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Abstract. Gavruta studied atomic systems in terms of frames for range of operators (that is, for subspaces),
namely ©-frames, where the lower frame condition is controlled by the Hilbert-adjoint of a bounded linear
operator ©. For alocally compact abelian group G and a positive integer 1, we study frames of matrix-valued
Gabor systems in the matrix-valued Lebesgue space L*(G, C™") , where a bounded linear operator ® on
L*(G, C™") controls not only lower but also the upper frame condition. We term such frames matrix-valued
(®,©")-Gabor frames. Firstly, we discuss frame preserving mapping in terms of hyponormal operators.
Secondly, we give necessary and sufficient conditions for the existence of matrix-valued (®,®")- Gabor
frames in terms of hyponormal operators. It is shown that if © is adjointable hyponormal operator, then
L*(G,C™") admits a A-tight (©,©")-Gabor frame for every positive real number A. A characterization of
matrix-valued (0, ©)-Gabor frames is given. Finally, we show that matrix-valued (8, ®*)-Gabor frames are
stable under small perturbation of window functions. Several examples are given to support our study.

1. Introduction

In [10], Gabor introduced a fundamental approach to signal decomposition in terms of elementary
signals. Duffin and Schaeffer [8] in 1952, while addressing some deep problems in non-harmonic Fourier
series, abstracted Gabor’s method to define frames for Hilbert spaces. To be exact, they introduced frames
of exponentials for the space L?(—§, §) under the name Fourier frame. Let H be a complex separable Hilbert
space with an inner product (., .). A countable collection of vector @ := {¢y};”, in a separable Hilbert space
‘H is called a frame (or Hilbert frame) for H if there exist finite positive scalars A, B, such that

AdllglP < Y Ko, ol < Boligl? (1)

k=1

for all ¢ € H. The scalars A, and B, are called the lower and upper frame bounds of ®, respectively.
Ineq. (1) is called the frame inequality of ®. The frame inequality guarantee invertibility of the frame
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operator S : H — H given by Sp = Z, (¢, p)pr. This gives the stable reconstruction of each ¢ in H :

p=88"1p= Z (S, pr)pr = Z((p,S Lpr)pk. This decomposition is useful in signal processing [23, 27],

in particular, m lost of Coeff1C1ents, see [4, 14] for technical details. Nowadays, frames are used in sampling
[3], iterated function system [26], distributed signal processing [7], operator theory [2, 5, 19, 21], application
of wavelets [13], quantum physics [25]. We refer to texts [4, 12, 14, 29] for basic theory of frames.

Gdvruta in [11] introduced the notion of ®-frames, where © is a linear bounded operator acting on the
underlying Hilbert space H.

Definition 1.1. Let ©® € B(H), the space of bounded linear operators on H. A sequence @ := {@ilrer C H is called
a O-frame for H if there exist constants 0 < a,, b, < oo such that

2O PIP < Y Kk, )P < bollglP for all ¢ € H. (2)

k=1

[11, p. 142] The numbers 4, and b, are collectively known as ®-frame bounds. If ® = I, the identity operator
on H, then ®-frames are the ordinary Hilbert frames. However, a ©-frame need not be a frame when © # I.
To be exact, ©-frames are generalization of frames, which allow the reconstruction of elements from the
range Ran(©) of ©. Note that a ®-frame for H is a Bessel sequence, so its frame operator is well defined.
But, in general, it is not invertible on H. However, the frame operator of a @-frame is invertible on the
subspace Ran(©) of H, whenever the Ran(0) is closed. In [11], Gdvruta characterized ®-frames in separable
Hilbert spaces by using bounded linear operators on the underlying space. ®-frames are also related to
atomic systems and Gdvruta in [11] characterized atomic systems in terms of ®-frames in separable Hilbert
spaces. She also observed many differences between ®@-frames and ordinary frames in separable Hilbert
spaces. More precisely, ©-frames gives stable analysis and reconstruction of functions from a subspace, e.g.,
range of operators. Xiao, Zhu, and Gdvruta [30] gave various methods to construct ®-frames in separable
Hilbert spaces. They also discussed stability of ©-frames under small perturbation. Recently, ©-frames in
distributed signal processing are studied in [6, 18].

Frames in matrix-valued signal spaces have potential applications in signal processing as most of the
application areas involve matrix-valued signals. Xia and Suter in [28] studied vector-valued wavelets
which play important role in multivariate signals. It is worth observing that frame properties, in general,
not carried from a signal space to its associated matrix-valued signal space. In this direction, the authors of
[20] studied an interplay between frames and matrix-valued frames, where they considered the wave packet
structure in the euclidean matrix-valued space L*(R?, C*). They also gave some classes of matrix-valued
window functions which can generate frames. Frame properties of WH-packets which is generalized
Aldroubi’s model [1] for construction of new frames from a given frame studied in [16] and sufficient
conditions for finite sums of matrix-valued wave packet frames can be found in [17]. Two authors in [18]
introduced and studied matrix-valued frames for range of operators. Recently, matrix-valued Gabor frames
over locally compact abelian groups studied by authors of [15]. Motivated by applications of matrix-valued
frames and differences between ordinary frames and ®-frames, we study matrix-valued Gabor frames over
locally compact abelian (LCA) groups, where both the lower frame condition and upper frame condition are
controlled by bounded linear operators, in particular hyponormal operators, on the matrix-valued signal
space over LCA groups. Notable contribution in this work include frame preserving mapping in terms of
hyponormal operators, existence of tight matrix-valued Gabor frames over LCA groups for hyponormal
operators. A characterization of matrix-valued Gabor frames over LCA groups and new stability results
for matrix-valued Gabor frames over LCA groups under small perturbation.

