(T) N M) < oo and R(Ty) = T(M)
is closed and complemented in M. Therefore, Ty is left Fredholm.

(ii)==(i) Suppose that there exists a pair (M, N) € Red(T) such that Ty, is a left Fredholm operator and Ty
is quasinilpotent. Since Ty is quasinilpotent, we have that N = Hy(Tn) € Ho(T) is closed and complemented
subspace of X. Furthermore, if Ty is left Fredholm, we have that dim(N(T) N M) = dimN(Tum) = a(Tm) < o0
and T(M) = R(Twm) is closed and complemented in M.

(ii)==(iii) Suppose that there exists (M, N) € Red(T) such that T is left Fredholm and Ty is quasinilpo-
tent. Let P € L(X) be the projection such that N(P) = M and R(P) = N. Obviously, TP = PT since M and N
are T-invariant. Both TP and T + P are reduced by the pair (M, N) and we get the following decompositions

TP=0®Ty and T+ P =Ty & (Ty + Iy). (2)

Operator TP is quasinilpotent as a direct sum of quasinilpotent operators. This we can acquire by calculating
its spectrum o(TP) = 0(0) U o(Tn) = {0}. Moreover, since Ty is quasinilpotent we know that Ty + Iy is
invertible. Hence, by Lemma 2.1(ii) we conclude that T + P is left Fredholm.

(iii)==(i) Let P € L(X) be the projection such that TP = PT, TP is quasinilpotent and T + P is a left
Fredholm operator. If M = N(P) and N = R(P), then (M,N) € Red(T). From (2) we have that Ty is
quasinilpotent on N since {0} = ¢(TP) = 6(0) Uo(Tn) = {0} Uo(Tn) and Ty is left Fredholm by Lemma 2.1(ii).

(ii)==(iv) Suppose that there exists (M, N) € Red(T) such that Ty is left Fredholm and Ty is quasinilpo-
tent. Lemma 2.1(i) and [17, Theorem 16.21] imply that there exists (M1, M) € Red(T») such that dimM, < oo,
Ty, is Saphar and Ty, is nilpotent. Then, (M1, M @ N) € Red(T), Ty, is Saphar and Ta,ey is quasinilpotent.
Hence, T admits a GSD.

Let P € L(X) be the projection such that N(P) = M and R(P) = N. Then TP = PT, and hence SP = PS,
which implies that (M, N) € Red(S). As S is invertible, it follows that Sy and Sy are invertible. Since
TnSy = SyTy, from [17, Theorem 2.11] it follows that

o(Tn — ASN) € o(Tn) — Ao(Sn) = —Ao(Sw), for every A € C. 3)
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Since 0 ¢ o(Sn), from (3) it follows that Ty — ASy is invertible for every A € C, A # 0. From the openness
of the set ®;(M) follows the existence of € > 0 such that Ty; — ASy is left Fredholm for |A| < €. Now, for
0 <|A| < €, from the decomposition

T—AS =Ty — ASm) ® (Tn — ASnN), 4)

and Lemma 2.1(ii), we get that T — AS is left Fredholm for 0 < |A| < e. Hence, 0 ¢ acc 0o,(T, S).

Implications (iv)=(vi)==(viii)==(ix) and (iv)==(v)==(vii)==>(ix) are clear.

(ix)=(ii) Suppose that T admits a GSD and 0 ¢ intof, (T S). Then there exists a decomposition
(M, N) € Red(T) such that Ty is Saphar and Ty is quasmﬂpotent Since Ty has TUD for n > 0, according to

[12, Theorem 4.7] we conclude that there exists an € > 0 such that for every A € C, the following implication
holds:

0 <|Al <€ = au(Tm — ASp) = a(Ty), for every n € INp. (5)

Also from [12, Theorem 4.7] it follows that aD (T, S) is closed. Since 0 ¢ int o5, (T, S), we conclude that there
exists y € C such that 0 < |u| < € and T — uS is essentially upper Drazin invertible. Hence there is n € N
such that a,,(Tm — Sm) < 0. Now according to (5) we obtain that a(Tx) < o0. As Ty is Saphar we conclude
that Ty is left Fredholm. [

Remark 3.3. Suppose that T € L(X) is essentially left generalized Drazin invertible, i.e. there exists (M, N) €
Red(T) such that N ¢ Hy(T), N(T) N M is finite-dimensional and T(M) is complemented in M. Notice that
if N = Ho(T) then N(T) N M < Ho(T) N M = {0} since (N, M) € Red(T). In this case, T is a left generalized
Drazin invertible operator, defined in [10], decomposable to a sum of a left invertible and a quasinilpotent
operator. e

Example 3.4. Observe a backward unilateral shift operator V € ¢(IN) defined by
V(x1,x2,...) = (x2,x3,...).

Obviously, V is not injective, and yet from [23, Theorem 3.5] we see that 0 ¢ 04,(V), so V is left Fredholm.
Therefore, V is essentially left generalized Drazin invertible, but is not left generalized Drazin invertible.

Definition 3.5. An operator T € L(X) is essentially right generalized Drazin invertible if there exists (M,N) €
Red(T) such that N € Hy(T), M > K(T), R(T) N M is of finite codimension in M and N(T) N M is complemented in
M.

We denote by gD®,(X) the set of essentially right generalized Drazin invertible operators acting on X.

Theorem 3.6. Let T,S € L(X), and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is essentially right generalized Drazin invertible;

(ii) There exists (M, N) € Red(T) such that Ty is a right Fredholm operator and Ty is quasinilpotent;

(iii) There exists a projection P € L(X) such that TP = PT, T + P is right Fredholm and TP is quasinilpotent;
(iv) T admits a GSD and 0 ¢ acc oo, (T, S);

(v) T admits a GSD and 0 ¢ intoo, (T, S);

(vi) T admits a GSD and 0 ¢ accoe_(T, S);

(vii) T admits a GSD and 0 ¢ intog_(T, S);

(viii) T admits a GSD and 0 ¢ acc o, (T,S);

(ix) T admits a GSD and 0 ¢ int GD,(Tr S);

() T admits a GSD and 0 ¢ acc o (T, S);

(xi) T admits a GSD and 0 ¢ int odSC(T, S).
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Proof. (i)==(ii) Suppose that there exist closed subspaces N ¢ Ho(T) and M D> K(T) such that (M, N) € Red(T),
R(T) N M is of finite codimension in M and N(T) N M is complemented in M. Then T = Ty @ Ty and Ty
is quasinilpotent. For the operator Ty we have B(Ty) = codim R(Ty) = dimM/(R(T) N M) < oo and
N(Tum) = N(T) N M is complemented in M. Therefore, Ty is right Fredholm.

