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A note on the algebraic representation of coframes via the Scott closed
set monad over the category of S0-convex spaces
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Abstract. In this note, we shall give a complete answer to the question that what kind of lattice structures
corresponds to the Φ-algebras with respect to the Scott closed set monad over the category of S0-convex
spaces and show that the Eilenberg-Moore algebras with respect to the Scott closed set monad are precisely
coframes endowed with the Scott convex structure. Meanwhile, we shall also prove that the category of
coframes is strictly monadic over the category of S0-convex spaces.

1. Introduction

A monad over a category X is a triple (T, η, µ) consisting of a functor T : X −→ X and natural transforma-
tions µ : T ◦ T −→ T and η : idX −→ T such that

µ ◦ Tµ = µ ◦ µT, µ ◦ Tη = µ ◦ ηT = idX.

Given a monad (T, η, µ) over X, a T-al1ebra (or an Eilenber1-Moore al1ebra) is a pair (X, αX), where X is an
X-object and the structured morphism αX : T(X) −→ X satisfies

αX ◦ TαX = αX ◦ µX, αX ◦ ηX = idX.

In [2], Day investigated the Eilenberg-Moore algebras of the open filter monad over Set and Top0
respectively, and characterized them both exactly as continuous lattices endowed with the Scott topology.
From another perspective, Scott [5] also in his paper on the mathematical models for the Church-Curry λ-
calculus characterized continuous lattices endowed with the Scott topology precisely as T0-spaces injective
over all the subspace embeddings. Furthermore, Wyler [8] studied the categorical algebraic theories of
filters, ultrafilter monad, powerset monad, Vietoris monad, open filter monad. One uses the fact that the
filter monad is of Kock-Zöberlein type, and in that poset-enriched category with such a monad structure,
the injective objects over a certain class of embedding defined in terms of monad structures are precisely
the algebras. From the above results, a bridge among domain theory, topology and categorical algebras
is built, which will further promote the mutual applications among them. In [3], Jankowski characterized
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frames endowed with the filter-convex structure precisely as the S0-convex spaces injective over all the
convex-subspace embeddings, where a convex space and an injective object are called a closure space
which satisfies the compact theorem and an absolute extensor respectively in [3]. As a matter of fact, one
should notice that the injective S0-convex spaces over all the convex-subspace embeddings can also be
characterized by coframes endowed with the Scott convex structure.

Based on the above facts, a natural question was posed by Yue, Yao and Ho [10] that what kind of
lattice structures corresponds to the Eilenberg-Moore algebras of Scott closed set monad, coframes or C-
continuous lattices? Also, in their paper, based on the remotehood system, the convex structure by Kleisli
monoid over the Scott-closed set monad was characterized and the convex convergence spaces were proved
precisely to be the reflexive and transitive lax algebras. Recently, in [4], Liu, Yue and Wei showed that the
Eilenberg-Moore algebras with respect to the Scott open set monad over Set are precisely frames. However,
the question that what kind of lattice structures corresponds to the Φ-algebras with respect to the Scott
closed set monad over the category of S0-convex spaces is still unknown. In this note, we shall mainly
devote to giving a complete answer to this question and further show that the category of coframes is
strictly monadic over the category of S0-convex spaces.

2. Preliminaries

In this section, we shall recall some basic facts about order theory and convex spaces. The readers can
refer to [1] for category theory.

For a subset Y of a poset (X,≤), we write ↓ Y = {x ∈ X : ∃y ∈ Y s.t. x ≤ y}. We always write F ⊆ω X to
denote F is a finite subset of X. A subset Y is a lower set of X if Y =↓ Y. When Y = {y}, we write ↓ {y} simply
as ↓ y and call it a principal ideal of X. Dually, the concepts of upper sets and principle filters can be defined.
A lower (An upper) subset S of a join-semilattice (semilattice) L is called an ideal (a f ilter) of L, if ∨F ∈ S
(∧F ∈ S) for any F ⊆ω S. Let Idl(L) (Fil(L)) denote the set of all ideals (filters) of a join-semilattice (semilattice)
L. A subset Y of a complete lattice X is Scott closed if it satisfies (1) Y =↓ Y and (2) for any directed subset
D, D ⊆ Y implies

∨
D ∈ Y. The complements of Scott closed sets are called Scott open sets, such subsets

of a poset X form a topology on X, which is the well-known Scott topology. A f rame is a complete lattice
satisfying the distributive law of binary meets over arbitrary joins. Dually, a co f rame is a complete lattice
satisfying the distributive law of binary joins over arbitrary meets. A map f : L −→ M between frames
(coframes) is called a frame (coframe) homomorphism if f preserves finite meets (joins) and arbitrary joins
(meets). Let Frm (CoFrm) denote the category of frames (coframes) and frame (coframe) homomorphisms
and let Frm∧ (CoFrm∨) denote the category of frames (coframes) and finite-meets-preserving maps (finite-
joins-preserving maps). Let f : P −→ Q and 1 : Q −→ P be two monotone maps between posets. Then f is
called a le f t adjoint of 1 (1 is a ri1ht adjoint of f ) if f (x) ≤ y ⇔ x ≤ 1(y) holds for all x ∈ P and y ∈ Q. In
particular, if P and Q are complete lattices, then f is a left adjoint of 1 iff f preserves arbitrary joins iff 1
preserves arbitrary meets.