This paper is organized as follows. In Section 2, we set the basic notions and definitions on the matrix-
valued signal space and matrix-valued Gabor frames over locally compact abelian (LCA) groups and frames
for operators to the make the paper self-contained. We introduce matrix-valued (®, ®*)-Gabor frames in
the matrix-valued signal space L*(G, C"™") over LCA groups in Section 3, where G is a LCA group, n is a
positive integer and © is a bounded linear operator acting on L*(G,C™"). In (8, 0")-Gabor frames both
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the lower frame condition and upper frame condition are controlled by ®. Proposition 3.4 gives sufficient
condition for a matrix-valued Gabor frame to be (®, ®*)-Gabor frame in terms of bounded belowness of ©.
Frame preserving maps in terms of hyponormal operators are given in Proposition 3.5 and Proposition 3.7.
Theorem 3.8 provides existence of tight matrix-valued (®, ®")-Gabor frames in L*(G, C"™"). Proposition 3.12
shows that (0, ©")-Gabor frames are preserved under adjointable hyponormal operators. A characterization
for the existence of (®, ©)-Gabor frames in L?(G, C"™") is given in Theorem 3.14. Two different perturbation
results which gives stability of frame conditions in terms of window functions and operators are given in
Theorem 4.1 and Theorem 4.3. Examples and counter-examples are given to illustrate our results.

2. Preliminaries

Throughout the paper, symbol Z and C denote the set of integers and complex numbers, respectively. T
denote the unit circle group. Let G be a second countable locally compact abelian group equipped with the
Hausdorfftopology. We recall that a character on G is the map y G into itself which satisfies y(x+y) = y(x)y(v)
for all x, y € G. The dual group of G, denoted by G, is the collection of all continuous characters on G which
forms a locally compact abelian group under the operation defined by (y+y’)(x) := y(x)y’(x), wherey,y’ € G
and x € G and an appropriate topology. It is well known that on a LCA group G there exists a Haar measure
which is unique upto a positive scalar multiple, see [9] for details. The symbols pic and us denote the Haar
measure on G and G, respectively. A lattice of G is a discrete subgroup A of G for which G/A is compact.
The annihilator of A, denoted by A*, is defined by A+ = {y € Gl y(x) = 1, x € A}. Note that At is a
lattice in G. The fundamental domain associated with the lattice A* of G, denoted by V, is a Borel measurable
relatively compact set in Gsuch that G = Upenrw + V), w+ V)N @ +V) =0forw # w,w,w € AL
The collection of all continuous automorphisms on G is denoted by AutG. As is standard L?*(G) denote the
space of measurable square integrable functions over G. The Fourier transform of a function f in L' () L%(G)
is defined as

fo)= | fonuct, <G
Note that the Fourier transform can be extended isometrically to L*(G), see [9].

2.1. The Space L*(G, C"™")

Throughout the paper, the matrix-valued functions are denoted by bold letters. Let n be a positive
integer. The space of matrix-valued functions over G, denoted by L?(G, C"™"), is defined as

LG, ™) :={f = f,-j]lgljg L fi € LXG) (1<, j<m),

where [ f,] .. is matrix of order n with entries f;;. The functions f;; are called components or atoms of f.
] 1<i,j<n ] ]

The Frobenius norm on L%(G, C"™") is given by
161 = (Y [ 1fiPduc) ®)
ij=1v6G

It is easy to see that L?>(G, C"™") is a Banach space with respect to the Frobenius norm given in (3).

The integral of a function f = [ ﬂ]] € L%(G,C™") is defined as

f fduc = [ f fijd,llG]
G G 1<i,j<n

1<i j<n
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Forf,ge L?(G,C™"), the matrix-valued inner product is defined as

(£, g) = fG f(0g (dpic. (4)

Here, * denotes the transpose and the complex conjugate. One may observe that the matrix-valued inner
product given in (4) is not an inner product in usual sense. Further, a bounded linear operator on L?(G, C"™")
may not be adjointable with respect to the matrix-valued product given in (4).

Let trA denotes trace of the matrix A. The space L%(G, C"™") becomes a Hilbert space with respect to the
inner product -, -), defined by

(£, g) = tr(f,g), f, gel*G,C™),
and (-, -), generates the Frobenius norm: |f|[* = (f, f),, f € L*(G, C™™").

Definition 2.1. A bounded linear operator U on L2(G, C™") is said to be hyponormal if tr(UU{, ) < tr(U*Uf, £),
for all £ € L>(G,C™™). That is, ||U*f|| < ||Uf|| for all £ € L>(G,C™™).

For fundamental properties of hyponormal operators, we refer to [24].

2.2. Matrix-Valued Gabor Frames in L>(G, C™")

Let Ag be a finite subset of N, B € AutG, C € Auta, A be a lattice in G and A’ a lattice in G.
Write

@y, = (Pilien, € L2(G, T,
G(C, B, ®yp,) := {Ecu TarPrlieng keamen C LG, ™).

Fora € G and 1 € G, we consider following operators on L2(G, C"™").
T.f(x) = f(xa™') (Translation operator),

E,f(x) = n(x)f(x) (Modulation operator).

For | € Ay, let @; € L*(G, C"™") be given by @)(x) = [(j)g) (x)]m' Let B € AutG and C € AutG. A collection of
the form

G(C, B, Dn,) := {EcuTaePrlieaq ken,men

is called the matrix-valued Gabor system in the space L*(G,C"™") over LCA group G. The functions ®; are
called the matrix-valued Gabor window functions.

Definition 2.2. A frame of the form G(C, B, ®y,) for L*(G,C™") is called a matrix-valued Gabor frame. That is,
the inequality (frame inequality)

wlff <Y Y [(EeuTue, 6 < blfi?, £e 126, €™,

leAg ke A,meN’

holds for some positive scalars a, and b,. As in case of ordinary frames, a, and b, are called frame bounds.