(ii)==(i) Suppose that there exists a pair (M, N) € Red(T) such that T, is a right Fredholm operator and
Ty is quasinilpotent. Then N c Hy(T) and codim R(Tx1) = f(Tm) < o0, i.e. R(T) N M is of finite codimension
in M. Easily we see that N(T) N M = N(Tu) is complemented in M. Since (M,N) € Red(T) and Ty is
quasinilpotent from the proof of [1, Theorem 1.41 (i)] it follows that K(T) = K(Tsm) C M.

Proofs of (ii)==(iii), (iii)==(ii) and (ii)==(iv) can be derived analogously to the proof of Theorem 3.2.

Implications (iv)=(vi)==(viii)=(x)==(xi) and (iv)=(v)=(vii)==(ix)=>(xi) are clear.

(xi)=>(ii) Suppose that T admits a GSD and 0 ¢ into (T,S5). Then there exists a decomposition
(M, N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. From [12, Theorem 4.7] it follows that
05, (T, S) is closed. Again according to [12, Theorem 4.7] we conclude that there exists € > 0 such that for
every A € C, the following implication holds:

0 <|Al <€ = Bu(Tm — ASm) = B(Tm), for every n € INy. (6)

Since 0 ¢ into? (T, S), there exists u € C such that 0 < |u| < € and T — uS has finite essential descent. Hence
there is n € Ny such that B,(Tsm — uSm) < . Now according to (6) we obtain that f(Ty) < oo. As Ty is
Saphar we conclude that T} is right Fredholm. [

Remark 3.7. Let T € L(X) be essentially right generalized Drazin invertible, i.e. there exists (M, N) € Red(T)
such that N ¢ Hy(T), M > K(T), R(T) N M is of finite codimension in M and N(T) N M is complemented in
M. If K(T) = M, then T is a right generalized Drazin invertible operator, defined in [10], decomposed as a
sum of a right invertible and a quasinilpotent operator. Indeed, K(T) N N(T) = M N N(T) is complemented
in K(T) and hence T is right generalized Drazin invertible. o

Example 3.8. The forward unilateral shift U € 2(IN) defined by
u(xlr-XZI .. ) = (O/xlrx2/‘ . )

is obviously not surjective. However, from [23, Theorem 3.4] we can see that U is right Fredholm. Therefore,
U is essentially right generalized Drazin invertible, but is not right generalized Drazin invertible.

Theorem 3.9. Let T € L(X). If T admits a GSD(M, N), then T" admits a GSD(N*, M*).

Proof. There exists a pair (M, N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. Let Py be
the projection of X onto M along N. Then TPy = PyT, and hence TP}, = P},T". As R(P},) = N* and
N(P},) = M*, we obtain that (N*, M*) € Red(T"). From the proof of [1, Theorem 1.43] it follows that T’y is
Kato. Moreover, we have that

R(Ty.) = R(I")NN*=N(T)*NN*=(N(T)+N)*
(N(Ty) ® N)* 7)

and

N(T%,.) N(T') A N* = R(T)* N N* = (R(T) + N)*

(R(Tm) ® N)* (®)

Since T is Saphar, it follows that N(Ta) and R(Tx) are complemented in M. According to Lemma 2.4 we
conclude that N(Ty) ® N and R(Tx) @ N are complemented in X. Lemma 2.6 ensures that (N(Ty) @ N)* and
(R(Tp) ® N)* are complemented in X’. As N+ is a closed subspace of X’ which contains (N(T) ® N)* and
(R(Tm) ® N)*, applying Lemma 2.5 we conclude that (N(Ty) @ N)* and (R(Tx) @ N)* are complemented
in N*. Now according to (7) and (8) we have that R(T},,) and N(T};.) are complemented in N*, and hence
T’Ne+ is Saphar.
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If Py = I — Py, then (M,N) € Red(TPy), TPy = PnT, TPy = Om @ Tw, and so TPy is quasinilpotent.
Consequently, T'Py, = Py/T’ is quasinilpotent and (N*,M*) € Red(T'P};). As R(P}) = N(Py)* = M*
and N(P}) = R(Py)* = N*, we conclude that T'P}; = (T"Py)n: ® (T'Py)m: = On: ® T}, Hence Ty is
quasinilpotent. Consequently, 7" admits a GSD(N*, M*). O

Proposition 3.10. Let T € L(X). If T is essentially left generalized Drazin invertible then T’ is essentially right
generalized Drazin invertible.

Proof. If T is essentially left generalized Drazin invertible, by (i) <= (iv) in Theorem 3.2 it admits a GSD(M, N)
for some closed T-invariant subspaces M and N and 0 ¢ accog,(T,S). From Theorem 3.9 it follows that T’
admits a GSD(N+, M*).

If 0 ¢ accoq,(T,S) then there exists € > 0 such that for every 0 < |A| < € the operator T — AS is left
Fredholm. Hence, T — AS is upper semi-Fredholm and relatively regular. From [19, Lemma 2.8] it follows
that T — AS’ is lower semi-Fredholm. It is a known fact that if T — AS is relatively regular then T” — AS’
is also relatively regular. Therefore, T" — AS’ is right Fredholm for every 0 < |A| < € and we conclude that
0 ¢ accoo,(T7,5).

From (i)&=(iv) in Theorem 3.6 it follows that T’ is essentially right generalized Drazin invertible. [J

For T € L(X) we say that T is Fredholm-g-Drazin invertible, and write T € gD®(X), if there exists a pair
(M, N) € Red(T) such that Ty is Fredholm and Ty is quasinilpotent.