Definition 2.1. ([7]) Let X be a set. A subfamily C of 2X is called a convex structure on X, if it satisfies the
following conditions:

(1) ∅,X ∈ C;
(2) For any {Ai}i∈I ⊆ C,

⋂
i∈I

Ai ∈ C;

(3) For any directed family {Di}i∈I ⊆ C,
⋃
i∈I

Di ∈ C.

We call the pair (X,C), or simply X, a convex space, and every element in C a convex set. We shall always
denote by CX the set of all convex sets of X.

Let (X,CX) be a convex space. For any subset A of X, the hull coX(A) of A is defined as

coX(A) =
⋂
{B ∈ CX : A ⊆ B}

The operator coX is called the hull on X. A convex set C is called a polytope if it is the hull of a finite
set of X. For convenience, we always write coX(x) for coX({x}) for any x ∈ X. One can easily check that
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coX(A) =
⋃

F⊆ωA
coX(F) for any A ⊆ X. A convex space X is called S0, if coX(x) = coX(y) implies x = y for any

x, y ∈ X. A convex space (X,CX) is called sober, if every non-empty polytope is the hull of a unique singleton
(see [6]). The specialization preorder ≤CX on X is defined by x ≤CX y iff x ∈ coX(y), or alternatively x ≤ y iff
y ∈ C implies x ∈ C for all C ∈ CX. The specialization preorder is a partial order iff X is an S0-convex space.
For an S0-convex space X, one can easily verify that every convex set in CX is always a lower set of X with
respect to the specialization order. For a join-semilattice (L,≤), one can check that the collection Idl(L) of all
the ideals of L is a convex structure, which is called the Scott convex structure on L. It should be noted that
an S0-convex space X is sober iff (X,≤CX ) is a join-semilattice and the convex structure CX is coarser than the
Scott convex structure on (X,≤CX ).

Let f : (X,CX) −→ (Y,CY) be a map between convex spaces. Then f is called convexity-preservin1 (CP for
short), if for any C ∈ CY, f−1(C) ∈ CX. One can easily check that f is CP iff f (coX(A)) ⊆ coY( f (A)) for any
A ⊆ X iff f (coX(F)) ⊆ coY( f (F)) for any F ⊆ω X. A collection S ⊆ CX is called a subbase of a convex space
(X,CX), if CX is the coarsest among all convex structures that include S. Let ConvexS0 denote the category
of S0-convex spaces with CP-maps.

A morphism of T-algebras f : (X, αX) −→ (Y, βY) is an X-morphism f : X −→ Y such that f ◦ αX = βY ◦ T f .
Let XT denote the category of all T-algebras and T-morphisms. A monad (T, η, µ) is always associated
with an adjoint pair F ⊣ G : A −→ X such that T = GF and µ = GεF. The related comparison functor
K : A −→ XT is given by A 7→ (GA,GεA) and ( f : A −→ B) 7→ (G( f ) : G(A) −→ G(B)). The category A is called
monadic (resp., strict monadic) over X via the monad T if the comparison functor K is an equivalence (resp.,
isomorphism).

3. Main results

In this section, we shall aim at showing that the coframes endowed with the Scott convex structure
are precisely the Φ-algebras of the monad (Φ, µ, η) over ConvexS0, and CoFrm is strictly monadic over
ConvexS0. In the following, a complete lattice or a coframe L is always assumed to be equipped with the
Scott convex structure.

For an S0-convex space (X,CX), we let ΦX be the set of all Scott closed sets on the poset (CX,⊆) and ΦCX
be the convex structure on ΦX generated by the subbase C∗X = {C

∗ : C ∈ CX}, where C∗ = {I ∈ ΦX : C < I}.
Obviously, (ΦX,ΦCX) is an S0 convex space and the specialization order on ΦX is just the inclusion order.

Define Φ : ConvexS0 −→ ConvexS0 by Φ(X) = ΦX for any S0-convex space X and Φ f (I) = {B ∈
CY : f−1(B) ∈ I} for any CP map f : (X,CX) −→ (Y,CY). Then it can be checked that Φ is a functor. For
an S0-convex space (X,CX), the natural transformations η : idConvexS0 −→ Φ and µ : ΦΦ −→ Φ is given by
ηX(x) = Rx and µX(A) = {A ∈ CX : A∗ ∈ A}, where Rx = {C ∈ CX : x < C}. In [10], it was proved that ηX,
µX are CP and (Φ, η, µ) is a Kock-Zöberlein type monad on ConvexS0. Then it follows that ηX ⊣ α for any
Φ-algebra (X, αX) over (Φ, η, µ).