Let M, (C) be the complex vector space of all X n complex matrices. The space

(8o X AX N, Mi©)) = {IMyjidieng jenker € Ma(©) 2 Y Y IMyl < oo}

leNg jEAkEN
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is a Hilbert space and its related norm is given by

1
2
WM jidieno, jeakenll = (Z Z 1Mkl )

leAg jeAkeN

If G(C, B, @,,) is a frame for L2(G, C™"), then the map
Vi (Mg X A X A, My(C)) = LX(G,C"™") defined by V : {Myj} =y — Z Z MimEcmTac®;
keamen? leAg ke A,meN’
is called the synthesis operator (or the pre-frame operator), associated with G(C, B, @,,). The analysis operator is

the map

.72 nxn 2 ’ . .
W : LG, €™") — £2(Ag X A X A, M,(C)) given by W : - (£, ECW,Tqu>l>}ler,keArmeA,.

The frame operator of G(C, B, ®,,) is the composition S = VW on the space L?(G, C™") which is given by
S:fm Z Z (£, Ecn Tc®@r)Ec TPy,

leAg ke A, meN’

f € L*(G,C™"). The frame operator is bounded, linear and invertible on L*(G, C"™*"). We refer to [4, 12] for
basic theory of Gabor frames.
The following example will be used in illustration of results.

Example 2.3. [15, Example 3.1] Let G be the torus group. Its dual group is G = Z. Fixa lattice A = {0, %}
Then A+ = 8Z with fundamental domain V = Zg = {0,1,...,7}. Let ¢1, ¢, € L?(T) be such that

$10) = xz(y) and  a(y) = xm) in LAZ) for y € Z.

For B € AutG and C € AutG consider the Gabor system {Ecy,Tprd1} ey = {EsmTkP1)kenmez.  Set qi)f,?(é) =
Esnd1(&), m € Z, & € [0,1]. Since EgnTrp1(E) = TikEgmdi(E), thus by taking A, = A, one can write

{ qubfi) Ykeamez = {EgmTiP1}keAmez.
Define

2
Go(y) = , VEZ,

meZ.
and

a0 =Y 1 Y, 10000lo +w), yez.

mezZ weA+\{0}

Then, using (1)5,?()/) = E@1 (y) = Tgmq/b\l()/), Y € Z, we have

Go(y) = Z 8lxz,(y —8m)* =8 fory € Z,

mezZ

and

Gi(y) =Y. 8 ), Ixzuly —8miz,(y+8a—8mP =0fory e Z,

meZ acZ\{0}

Therefore, by [4, Theorem 21.6.1], the Gabor system {EgmTx®1}keamez 15 a 8-tight frame for L*(G). Similarly,
{EgmTkP2}kenmez is a 2-tight frame for L*(G)
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3. Matrix-Valued (®, ®*)-Gabor Frames

We begin this section with the definition of a matrix-valued (0, ®")-Gabor frame in the matrix-valued
function space L2(G, C"™").

Definition 3.1. Let © bea bounded linear operator acting on L>(G, C™"). A countable family of vectors G(C, B, ®,,) :=
{EcmTac@ihien, keamen in L2(G,C™") is called a matrix-valued (®,®")-Gabor frame for L*(G,C"™") if for all
f € LX(G,C™™),

@ <Y, Y |(EcuTa, ] < plofi? ©

leAg ke A,meN’
holds for some positive scalars a, and .

The positive scalars a, and f, are called lower and upper frame bounds of the (®, ©®*)-Gabor frame G(C, B, D,,).
If ap = B,, then we say that G(C, B, D,,) is a a,-(©, ©*)-tight matrix-valued Gabor frame for L2(G,C™™).

Remark 3.2. If© is the identity operator on L*(G, C"™"), then a matrix-valued (©, ©*)-Gabor frame for L>(G, C"™")
is the standard matrix-valued Gabor frame for L*(G, C"™"). Howeuver, if © is a non-identity operator on L*(G, C"™"),
then a matrix-valued (©,©")-Gabor frame for L*(G,C™") need not be the standard matrix-valued Gabor frame for
L%(G,C™™). For example, consider the tight Gabor frames {Egy Tx®1}keamez, (I = 1,2) for L*(G) given in Example

2.3. Let @y = [8 21],% = [8 ii] Then, @1, D, € L*(G, C>*?). For any f = [ﬁi ﬁz] in L2(G, C?*?), we have

“(ESmTk‘Dl, f>H2
€{1,2} ke A,meZ

Z Z |fE8mTk¢zf12d#G) +|fEsmTk¢zfzzd#G()

1€{1,2} ke A,meZ

= 20(1Ifiall + Il

Therefore, for £, = [; 8] where 0 # f € L*(G), we have

H(Engchl, £) 20

1€{1,2} ke A,meZ.

Thus, {Esm Tx®@1}1e1,2) ke mez is not a matrix-valued Gabor frame for L*(G, C*2). But the family {Egy Tx®1}ieq 2) keA mez
is a (®,, ©:)-Gabor frame for L>(G, C*>*?), where ©, is a bounded linear operator on L>(G, C**?) given by

@o:fH[g ?2] [}2 gi]eLz(G,szz).

It is easy to see that ®, = ©,. Therefore, for any f € L*(G, C**?), we have
2
00067 =Y, Y, [(EsuTion £)] = 2010412,
1€{1,2} ke A,meZ.
Hence, {Esu Tx@1}ie(1,2) ker mez, 1S a matrix-valued (©,,©})-Gabor frame for L*(G, C>*?).