Proposition 3.11. Let T € L(X). Then T € L(X) is essentially left and right generalized Drazin invertible if and
only if T is a Fredholm-g-Drazin invertible.

Proof. Suppose that T is essentially left and right generalized Drazin invertible. From the equivalences
(i) (ii) in Theorems 3.2 and 3.6 it follows that there exists (M1, N1) € Red(T) such that Ty, is left Fredhom
and T, is quasinilpotent, Ty, is right Fredholm and T, is quasinilpotent. From [3, Proposition 2.5] (i) it
follows that Ty, and Ty, are Fredholm, and so T € gD®(X).

The converse follows again from the equivalences (i) (ii) in Theorems 3.2 and 3.6. O

Definition 3.12. Operator T € L(X) is left Weyl-g-Drazin invertible if there exists (M,N) € Red(T) such that
N C Hy(T), T(M) is complemented in M and N(T) N M is of finite dimension no greater than the dimension of
M/TM).

The set of left Weyl-g-Drazin invertible operators on X will be denoted by gD W(X).

Theorem 3.13. Let T, S € L(X), and let S be invertible and S € commZ(T). The following statements are equivalent:
(i) T is left Weyl-g-Drazin invertible;

(ii) There exists (M, N) € Red(T) such that Ty is a left Weyl operator and Ty is quasinilpotent;

(iii) There exists a projection P € L(X) such that TP = PT, T + P is left Weyl and TP is quasinilpotent;

(iv) T admits a GSD and 0 ¢ accow,(T, S);

(v) T admits a GSD and 0 ¢ int oqy,(T, S);

(vi) T admits a GSD and 0 ¢ accoqy, (T, S);

(vii) T admits a GSD and 0 ¢ intoqy (T, S);

(viii) T admits a GSD and 0 ¢ accopw, (T, S);

(ix) T admits a GSD and 0 ¢ intopqy, (T, S).

Proof. (i)==(ii) Let N C Hy(T) and let M be a closed subspace of X such that (M,N) € Red(T), T(M)
is complemented in M and N(T) N M is finite-dimensional subspace of M, for which dim(N(T) N M) <

dimM/T(M). Then the operator Ty is quasinilpotent and from Theorem 3.2 Ty is left Fredholm. We also
have

i(Trg) = a(Tpg) — B(Ta) = HAM(N(T) N M) — dimM/T(M) < 0.
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Therefore, Ty is left Weyl.
(ii)==(i) Suppose that there exists a pair (M, N) € Red(T) such that Ty, is a left Weyl operator and T is
quasinilpotent. Then from i(Ty) < 0 we get that

dim(N(T) N M) = dimN(Ty) = a(Ta) < B(Tar) = dimM/T(M).

The rest of the proof is the same as in Theorem 3.2.

(ii)==(iii) Suppose there exists (M, N) € Red(T) such that Ty is left Weyl and Ty is quasinilpotent. Let
P € L(X) be the projection such that N(P) = M and R(P) = N. Decompositions (2) hold, TP is quasinilpotent
and from Lemma 2.1(iii) it follows that T + P is left Weyl.

(iii)==(i) Let P € L(X) be the projection such that TP = PT, TP is quasinilpotent and T + P is a left Weyl
operator. If M = N(P) and N = R(P), then from (2) and Lemma 2.1(iv) we get that T is quasinilpotent and
T is left Weyl.

(ii)==(iv) Follows from the openness of the set of left Weyl operators and Lemma 2.1(iii), analogously
to the proof of Theorem 3.2.

Implications (iv)=(vi)==(viii)==(ix) and (iv)==(v)==(vii)==(ix) are clear.

(ix)=>(ii) Suppose that T admits a GSD and 0 ¢ intopqy, (T, S). Then there exists (M, N) € Red(T) such
that Ty is Saphar and Ty is quasinilpotent. Operator Ty has a TUD for n > 0, so according to [12, Theorem
4.7] there exists an € > 0 such that for every A € C, the following implication holds:

0 <A <€ = an(Tas — ASh) = &(Tir) )
ﬁn(TM - /\SM) = ﬁ(TM), for every n € No. (10)

From [12, Theorem 4.7] it follows that opqy, (T, S) is closed. Hence the assumption 0 ¢ int oy, (T, S) implies
the existence of u € C, 0 < |u| < € such that T — uS € BW,(X). Therefore, there exists m € INy such that
R((T — uS)™) is closed and the operator (T — uS),, : R((T — uS)™) — R((T — uS)™) is upper semi-Weyl.

Since T — uSy is invertible, (Ty — uSn)" is also invertible for each n € IN and we have the equality

an(T - !JS) =a,(Ty — HSM) +ay(Tn - HSN) =a,(Ty — [JSM)/
Bu(T — uS) = Bu(Tp — uSm) + Bu(Tn — uSN) = Bu(Tm — uSm).

Now we get
a((T = pS)n) = dim(N(T = uS) N R((T = pS)") = a(T = uS) = a(Taa = Sw) (11)
and
BUT = S)n) = dim(R((Tw — uSp)")/R(Tws = 4Sp)"™")) = BT = 1) = Bun(Twa — 1S ). (12)
Using (9), (11), (12) and the fact that (T — uS),, is upper semi-Weyl we get

a(Tm) = am(Tm — uSm) = a((T — pS)m) < oo,
B(Tm) = Bn(Tnm — uSm) = BT = pS)m)
{(Tm) = a(Tm) = B(Tm) = i((T = pS)m) < 0.
Since Ty is Saphar, we have proved that Ty is left Weyl. [

Definition 3.14. Operator T € L(X) is right Weyl-g-Drazin invertible if there exist closed subspaces N C Hy(T) and
M > K(T) such that (M, N) € Red(T), N(T) N M is complemented in M and R(T) N M is of finite codimension in M,
no greater then the dimension of N(T) N M.