Remark 3.3. It is mentioned in [15] that a matrix-valued Gabor frame for L*(G,C"™") is always a ©-Gabor frame
for LX(G, C"™") where © is a bounded linear operator on L*(G, C™"). However, this is not true in the case of (®, ©")-
matrix-valued Gabor frame. Precisely, a matrix-valued Gabor frame for L*(G,C™") need not be a (®,®")-Gabor
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frame for L%(G,C™™"). For example, let G be the torus group and {Egy, TiPi}keamez (I = 1,2) be the tight Gabor frames
for L*(G) given in Example 2.3. Let @1, @, € L*(G, C*?) be given by

_|0 ¢ 10 ¢
CD1—|:¢2 0] and @2—[¢1 0}
Then, {EsmTi®i}ie(1 21 keAmez 18 a 10-tight matrix-valued Gabor frame for L*(G, C*?). Define © : L*(G,C*?) —
L2 (G, CZXZ) b]/

[ O] o[ Al .
o:tn [ o] £= [l f2|erce,

Then, © is a bounded linear operator. If possible, let {Egy Ty®i}ieq1 2)kea mez be a (©,©")- Gabor frame for L*(G,C>?)

with bounds a, b. Then, for £, = [? ; , where 0 # f € L%(G), we have

(s, )] = 10012 = 301412 > 0 = bleEIP,

1e{1,2} ke A,meZ.

which is a contradiction. Hence, {Esy Tx®@}e(1,2) keamez is not a (©,0%)- Gabor frame for LX(G, C**2).

Now, we show that a matrix-valued Gabor frame for L*(G,C™") becomes a (©,®")-Gabor frame for
L*(G,C™") provided © is bounded below.

Proposition 3.4. Let {Ec,, Tpr®i}ien, ken,men be a matrix-valued Gabor frame for L*(G,C™"). Let © be a bounded
linear operator acting on the space L>(G, C'™") which is bounded below. Then, the collection {Ecy TcPi}ien, keAmen’
is a matrix-valued (®, ©)-Gabor frame for L*(G, C™").

Proof. Lety and 0 be frame bounds of {Ec, Tpr@1}iea, kea,men - Let © be bounded below by a constant «, that
is, [|©f|| > a|lf|| for all f in L*(G, C"™"). Then, for any f € L*(G,C"™"), we have

7

o @ fF < VIF <), Y IETnr OIF,

leAg ke A,meN’

and

0
Y Y IKEckTrey, HI? < olIFI? < IO,
leAg ke A,meN’ a

Thus, {EcnTpr®@1}ieag ker,men 1S @ matrix-valued (©, ®*)-Gabor frame for the space L*(G, C™") with frame
bounds m and %. O
Now, we discuss relations between hyponormal operators on L?(G, C"™") and matrix-valued A,-(©, ©")-tight
frames for L2(G, C"™"). By Definition 3.1, one may observe that a bounded linear operator ® on L?(G, C"™")
is hyponormal if there exists a matrix-valued A,-(®, ®%)-tight frame for the space L%(G,C"™"). Indeed, if
{fx}ker is a matrix-valued A,-(©, ©")-tight frame for L?(G, C™"), then by Definition 3.1, we have ||©*f|| < ||©f]],
for all f € L*(G, C™"). Hence, © is a hyponormal operator on L*(G, C"™").

In order to see the other way round relationship, we first discuss some frame preserving properties
of (®,0")-frames in L*(G,C"™"). The following result says that the image of a frame in L?(G) under a
hyponormal operator © is a (®, ©*)-frame for L*(G).

Proposition 3.5. Let {EcuTpk®i}lien, kenmens be a Gabor frame for L*(G) and let ® be a hyponormal operator on
L*(G). Then, {®Ecy, Tpcdi} ienpien is a (®, O)-frame for L*(G).

meN
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Proof. Let A and u be lower and upper frame bounds of {Ec, Tpr(i} erpies . Then, using the hyponormality
meA’
of ©, for any f € L*(G), we have

Y. KOEcuTud, PP =Y, Y KEcuTec, © )P

leAg ke A,meN’ le Ao ke A,meN’
* 112
< ull®fll
2
< pllefl1.

Also
MOFP<Y N KEcuTay, © HP

leAg ke A,meN’

:Z Z KOEcn Ty, f)I?

leAg ke A,meN’
forall f € L?(G). Hence, {®E¢,, TorPrlien, keamen 1S a (©, ©*)-frame for L?(G) with frame bounds A and u. O

Remark 3.6. Proposition 3.5 is not true for matrix-valued frames in matrix-valued signal spaces L*(G, C™"). This
problem is related to adjointable operators on matrix-valued signal spaces with respect to matrix-valued inner product
on the underlying space. For example, consider the tight Gabor frames {Eg,Tr¢) s (I = 1,2) for L*(G) given in

Example 2.3. Let @1, @, € L*(G, C**?) be given by

CDl = |:£2 %1] and q)z = |:¢())1 (]”())2:| .

Then, {Esu Te®@i}1e(1,2) ken,mez is a 10-tight matrix-valued Gabor frame for L*(G, C>?).
Define ® : L*(G, C**?) — L%(G,C>?) by

e | O | f2| Cr2e o2
o:f [0 0}'f_[f21 fzz]EL(G,C )-

Then, © is a bounded linear operator with adjoint ®* = © and hence a hyponormal operator. But © is not adjointable
with respect to matrix-valued inner product on L*(G,C>?). That is, (©f, g) # (f,©*g) for all f, g in L*(G,C>?).
Furthermore, ©Eg,, Tx®; = O for I € {1,2},k € A,m € Z. Hence, {®Eg,, TxP@1}ieq1,2) ke, mez 1S not a (0, ©")-frame for
L2 (G, CZXZ)_

The following result gives sufficient conditions on matrix-valued ©-frame preserving transformations
acting on matrix-valued signal spaces in terms of adjointability of ©.