By gDW,(X) we denote the set of right Weyl-g-Drazin invertible operators on X.
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Theorem 3.15. Let T, S € L(X), and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is right Weyl-g-Drazin invertible;

(ii) There exist (M, N) € Red(T) such that Ty is a right Weyl operator and Ty is quasinilpotent;

(iii) There exists a projection P € L(X) such that TP = PT, T + P is right Weyl and TP is quasinilpotent;

(iv) T admits a GSD and 0 ¢ acc o (T, S);

(v) T admits a GSD and 0 ¢ intoq (T, S);

(vi) T admits a GSD and 0 ¢ accoy (T, S);

(vii) T admits a GSD and 0 ¢ intoqy_(T,S);

(viii) T admits a GSD and 0 ¢ accogy_(T,S);

(ix) T admits a GSD and 0 ¢ intogy_(T, S).

Proof. Analogously to Theorem 3.13. [
Proposition 3.16. Let T € L(X). If T is left Weyl-g-Drazin invertible, then T' is right Weyl-g-Drazin invertible.

Proof. Suppose that T is left Weyl-g-Drazin invertible. From (i)&=(iv) in Theorem 3.13 it follows that T
admits a GSD(M,N) and 0 ¢ acco,(T,S). From Theorem 3.9 we get that T’ admits a GSD(N*, M*). If
0 ¢ acc oy, (T, S) then there exists € > 0 such that T — AS is left Weyl for every 0 < |A| < e. Hence, T — AS is
left Fredholm with nonpositive index. From the proof of Proposition 3.10 we know that T" — AS’ is a right
Fredholm operator. By applying [19, Lemma 2.8] we get i(T" — AS") = —i(T — AS) > 0. Therefore, T" — AS’ is
a right Weyl operator for every 0 < |A| < € and we have proved that 0 ¢ accoqw,(T’,S"). From (i)&=(iv) in
Theorem 3.15 T is a right Weyl-g-Drazin invertible operator. [

For T € L(X) we say that T is Weyl-g-Drazin invertible, and write T € gDW(X), if there exists a pair
(M, N) € Red(T) such that Ty is Weyl and Ty is quasinilpotent.

Proposition 3.17. Let T € L(X). Then T € L(X) is left and right Weyl-g-Drazin invertible if and only if T is a
Weyl-g-Drazin invertible operator.

Proof. Follows from [3, Proposition 2.5] (ii) and the equivalence (i)<(ii) in Theorems 3.13 and 3.15,
analogously to the proof of Proposition 3.11. [

We say that T € gD®;,(X) if there exists a pair (M,N) € Red(T) such that Tyy € ©;,(X) and Ty is
quasinilpotent.

The following theorem can be proved analogously to Theorems 3.2 and 3.13.

Theorem 3.18. Let H € {O, W, Py}, T,S € L(X) and let S be invertible and S € comm?(T). The following
statements are equivalent:

(i) T € gDH(X);

(ii) There exists a projection P € L(X) such that TP = PT, T + P € H(X) and TP is quasinilpotent;
(iii) T admits a GSD and 0 ¢ accoy(T, S);

(iv) T admits a GSD and 0 ¢ intoy(T, S).

The following two theorems provide some characterizations of left and right generalized Drazin invert-
ible operators introduced in [10].
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Theorem 3.19. Let T, S € L(X), and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is left generalized Drazin invertible;

(ii) T admits a GSD and T has SVEP at 0;

(iii) T admits a GSD(M, N) and there exists p € IN such that Hyo(T) = N(T?);

(iv) T admits a GSD and Hy(T) is closed;

(v) T admits a GSD and Hy(T) N K(T) = {0},

(vi) T admits a GSD and Hy(T) N K(T) is closed;

(vii) T admits a GSD and 0 ¢ accoi(T, S);

(viii) T admits a GSD and 0 ¢ intoy(T, S);
(ix) T admits a GSD and 0 ¢ acc o,y(T, S);
(x) T admits a GSD and 0 ¢ into,,(T, S);
(xi) T admits a GSD and 0 ¢ acco,(T, S);
(xii) T admits a GSD and 0 ¢ into,(T, S);
(xiii) T admits a GSD and 0 ¢ accop, (T, S);
(xiv) T admits a GSD and 0 ¢ intop, (T, S).

Proof. (i)==(ii) Suppose that T is left generalized Drazin invertible. According to [10, Theorem 3.3] there
exist a pair (M, N) € Red(T) such that Ty is left invertible and Ty is quasinilpotent. Then Ty, is Saphar, and
hence T admits a GSD. From [1, Theorem 3.14] it follows that T has SVEP at 0.

(ii)==() Suppose that T admits a GSD(M, N) and T has SVEP at 0. From [1, Theorem 2.49] it follows that
T is injective, a since Ty is Saphar, we obtain that T} is left invertible. From [10, Theorem 3.3] it follows
that T is left generalized Drazin invertible.

The equivalences (ii) & (iii) &= (iv) &= (v) <= (Vi) follow from [1, Theorem 3.14].

(i)==(vii) Let T be left generalized Drazin invertible. Then there exist a pair (M, N) € Red(T) such that
T is left invertible and Ty is quasinilpotent, and so T admits a GSD. Let P € L(X) be the projection such
that N(P) = M and R(P) = N. As in the proof of Theorem 3.2, we draw the conclusion from the openness of
the set of left invertible operators and the equality (4), bearing in mind that the sum of an invertible and a
left invertible operator is left invertible.

The implications (vii)==(viil))=(x)=(xii), (vii)=(vili))=(X)=(xiv), (vii)=(ix)=(xi)=(xii),
(vil)=(ix) = (xiii))==(xiv) are clear.

(xii)==(i): Suppose that T admits a GSD and 0 ¢ into,(T,S). Then there exists a decomposition
(M, N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. As before, (M, N) € Red(S), Ty has TUD
for n > 0, and so by [12, Theorem 4.7] we obtain that there exists an € > 0 such that for every A € C it holds:

0 <Al <€ = a(Ta — ASm) = a(Tw). (13)

From 0 ¢ into,(T, S) it follows that there exists u € C such that |u| < € and T — uS is injective, and hence
Tm — uSm is injective. If y = 0 we have that Ty is injective. If u # 0, from (13) it follows that a(Ty) = 0, i.e.
T is injective. Consequently, Ty is left invertible, and according to [10, Theorem 3.3] it follows that T is
left generalized Drazin invertible.

(xiv)==(i): Suppose that T admits a GSD and 0 ¢ intop,(T,S). Then there exists a decomposition
(M,N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. According to [12, Theorem 4.7] we
conclude that there exists an € > 0 such that for every A € C, the following implication holds:

0 <|Al <€ = au(Tm — ASm) = a(Ty), for every n € INy. (14)

Also from [12, Theorem 4.7] it follows that op, (T, S) is closed, and since 0 ¢ intop, (T, S), there existsa u € C
such that 0 < |u| < eand T—uS is upper Drazin invertible. Hence there is n € INy such that a,,(Tas — uSm) = 0.
Now according to (14) we obtain that a(Ts) = 0. As Ty is Saphar we conclude that Ty, is left invertible.
Consequently, T is left generalized Drazin invertible. [
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Theorem 3.20. Let T, S € L(X), and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is right generalized Drazin invertible;

(ii) T admits a GSD and T’ has SVEP at 0;

(iii) T admits a GSD(M, N) and there exists q € IN such that K(T) = R(TY);
(iv) T admits a GSD and Ho(T) + K(T) = X;

(v) T admits a GSD and Ho(T) + K(T) is norm dense in X;

(vi) T admits a GSD and 0 ¢ acco,(T, S);

(vii) T admits a GSD and 0 ¢ into,(T, S);

(viii) T admits a GSD and 0 ¢ acc o,(T, S);

(ix) T admits a GSD and 0 ¢ int o, (T, S);

(x) T admits a GSD and 0 ¢ acc o (T, S);

(xi) T admits a GSD and 0 ¢ int o, (T, S);

(xii) T admits a GSD and 0 ¢ acc 64.(T, S);

(xiii) T admits a GSD and 0 ¢ int 645.(T, S).

Proof. (i)==(ii) Suppose that T is right generalized Drazin invertible. According to [10, Theorem 3.4] there
exist a pair (M, N) € Red(T) such that T}, is right invertible and Ty is quasinilpotent. Then Ty is Saphar,
and hence T admits a GSD. From [1, Theorem 3.15] it follows that T” has SVEP at 0.

(ii)==() Suppose that T admits a GSD(M, N) and T” has SVEP at 0. From [1, Theorem 3.15] it follows
that Ty is surjective, a since Ty is Saphar, we obtain that Ty, is right invertible. From [10, Theorem 3.4] it
follows that T is right generalized Drazin invertible.

The equivalences (ii) = (iii) &= (iv) &= (V) follow from [1, Theorem 3.14].

The proof of the implication (i)==(vi) is similar to the proof of the implication (i)==(vii) in Theorem
3.19.

The implications (vi)=(vi)=(ix)=(xi), (vi)=(vii)=(ix)=(xiii), (vi)=(viii)=(x)=(xi),
(vi)=(viii) = (xii)==(xiii) are clear.

(xi)=>(i): Suppose that T admits a GSD and 0 ¢ into(T,S). Then there exists a decomposition
(M, N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. Then (M, N) € Red(S). Using [12, Theorem
4.7] we obtain that there exists an € > 0 such that for every A € C, it holds:

0 < |Al < € = R(Tm — ASy) is closed and B(Ta — ASym) = B(Twm). (15)

From 0 ¢ into,(T,S) it follows that there exists u € C such that |u| < € and R(T —uS) = X. Then
R(Tm — uSm) = M, and since R(Tp—1Sum) is closed, we obtain that R(Ty—uSy) = M. Now from f(Ty—uSm) =
0 and (13) it follows that f(Ts) = 0, i.e. Ty is surjective. Hence Ty is right invertible, and according to [10,
Theorem 3.4] we obtain that T is right generalized Drazin invertible.

(xiii)==(i): Suppose that T admits a GSD and 0 ¢ intoys(T,S). Then there exists a decomposition
(M,N) € Red(T) such that Ty is Saphar and Ty is quasinilpotent. According to [12, Theorem 4.7] we
conclude that there exists an € > 0 such that for every A € C, the following implication holds:

0 <|Al <€ = Bu(Tm — ASm) = B(Tm), for every n € INy. (16)

From [12, Theorem 4.7] it follows that 0,4.(T, S) is closed and since 0 ¢ int o4(T, S), there exists a 1 € C such
that 0 < |u| < e and d(T — uS) < co. Hence d(Tyr — uSy) < oo and there is n € INg such that 8,,(Tasr — uSm) = 0.
From (16) it follows that f(Ta) = 0, and so Ty is surjective. As Ty is Saphar, we conclude that Ty is right
invertible, and hence T is right generalized Drazin invertible. [

By gDG(X) (9DG(X)) we denote the set of left (right) generalized Drazin invertible operators on X.
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Proposition 3.21. Let T € L(X). If T is left generalized Drazin invertible, then T’ is right generalized Drazin
invertible.

Proof. Suppose T is left generalized Drazin invertible. From (i)&=(vii) in Theorem 3.19 it follows that
T admits a GSD(M,N) and 0 ¢ accoy(T,S). Theorem 3.9 implies that T admits a GSD(N+, M*). If 0 ¢
accoy(T, S), there exists € > 0 such that T — AS is left invertible for every 0 < |A| < €. Then T” — AS’ is right
invertible for every 0 < |A| < €, implying that 0 ¢ acco,(T”,S’). From (i)<=(vi) in Theorem 3.20 we have
that T is right generalized Drazin invertible. [

For T,S € L(X), S # 0, we define the S-generalized Drazin spectrum by

o40(T,S) = {A € C: T — AS is not generalized Drazin invertible}.

Theorem 3.22. Let T, S € L(X) and let S be invertible and S € comm?(T). The following statements are equivalent:
(i) T is generalized Drazin invertible;
(i) T admits a GSD and 0 ¢ into(T, S);
(iii) 0 ¢ acco(T, S).
Proof. (i)<=(ii): It follows from Theorem 1.1 analogously to the proof of Theorem 3.19.