Proposition 3.7. Let {Ecu Tc@i}ien ken,men be a matrix-valued frame for the space L*(G, C"™") with frame bounds
y and 6. Let © be a hyponormal operator acting on L*(G, C"™") which is adjointable with respect to the matrix-valued
inner product. Then, {OEc,, T Pr}ien, kea,men 15 a matrix-valued (©, ®)-frame for L2%(G, C™") with frame bounds
y and .

Proof. For any f € L*(G, C"™"), we have
VO <Y Y IEcnTne, ©°H)|P

leAg ke A,meN’

=Y. ) I@EcTady, HI?
leAg ke A,meN’

=2 2 IKEcn T, ©° )

leAg ke A,meN’
< olle |
< o||Of|%.
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Thus, {@Ec TecPi}ieay keamen is a matrix-valued (O, ©*)-frame for the space L%(G,C™") with the desired
frame bounds. [

Now, we have enough knowledge to discuss the conditions on an operator © acting on L?(G, C"™*") such that
the existence of 1,-(©, ®")-tight frames for L*(G, C"™") is guaranteed. We give the following result regarding
this.

Theorem 3.8. Let © be a hyponormal operator on L>(G, C"™"). If © is adjointable with respect to the matrix-valued
inner product, then there exists a matrix-valued A,-(®, ©*)-tight frame for L*(G, C"™") for every positive real number
Ao.

Proof. Let {Ecy Tpk®i}ieaokenmen be a Parseval frame for L?(G). For each I € Ay, define the matrix-valued
function @; € L2(G,C™") as

\/A_oﬁbl 0 0
0 \/)TO(P[ 0

@ = .
0 0 v \//\_0 le
Then
Eci Tpr(Vio ¢p) 0 0
0 ECmTBk(\/Er,"JI) 0
EcnTpc®; = _ | '
6 O ECnxTBkkm‘f’1)
fu fzo fm
o1 fo o fa
Therefore, forany f = | . o erz (G, C™"), we have
fnl f"z te fnn
Y Y I Ecn TP

leAg ke A,meN’

(i1, EcnTe(NA 1)) -+ {fin, EcnTe( VA, 1))
_22” (fo1, EcnTee(NA6 1)) -+ {fon, EcnTre( VAo 1)) H2

leNy keA

meN

oty EonTar(NTa 60) - (Fon EcnTae( N 1))

=AY, Y Y, Kfip EcnTa d)P

leAo ke A,me’ 1<i,j<n
2
=2 Y, Ifil
1<i,j<n

= AlIfl.

Hence, {Ecn Tac@i}ien, ker,men is @ matrix-valued A,-tight Gabor frame for L%(G,C™™"). Further, by Proposi-
tion 3.7, {OE ¢, Tk Pr}ieay ke, men’ is a (©, ©*)-frame for L%(G,C™") with A, as lower and upper frame bounds.
Hence, the existence of a matrix-valued 1,-(®, ®")-tight frame for the space L?(G, C™") is proved. [

We illustrate Theorem 3.8 by giving the following example regarding the existence of 1,-(®, ©")-tight
frames for L2(R, C>).
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Example 3.9. Let G = R be the additive group of real numbers. The characters on R are the functions n, : R — C
defined by

ny(x) = ™, x € R

for fixed y € R. That is, the dual group G can be identified with R, see [9] for technical details. Consider the lattice
A=Zand N = Z. Then, for ¢ = xjo1), the Gabor system {E, Ty} rez is an orthonormal basis for L*(R), see [4,
p. 96] for details.

Define a matrix-valued function ® € LR, C>*®) as

V3¢ 0 0
o= 0 V3¢ 0 |
0 0 V3¢

Then, for any f = [ ﬁ'f]1<ij<n € LX(R, C*3), we have

Y IKE EnTi@)? = 32,

m,keZ.

which implies that {E,;, Ty®},, kez is a matrix-valued 3-tight Gabor frame for L>(R, C¥?). Define © : L*(R, C**3) —
LZ(]R, C3><3) b]/
fir 0 fi3 fir fiz fi3
O:f(fn 0 fs|, f=|fa fo fi3|€l*(RC).
far 0 f33 far fr fn

Then, © is a bounded linear operator with adjoint ®* = ©. Also, © is adjointable with respect to matrix-valued inner
product on L>(R, C*3). That is, (Of, g) = (f,©"g), f, g € L*(R, C>*®). Then, by Proposition 3.7, the matrix-valued
system {OF,,, TP}, kez is a matrix-valued 3-(©, @)-tight frame for L2(R, C>*3).

Remark 3.10. In Theorem 3.8, the condition of adjointability of © with respect to matrix-valued inner product is not
a necessary condition.

Next, we discuss frame properties of the image of a (©, ©*)-Gabor frame in L%(G, C™") under a bounded
linear operator E. Itis proved in [15, Proposition 4.2] that the image of a ®-Gabor frame for L%(G, C™")under
an operator 2 € B(L*(G, C"™")) becomes a E@-frame for L*(G, C"™") provided Z is adjointable with respect
to matrix-valued inner product. But, this is not true for the case of (®, ©*)-Gabor frames in L*(G, C"™"). That
is, if G(C, B, @y,) is a (©,©")-Gabor frame for L2(G, C™") and E € B(L*(G, C™")) is adjointable with respect
to matrix-valued inner product, then Z(G(C, B, ®,,)) may not be a (E@, (E0)*)-frame for L%(G, C™"). This is
justified in the following example.

Example 3.11. Consider tight Gabor frames {Eg,, Tip1) ks and {Egm Trd2} ren for L*(G) given in Example 2.3. Define
0 : L*(G,C*?) - L*(G,C*?) by

e |2 P g |0 S| e o2
©:f [fu fn],f_[f21 fzz]eL(G,C ).

Then, {EsuTi®ihieq1 a1 kenmez 18 a matrix-valued 10-tight (©,0%)-frame for L*>(G,C*>?). In fact, for any f €
L%(G, C>?), we have

101O°AP = 10I6IF < Y )" IKE EsuTx@nI? < 1011 = 10//©f

1€{1,2} ke A,meZ
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Define E : L*(G, C?*?) — L%(G,C>?) by

- 0 fio fir fi2 x
o [0 f2] f= [21 fz2]eL2(G,C2 2).

Then, B is a bounded linear operator with adjoint E* = E. Also, E is adjointable with respect to matrix-valued
inner product on L*(G,C*>?). That is, (Ef,g) = (f,E g), f,g € L2(G,C?*?). However, {uEngk(Dl}le(lz)ke& is not

a (20, (EO)*)-frame. If possible, let {EEg, TiPi}ie(1,2) ke mez be a (2O, (EO)*)-frame with bounds 7/,6 Then for

f, = 8 j(c , where f is a non-zero function in L(G), we have

Y ¥ H(EEngkq>,,fo>2

1e{1,2} ke A,meZ.

= 20/|fI* > 0 = SIZOLIF,

which is a contradiction.

)

In the following result, we give some additional conditions on E so that Z(G(C,B,®,,)) becomes a
(20, (E@)*)-frame. This result can be seen as a generalization of Proposition 3.7.

Proposition 3.12. Let {Ecy Tpc@i}lien ken,men be a matrix-valued (©,0)-Gabor frame for L*(G, C"™") with frame
bounds y and 6. Suppose

(i) E € B(L*(G,C™™)) is adjointable with respect to matrix-valued inner product.
(i) E is hyponormal on Ran(®) such that OE* = E*O.

Then, {2Ecu T @} ien, keamenis a (2O, (EO)*)-frame for L2(G, C™") with the same frame bounds.
Proof. For any f € L*(G, C"™"), we have

Y T fererondf <Y T Keeraonzof

le Ao ke A,meN’ leAg ke A,meN’
< 5||O="f|]?
= 0||= " Of|?
< §||=Of|%. (6)
Similarly
Y Y |EEarson | =Y Y, [(EcuTson =)
leAg ke A,meN’ leAg ke A,meN’
> y||©"E |
= (EO)f|? f € L%(G,C™™). @)

By (6) and (7), we conclude that {EE ¢, TprP1}iea, kea,men is a matrix-valued (20, (E0)*)-frame for L2(G,C™™)
with frame bounds y and 6. This completes the proof. [J

Remark 3.13. The condition that the operator © commutes with E* in Theorem 3.12 cannot be relaxed. Consider
the operators ©, E defined on L*(G,C?*?) and the system {EguTx®@}ien 2y kenmez Which is a (©,0%)-Gabor frame
for L2(G, C¥?) given in Example 3.11. As mentioned in Example 3.11, the operator E is adjointable with respect
to matrix-valued inner product, and E is hyponormal on Ran(®) since E* = E. But, OE" # E*O. In fact, for any

[ﬁi 22] € L*(G, C??), we have

- =f 0 — - 0 fa
=f = OEf fa d E'Of=E0f= .
() (©) [fu O] an (S ) [O fn]

Therefore, the system {EEgy, Tk@}ie,2) ker,mez 1ot being a (2O, (EO)*)-frame, details in Example 3.11, supports our
argument.
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Next, we give a characterization for matrix-valued (8, ®*)-Gabor frames in L?(G, C™"). This is inspired by
a fundamental result due to Gavruta in [11, Theorem 4] for ordinary K-frames in separable Hilbert spaces.
This is also related with the concept of atomic systems in Hilbert spaces. The matrix-valued atomic system
in matrix-valued function spaces can be studied in terms of (®, ®*)-Gabor frames.

Theorem 3.14. Let © bea bounded linear operator acting on L*(G, C™"). A matrix-valued Gabor system G(C, B, ®p,)
is a (©,©%)-Gabor frame for the space L*(G,C™") if and only if there exists a bounded linear operator Q from
2(Ag X A X AN, M,,(C)) into L*(G, C™") such that

(1) EcuTpr®r = Qxigm, | € Aok € A,m € N, where {Xikmlien,keamen 15 an orthonormal basis of
KZ(AO X A X A// MVI(C))/
(ii) there exist finite positive numbers o and f satisfying

a t{@Of, f) < tr{QQ'f, f) < B tr(@"Of, f), f € L*(G,C™™).

Proof. Suppose first that G(C, B, @,,) is a matrix-valued (0, ©")-Gabor frame for the space L*(G,C™") with
frame bounds a,, b,.
Define Z : L%(G, C™") — £2(Ag X A X A, M,,(C)) by

B0 =), Y (EEuTu@xikm LG, C™).

leg ke A,meN’

Then, E is a bounded linear operator and ||Z]| < Vb,||O]|.
Now, for any | € Ag,k € A,m € A’, we have

tr(x1km, 2f) = tr()(l,k,mr Z Z (f, ECm’TBk’(Dl'>XI',k',m’>

'eNg k'eA,m’eN
= tr(f, Ecy T @p)"
= tr{Ecy Tpe®y, £) for all f € LA(G, C™").

Thus, E*x1xm = EcmTpr®y, for all I € Ag, k € A and m € A’. If we take QO = E*, then we obtain (i). To prove
(i), let f € L%(G, C™") be arbitrary. Then,

wled <Y, Y | EnTaon| = 1z,

leAg ke A,meN’
and
2
IefP =Y Y [(€ EcnTmdn|| <viliOfP.
leAg ke A, meN’
This imply that

a,tr(@0f, f) < tr(E*Ef, f) = tr(QQf, f) < b, tr(O" O, f).