(i) (iii): Since S is invertible and S € comm?(T) we have that S' commutes with T — AS for every
A € C. As generalized Drazin invertible operators acting on X form a regularity [16, Theorem 1.2], from
[17, Proposition 6.2(iii)] we conclude that

A¢o,p(T,S) < T - ASis generalized Drazin invertible

— TS'-A\is generalized Drazin invertible
& A¢op(TSTH).

Consequently, by using the equivalence (i) (ii) in Theorem 1.1 we obtain that o,p(T,S) = GgD(TS’l)
acco(TS™') = acco(T,S). Therefore, T is generalized Drazin invertible if and only if 0 ¢ o40(T, S)
acco(T,S). O

Theorem 3.23. Let T € L(X).

() If T has the SVEP at 0 then T € gD®|(X) © T € gDW(X) © T € gDG|(X).

(ii) If T” has the SVEP at O then T € gD®(X) & T € gDW,(X) & T € gDG,(X).

(iil) If both T and T’ have the SVEP at O then T is generalized Drazin invertible if and only if T € gD®(X) if and
only if T € gDW(X).

Proof. (i): The implications T € gDG|(X) = T € gDW(X) = T € gD®;(X) follow from the equivalence
(a)e==(b) in [10, Theorem 3.3], the equivalence (i)&=(ii) in Theorem 3.13 and the equivalence (i) (ii) in
Theorem 3.2.

Suppose that T has the SVEP at 0 and that T € gD®;(X). From Theorem 3.2 it follows that T admits a
GSD. Now from the equivalence (i)&=(ii) in Theorem 3.19 we conclude that T € gDG(X).

(ii): It follows from [10, Theorem 3.4], Theorem 3.6 and Theorem 3.20, analogously to the proof of (i).

(iii): It follows from [10, Corollary 3.5], (i), (ii), Proposition 3.11 and Proposition 3.17. [

4. Spectra

If T, S € L(X) such that S # 0, the S-Saphar spectrum and the S-generalized Saphar spectrum are denoted
respectively by os5(T,S) and 045(T, S), and defined by

os(T,S)
Ugs(T, S)

{A € C: T - AS is not Saphar},
{A € C: T — AS does not admit generalized Saphar decomposition}.
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ForT,S € L(X), S # 0, and H € {G), G;, P1, D,, Dy, D, W), W,, W}, we define for each H the appropriate
spectrum of operator pencil

0,ou(T,S) = {A € C: TS ¢ gDH(X)).

Theorem 4.1. Let T,S € L(X), and let S be invertible and S € comm?(T). If T admits a GSD(M, N), then there
exists € > 0 such that T — AS is Saphar for each A such that 0 < |A| <e.

Proof. Suppose that T admits a GSD(M, N). Then T = Ty @ Tn, T is Saphar and Ty is quasinilpotent. If
M = {0}, then T is quasinilpotent. Since TS = ST, from [17, Theorem 2.11] it follows that

o(T — AS) c o(T) — Ao(S) = —Aa(S), for every A € C. (17)

As 0 ¢ 0(5), from (17) it follows that T — AS is invertible for every A € C, A # 0. Therefore, T — AS is Saphar
forall A #0.

Suppose that M # {0}. Let P € L(X) be the projection such that N(P) = M and R(P) = N. Then TP = PT,
and hence SP = PS, which implies that (M, N) € Red(S).

From [17, Corollary 12.4 and Lemma 13.6] it follows that there exists an € > 0 such that for |1]| < ¢,
Tm — ASm is Saphar. Since Ty is quasinilpotent and Sy is invertible and commutes with Ty, as in the
previous part of the proof we can conclude that Ty — ASy is invertible for all A # 0. Thus T — ASy is Saphar
for all A # 0. Lemma 2.2 provides that T — AS is Saphar for each A such that 0 < [A| <e. [

Corollary 4.2. Let T, S € L(X), and let S be invertible and S € comm?(T). Then
(i) 04s(T, S) is closed;
(ii) The set 05(T, S) \ 045(T, S) consists of at most countably many points.

Proof. (i) It follows from Theorem 4.1.

(ii): Suppose that Ag € 05(T,S) \ 045(T,S). Then T — AoS admits a GSD and according to Theorem 4.1
there exists € > 0 such that T — AS is Saphar for each A € C such that 0 < |1 — Ag| < e. This implies that
Ao € iso0s(T, S). Therefore, 05(T, S) \ 045(T, S) C iso 05(T, S), which implies that o5(T, S) \ 0,45(T, S) is at most
countable. [

The following corollary is an improvement of [22, Corollary 5.6].

Corollary 4.3. Let T € L(X).
@) If T has the SVEP, then all accumulation points of 0)(T) belong to o 45(T).
(i) If T" has the SVEP, then all accumulation points of 0,(T) belong to o4s(T).

Proof. (i): It follows from the equivalence (ii)&=(vii) in Theorem 3.19.
(ii): It follows from the equivalence (ii)&=(vi) in Theorem 3.20. O

Theorem 4.4. Let T, S € L(X), and let S be invertible and S € comm?(T). Then

(@)
8Gngl(T, S) C BagD«WI(T, S) C aGqu)I(T, S)
C C c
aOgD(T, S) C BagDW(T, S) C QOgD@(T, S) C 8ogD®/l,(T, S) C &OgS(T/ S),
c c c c
aang,(T, S) C aO‘gDrwy(T, S) C (9Gqu>r(T, S)

(ii) nogs(T, S) = n0.(T, S) = nogp(T, S) where 0. € {0 4pw,, 04DD,, 0 yDW,, TgDW,, OgDd, TgDW, TgDd,,, OgDGy O gDG, }-
(iii) The set 0.(T, S) consists of 0,45(T, S) and possibly some holes in 6,5(T, S) where 0. € {04pa,, 0gp®,, TgpW,, TgDW,,

0gD®, OgDW, O gD, OgDG;s TgDG,, OgD}-
The set o4p(T, S) consists of 0.(T, S) and possibly some holes in 0.(T, S) where 0. € {04pa,, 0gp®,, TgDW;, TgDW,,