This gives (ii), where a = 4, and = b,.
To prove the converse, assume that conditions (i) and (ii) hold. Then, using condition (i), for any
1€ Ao, ke A,m € A and any f € L*(G,C"™"), we have
tr(Xikm, QF) = tr{QX 1k m, £)
= tr(Ec, Tpc @y, £)
= tr(f, Ecn T P1)’

= tI'<XI,k,m/ Z Z (£, Ecow T Dy )Xl’,k’,m’ >/
eAg k'eA,m’eN
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which entails

Q=) Y EcuTu®dxm, f€LHG,C™).

leAg ke A,meN’

Therefore

loar =Y Y [ EcTaon|, €< 126 7).

leAg ke A, meN’

2
Using condition (ii), we have all@"fP < QP = Eien, Tienmen (€ EcnTnn|| < BIOAP for all £ €

L*(G,C"™™"). Hence, G(C, B, ®,,) is a matrix-valued (®, ®")-Gabor frame for L?(G, C"™"). This completes the
proof. [

4. Perturbation of (®, ®*)-Gabor Frames

In this section, we show that matrix-valued (®, ®*)-Gabor frames are stable under small perturbation.
Perturbation theory plays a significant role in both pure mathematics and applied science, see e.g. [22].
For applications of perturbation theory for frames in various directions, we refer to [14]. The following
result shows that multivariate (©, ®)-Gabor frames in matrix-valued signal spaces are stable under small
perturbations.

Theorem 4.1. Let G(C, B, Dy,) be a matrix-valued (©, ©®")-Gabor frame for L2%(G, C™") with frame bounds y,, 0o,
and let {®}jcp, € LA(G, C™™). Assume that

(i) ©" be bounded below by m,.
(if) A, 12 0 be such that S50 > 198,

(iii) For all f € L2(G,C™™"),

Y Y IKEEcuTu@—d)P<AY . Y IKE Ecu TP

le Ao ke A,meN’ le Ao ke A,meN’

+ pll©fl* + nlIOf*. (8)

Then, G(C, B, (I~>AO) is a matrix-valued (©, ©)-Gabor frame for L*(G, C™") with frame bounds

@2
((%—/\)yo—y—m'mZ” )andZ((1+/\+;)6o+n).

0 [

Proof. By hypothesis (8), for any f € L?(G, C"™"), we have

IKE, Ecn Ta I

leAg ke A,meN’
<2) Y IKE EcnTon® — Ecn TP +2) . Y IKE EcnTar®@)IP
leAg ke A,meN’ leAg ke A,meN’

<@A+2)Y, Y IKE Ecu TP + 2l + 2nllOf|>

leNg ke A,meN’

2
<@ +2)Y Y IEETu®P+ == Y Y IKE e Tae@)I + 27)Of2.
leAg ke A,meN’ 0 leAg ke A,meN’
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Therefore
Y Y IKEEcuTu®)lP <2 ((1 # A+ L)+ n) IOfI?, £ € LG, T, ©)
leAg ke A,meN’ Vo
Similarly,
Y ) IKE Ecu Tu)l?
leNg ke A,meN’
<2) Y IKE EcuTu® - EcuTa®@IP +2) Y IKE Ecu T
leAg ke A,meN’ leAg ke A,meN’
<20)0 Y IKE EcnToe®@)lP + +2ull©' 2 + 2nlOfIF +2 ) )" IKE EcuTaednI?,
leAg ke A,meN’ leAg ke A,meN’

which entails

2), Y, IKEEuTu®@)IP

leAg ke A,meN’
>(1-20) ) Y IKE EcuTu®)I? - 2ull©°fIF - 2nli©f
leAg ke A, meN’
> (1= 20)p, |2 - 2l £l - 2nlI©IPIIf]

2n]|©|2
> (1= 27)), /IO |12 — 2ull©* > - Lzuu@*fu2 (using hypothesis (i)
m

0

That is
- 1 TR
Y Y IKE EcnTad)l? > ((z - A)yo-p - T |lersp (10)
leAg ke A,meN’ Mo

for all f € L2(G,C™"). From (9) and (10), we conclude that G(C, B, 5/\0) is a frame for L2(G,C"™") with the
desired frame bounds. O

Next is an applicative example of Theorem 4.1.

Example 4.2. Let {Egy Tx®i}ie,2) ke mez be the 10-tight matrix-valued Gabor frame for L*(G, C**?) given in Remark
3.3. Define © on L*(G, C>?) by

@:fH[zj}?j ;ﬁ]f:[ﬁ {CZ]GLZ(G,CZXZ).

Then, © is a bounded linear operator satisfying ||Of|| < 2||fl|, for all f € L*(G,C>*?). In fact, we have ||®|| = 2. For
any f, g € L*(G, C>*?), we have

_ 2fn fallgn 72
tr(Of, g) = 1?1:[G [le f11_ [E 7 dug
_ i follz
_trfc[fm fa||gn 2gu e,
which implies that ©" is given by

. g2 g2 _ _911 g12
©rgr [!712 2911]' &= 921 922

] € L*(G,C*?).
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It can be easily seen that ©* satisfies |If|| < ||©°f|| < 2||fl|, for all £ € L*(G,C??). That is, ©" is bounded below by
m, = 1.
2
Now, for any £ € I2(G,€?), we have IO < Lz Luenmez |[(EsnTer )] = 101612 < 10/©F

Therefore, {Egu Tk®1} 11,2y kermez is a matrix-valued (©,©")-Gabor frame for L*(G, C*?) with frame bounds y, = 2
and 61 = 10.