0gD®, OgDW, OgDd,,, OgDG,s TgDG, }-



M. D. Dimitrijevié, S. C. Zivkovié-Zlatanovié / Filomat 37:28 (2023), 9511-9529 9526

Proof. From the equivalence (i)<=(iv) in Theorem 3.2 we have
A¢ope(T,S) & T-ASadmits a GSD A 0 ¢ accog,(T - AS,S)
— A¢ oys(T, S) A A ¢accog(T,S),
which proves the equality
o400, (T, S) = 04s(T,S) U accog (T, S). (18)
Similarly, from the equivalence (i)&=(v) in Theorem 3.2 we have
04p0,(T,S) = 04s(T, S) U int og, (T, S). (19)

From Corollary 4.2 (i) and (18) we conclude that o,pe, (T, S) is closed. As o,p,(T,S) C o(T,S) = o(TS™) we
conclude that o,pqe, (T, S) is bounded, and hence 6,pq,(T, S) is compact.
We prove that

intoype,(T,S) = intog, (T, S). (20)

The equality (19) provides the inclusion int o, (T, S) C o4pe,(T, S) and so intog, (T, S) C into,pe, (T, S). It is
obvious that o,pe, (T, S) C 0,(T, S), from which follows that int o,pe, (T, S) C intog,(T, S).

Since o,pa,(T, S) is closed we have that do,pa, (T, S) € 0,pa,(T, S) and from the equalities (19) and (20) it
follows that

9a,00,(T, S) C a4s(T, S). (1)

Analogously, for H € {®,, W;, W,,®, W, D;,, G, G} from Theorems 3.6, 3.13, 3.15, 3.18, 3.19, 3.20 we have
that

04oH(T,S) = 045(T,S) U accon(T,S) (22)
= 045(T,S) Uintoy(T, S). (23)

From (22) we get that o,pn(T, S) is closed, while from (23) it follows that int o,py(T,S) = intop(T, S), and
hence

aOgDH(T, S) C Gys(T, S) (24)

Since S is invertible and S € comm?(T), according to the proof of Theorem 3.22 we have that os0(T,S) =
acco(T,S), and hence o,p(T,S) is closed. From the equivalence (i) (ii) in Theorem 3.22 it follows that
o4p(T, S) = 045(T, S) Uinto(T,S) and int o,p(T, S) = into(T, S), which implies that

90,0(T,S) C a,s(T, S). (25)

Since the following inclusions hold

UgD(DI(T/ S) C UngWI(T, S) C UQDQI(T/ S)
c C C C
045(T,S) C o4pe,(T,S) C c  o,p0(T,S) < o,pw(T,S) < o,(T,S),
- c c c
GgD(py(T, S) C Ongy(T, S) C Gngy(T, S)

and since all aforementioned sets are compact, according to (1) and by using (21), (24) and (25) we get the
desired result. [

Corollary 4.5. Let T,S € L(X), and let S be invertible and S € comm?(T). If one of 04s(T,S), o4pa, (T, S),
o40a(T,S), ogpw(T,S), 0,p(T,S), 04pa.(T,S), 0;pw.(T,S), 04pg.(T,S), where » € {1, 7}, is at most countable, then
all of them are equal.
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Proof. It follows from Theorem 4.4 (ii). [

Corollary 4.6. Let T, S € L(X), and let S be invertible and S € comm?(T). Then there are inclusions:

iso 0,pg,(T,S) C iso o,pw,(T,S) C iso o,pe,(T,S)
c c -
iso 0,p(T,S) < 1iso o,pw(T,S) C iso opa(T,S) C iso 0,pa,, (T, S) C is0 0,5(T, S).
c c C c
iso 0,pg,(T,S) C iso o,pw,(T,S) C 1iso o,pe,(T,S)

Proof. It follows from Theorem 4.4 and Lemma 2.3 (i). O

Theorem 4.7. Let T,S € L(X), and let S be invertible and S € comm?(T). Then
(i) iso 04pa,(T, S) C iso agpa(T, S) Vint ol (T, S);
(i) iso 0pa, (T, S) C iso oype(T, S) U int a‘jl (T,S);
(iii) iso o gpw, (T, S) C iso o,pw/(T, S) Uintopy (T, S);
(iv) iso o,pw, (T, S) C iso oypw (T, S) U int oy, (T, S);
(v)isoo4pg,(T,S) C isoo(T,S) Uint o (T, S);
(vi) isooypg,(T,S) C isoa(T,S) Uintop, (T, S).

Proof. (i) Let Ay € isoogpe (T, S)\intc (T, S). There exists a sequence (1) converging to Ao such that
d,(T—A,S) < coand T - A,,S is essentially left generalized Drazin invertible for every n € IN. Fix an arbitrary
n € IN. By Theorem 3.2, there exists (M,,, N,,) € Red(T — A,S) such that T —A,S = (T —A,S)um,) ® (T — AuS)N,),
where (T — A,S)u, is left Fredholm and (T — A,,S)n, is quasinilpotent. From the equality

ﬁm(T - Ans) = ﬁm((T - /\nS)M,,) + ﬁm((T - AnS)Nn) (26)

for an arbitrary m € N, since 4,(T — A,,S) < oo, we know that d.((T — A,5)m,) < 00. As (T — A,S)um, is left
Fredholm then a((T — A,S)um,) < oo, which implies that a,((T — A,S)um,) = 0. According to [17, Lemma 22.11],
d((T = AuS)m,) = a.((T — A,S)m,) = 0, ie. BT — A,S)m,) < o0 and so (T — A,S)u, is a Fredholm operator.
Therefore, T — A,S is Fredholm-g-Drazin invertible for every n € IN and hence Ay € do,po(T,S). From
Theorem 4.4 (i) we have that do,po(T, S) C 0,pa,(T, S), which together with A € iso o,pa,(T, S) N dopa(T, S)
implies that A € iso 0,pe(T, S), by Lemma 2.3 (ii).

(ii) Follows similarly to the proof of (i), since the equality

(T = 14S) = (T = AuS)as,) + (T = 1,S)n,) (27)

holds for every m € N and do,pa(T, S) € 04p0,(T, S).