— 1 — 1
Consider ®; = [5¢1 qbl ] D, = [5¢2 (PZ ] in L3(G,C*?). Then, for any f = [ ij]1<‘ € L%(G,C??), we
<i,J<

P2 i’ P11
have
IKE, Esin Ty — Esn Te®)|?
lef1, 2] keA,meZ.
= — Z |fE8mTk¢lf11| + |fE8mTk¢lf21| + |fE8mTk(Z)1f12‘ + ‘fE8mTk(Plf22| )
le 1,2} ke A,meZ
_ 1942 < Liere + Lione.
25Ilﬂl < 5|| Il 5|I Il

Thus, all the conditions in Theorem 4.1 are satisfied with A = 0,y = % = % Hence, thecollection{EngkCIF;l}le{m],keA,mEZ

is a matrix-valued (©, ©*)-Gabor frame for L*(G, C>).

Theorem 4.1 shows that a matrix-valued Gabor system G(C, B, ®,,) becomes a (0, ©®")-Gabor frame for
L%(G,C™") if its window functions ®@;,] € Ag are sufficiently close to the window functions @;,/ € Ay of
a matrix-valued (0, 0")-Gabor frame G(C, B, ®,,). This can also be seen as a way of constructing new
matrix-valued (©, ®*)-Gabor frames by altering the window functions of a known matrix-valued (©, ©")-
Gabor frame appropriately. In the direction of obtaining new matrix-valued (®, ®)-Gabor frames from
known matrix-valued (0, ®)-Gabor frames, we give the following result which states that the perturbed
matrix-valued Gabor systems (®, ®)-Gabor frames, under suitable conditions, becomes a matrix-valued
(®,®")-Gabor frame for L2(G, C™").

Theorem 4.3. Let G(C, B, ®,,) and G(C, B, \V »,) be matrix-valued (®, ©®*)-Gabor frames for LZ(G, C™") with frame

bounds y1, 61 and v, 62, respectively. Suppose ©" is bounded below with constant m, such that z—; > %l. Then,

the perturbed matrix-valued Gabor system Q(C, B, (®p, +V¥ Ao)) is a (©, ©)-Gabor frame for LX(G, C"™") with frame

vazlel |’
bounds ( 77— L) and 2(61 + 62).

Proof. For any f € L*(G,C"™"), we compute

(Y ) IKE, EcuTau(@; + wp)P)

[T

leAg ke A,meN’
1
=() ). IKE, EcuTuci + Ecu T WpIP)’
leAg ke A,meN’
1 1
>()0 ), IKE EcuTu@IP) = () ) IKE, EcnTocWnIP)’
leAg ke A,meN’ leAg ke A,meN’

> V7l - Vollef]
> VIOl - Vool

. S
> JTTIe] - ‘/_” ALAS e
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This gives
o) 2
Y Y It EenTutr + EcnTtiP = (477 - Y2 o for ait £ e 126, ), an
leAg ke A,meN’ Mo
Similarly,
Y Y IKE, Ecu o+ WiDIP
leAg ke A,meN’
<Y Y e EeaTaddlP+ Y Y IKE, EcnTaeWIP)
le Ao ke A,meN’ le Ao ke A,meN’
< 2(81 + 6,)||Of|]* for all f € L*(G, C™™"). (12)

From (11) and (12), we conclude that G(C, B, (®, + W»,)) is a (8, ©")-Gabor frame for L2(G, C"™*") with the
desired frame bounds. This completes the proof. [

We end this paper by providing an application of Theorem 4.3.

Example 4.4. Consider the (©, ®*)-Gabor frame {Egy Tx®i}ic(1 2) kea mez for L*(G, C¥?) with frame bounds y; = 3
and 61 = 10 given in Example 4.2.

1 1
Let ¥, = [5851 0 ] LW, = [5¢2 0 ] Then, W1, W, € L2(G, C¥?), and for any f € L*(G, C*>*?), we have

302 0 3¢
Y ) IKE B TWI?
1e{1,2} ke A,meZ
-5 Y ¥ ([ Esroil +] [ Ewtiofl +| [ Estiofl +| [ Eutofl)
1€{1,2} ke A,meZ.
_ 10 .o
= Il
< ZjlefP.

Also

le

2 1
Y. Y., IKEEsuTeWIP = ZIAP 2 SIO°AP, £eL%(G,C),
{1,2} ke A,meZ.

Thus, {EsnTkWilie 2 keamez is a (©,0%)-Gabor frame for L*(G,C>?) with frame bounds y, = 75 and 6, = 3.
Further, ©" is bounded below by m, = 1 and 3 = \/g > % = 2. Hence, by Theorem 4.3, the perturbed matrix-
valued Gabor system {Egu Ti(P1 + V) hiep 21 kea,mez 18 a (O, ©%)-Gabor frame for L*(G, C**2) with frame bounds

2

(\/ﬂ - M) and 2((31 + 62)
M,

Remark 4.5. Theorem 4.1 and Theorem 4.3 are not only ways of constructing new frames but also can be used to
check if a matrix-valued Gabor system G(C, B, 5/\0) is a (®,0")-Gabor frame for L*(G, C™"), where the window
functions ®;,1 € Ag have complex structure leading to complicated calculations. In order to understand this better,
we compare Example 4.2 and Example 4.4. In Example 4.2, to prove matrix-valued (®, ©*)-Gabor frame conditions of
{Engkal}le{l,z}lkE Amez, 1 (0, 0%)-Gabor frame {Egy, Ti D1} 1e(1,2) ken mez having simpler window functions is considered.
However, in Example 4.4, &; + WV, = CI~>1, I € Ao. Hence, Example 4.4 can be seen as a method by which the collection
{Esm Tke'ﬁ,}lem],ke A mez 15 proved to be a (©, ©*)-Gabor frame by splitting its window functions as a sum of the window
functions (perturbed window functions) of two (©, ©*)-Gabor frames.
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