(iii) Let A € iso oo, (T, S)\intop_(T, S). There exists a sequence (A,) converging to Ao such that T—A,,S
is lower semi B-Weyl and left Weyl-g-Drazin invertible for every n € IN. Take an arbitrary n € IN. We can find
my, € IN such that R((T — A,S)") is closed and (T — A,,S),,, : R((T — A,S)™) — R((T — A,,S)™*) is a lower semi-
Fredholm operator with nonnegative index. Also, we can find a pair of subspaces (M,, N,,) € Red(T — A,,5),
such that the operator (T — A,S)u, is left Weyl and (T — A,,S)n, is quasinilpotent.

As in Theorem 3.13, we have

i, (T = AuS) = a((T = AnS)m, ), (28)

B, (T = AnS) = BU(T = AnS)m,), (29)
and from (27) and (26) we have the inequalities

(T = AnS) 2 m, (T = AuS)m,), (30)

By (T = AnS) 2 B, (T = AuS)a, )- (31)

Since B((T — AyS)m,) < oo, from (29) and (31) we conclude that d.((T — A,S)m,) < m, < oo. We also have
a((T = AuS)m,) < o0, as the operator is left Weyl. Therefore, a.((T — A,S)m,) = 0 and so d,((T — A,S)m,) =
a.,((T = A,S)m,) = 0. Hence, (T — A,S)u, is a Fredholm operator.
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From [3, Proposition 2.22], because T — A,,S is lower semi B-Weyl, and a direct sum of a semi-Fredholm
operator and a quasinilpotent one, we have

(T = A4S) = i((T = AuS)u,) < 0. (32)
Also, since T — A,,S is lower semi B-Weyl we have (see [3, Proposition 2.12, Definition 2.13])
(T = AuS) = i((T = AyS)u) = 0. (33)

Equalities (32) and (33) imply that T — A,,S is Weyl-g-Drazin for every n € IN and hence Ag € do,pw (T, S).
From Theorem 4.4 (i) we have that do,pw(T,S) C o,0w,(T,S), which together with Ay € iso o,pw,(T,S) N
do,pw(T,S) implies that Ay € iso o,pw(T, S), by Lemma 2.3 (ii).

(iv) Similarly to the proof of (iii).

(v) Let Ag € iso 0,pg,(T, S)\int 045.(T, S). There exists a sequence (A,) converging to Ag such that T — A,,S
is left generalized Drazin invertible and d(T — A,S) < co. For an arbitrary fixed n € IN, there exists a pair
(M, N,,) € Red(T — A,S) such that T — A,,S = (T — A,S)m, ® (T — A,,S)n,, where (T — A,,S)uy, is left invertible and
(T-A4S)n, is quasinilpotent. The ascent of the operator (T—A,S)u, is zero since it is injective, and the descent
is finite since d((T — A,S)um,) < d(T — A,S) < oo. From [2, Theorem 1.20], a((T — A,S)um,) = d((T — A,S)m,) =0,
so the operator (T — A,S)y, is invertible. Hence, Ay € do(T,S). Obviously, do(T,S) C o,pg,(T,S) and
Ao €150 0,pg,(T,S) N do(T, S) implies that Ay € iso o(T, S), by Lemma 2.3 (ii).

(vi) Similarly to the proof of (v). O

Corollary 4.8. Let T, S € L(X), and let S be invertible and S € comm?(T). Then
(i) agpa(T, S) = 0400, (T, S) Vintaf (T, S);
(ii) oypa(T, S) = 04po,(T, S) U int 09D+(T, S);
(iti) 004y/(T, 5) = 0,04y, (T, S) U int opay. (T, S);
(iv) ogpw(T,S) = o5pw,(T,S) Uintop, (T, S).

Proof. (i) From the equivalence (i) (ix) in Theorem 3.6 we have thatint 0%, (T, S) C 0,p0,(T,S) C d4pa(T, S)
and since 0,pa,(T, S) C 0,p0(T, S), it follows that o,pe, (T, S) U int 04 (T, S) C 0,p0(T, ).

In order to prove the converse inclusion suppose that there exists some Ay € 0,po(T,S) that does not
belong to the set o,pq,(T,S) U int 05 (T,S). Let (A,) be the sequence converging to Ay such that T — A, S
is essentially left generalized Drazin invertible and d.(T — A,) < co. From the proof of Theorem 4.7(i) we
can see that Ay € do,pa(T,S) C o,pe,(T,S) which contradicts the assumption that A1y does not belong to
Ongbt (Tr S )

Remaining inclusions can be proved analogously. [

Corollary 4.9. Let T, S € L(X), and let S be invertible and S € comm?(T). Then
(i) iso 04s(T, S) C is0 04pe, (T, S) U int 0‘,3+ (T, S);
(ii) iso a4s(T, S) C iso 04po, (T, S) Vint ol (T, S);
(iii) iso 04s(T, S) C iso oypw,(T, S) U int oy, (T, S);
(iv) iso 04s(T, S) C iso agpw, (T, S) U int oy (T, S);
(v)isoo,s(T, S) C isooypg,(T, S) Uintop, (T, S);
(vi) iso 045(T, S) C iso aypg, (T, S) U int0,(T, S);
(vii) iso 04s(T, S) C iso o,pg, (T, S) U int asc(T, S);
(vii) iso a4s(T, S) C iso o,pg,(T, S) Uinta,(T, S).

Proof. (i) Let Ao € isoag,s(T, S)\intof, (T S). There exists a sequence (A,) that converges to Ay and for
which T — A,,S admits a GSD, whﬂe An ¢ aD (T,S). Then 0 ¢ int oD (T — A,S,S) for each n € IN, hence
according to Theorem 3.2, T — A,,S is essentlally left generalized Drazin invertible. Therefore, we have that
Ao € dogpae, (T, S) Niso 0,45(T, S) which together with do,pe, (T, S) C 0,45(T, S) from Theorem 4.4 (i), by Lemma
2.3 (ii) implies that Ag € iso o,pe, (T, S).

All the remaining inclusions are proved similarly, by using Theorems 3.6, 3.13, 3.15, 3.19 and 3.20. O
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