Lemma 3.1. Let f : (X,CX) −→ (Y,CY) be a CP map between S0-convex spaces. Then the maps Φ f and µX preserve
arbitrary meets.

Proof. Proof is easy.

The following Theorem can be found in Theorem 4.9, Theorem 4.11 and Theorem 4.12 of [9] for the case
L = 2.

Theorem 3.2. Every frame equipped with the filter-convex structure is an injective S0-convex space and conversely,
the specialization ordered set of an injective S0-convex space is a frame. Furthermore, ≤op

CX
◦Fil = idFrm∧ and

Fil◦ ≤op
CX
= idConvexS0 , that is, the categories of injective S0-convex spaces and Frm∧ are isomorphic.

One should note that the specialization order on an S0-convex space (X,CX) in Theorem 3.2 is just the
opposite order of the specialization order ≤CX defined in the preliminaries. Then we immediately get the
following Corollary.
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Corollary 3.3. Every coframe equipped with the Scott convex structure is an injective S0-convex space and conversely,
the specialization ordered set (X,≤CX ) of an injective S0-convex space (X,CX) is a coframe. Furthermore, ≤CX ◦Idl =
idCoFrm∧ and Idl◦ ≤CX= idConvexS0 , that is, the category of injective S0-convex spaces and CoFrm∧ are isomorphic.

Lemma 3.4. Let (X,CX) be an S0-convex space. Then (ΦX,ΦCX) is injective in ConvexS0.

Proof. Obviously, the specialization order on (ΦX,ΦCX) is the inclusion order and (ΦX,⊆) is a coframe.
Then it is routine to check thatΦCX = Idl(ΦX), as every C∗ is an ideal ofΦX and L(I) =

⋂
C<I

C∗ for any I ∈ ΦX,

where L(I) = {J ∈ Idl(CX) : J ⊆ I}. Thus, Corollary 3.3 gives that (ΦX,ΦCX) is injective in ConvexS0.

Lemma 3.5. Let f : (X,CX) −→ (Y,CY) be a map between sober convex spaces. Then f is CP iff f : (X,≤C) −→ (Y,≤C)
preserves finite joins.

Proof. Proof is easy.

Let L be a complete lattice. We define a map αL : (ΦL,ΦIdl(L)) −→ (L, Idl(L)) by αL(I) =
∧
{x ∈ L : ↓ x < I}

for any I ∈ ΦL. It is obvious that αL preserves arbitrary meets.

Lemma 3.6. Let L be a complete lattice. Then αL is the right adjoint to ηL and αL ◦ ηL = idL.

Proof. Let ηL(x) ⊆ I. For any ↓ y < I, we have x ∈↓ y and then x ≤ αL(I). Conversely, let x ≤ αL(I), we can
assert that ηL(x) ⊆ I. If not, then there exists C ∈ Idl(L) with x < C but C < I. So there exists x1 ∈ C such that
↓ x1 < I. This implies that x ≤ x1 and hence x ∈ C, a contradiction. Thus, ηL(x) ⊆ I. Furthermore, for any
x ∈ L, we have αL(ηL(x)) =

∧
{y ∈ L : ↓ y < Rx} =

∧
{y ∈ L : x ≤ y} = x.

Proposition 3.7. Let L be a complete lattice. Then the following statements are equivalent:
(1) αL is CP;
(2) αL preserves finite joins;
(3) L is a coframe.

Proof. (1)⇔ (2) By Lemma 3.5.
(2)⇒ (3) It is clear that (ΦL,⊆), as the lattice of Scott closed sets of Idl(L), is a coframe. By the assumption

and Lemma 3.6, L is a retract of ΦL. This implies that L is a coframe with
∧
L

A = αL(
∧
ΦL
ηL(A)) for any A ⊆ L.

(3)⇒ (2) For any I, J ∈ ΦL, we have that

αL(I) ∨ αL(J) =
∧
{y ∈ L : ↓ y < I} ∨

∧
{z ∈ L : ↓ z < J}

=
∧
{y ∨ z : ↓ y < I, ↓z < J, y, z ∈ L}

=
∧
{t ∈ L : ↓ t < I ∪ J}

= αL(I ∪ J),

where the third equality is valid because A ≜ {y ∨ z : ↓ y < I, ↓ z < J, y, z ∈ L} = {t ∈ L : ↓ t < I ∪ J} ≜ B.
Indeed, let y∨ z ∈ A, then ↓ y < I and ↓z < J and so ↓ (y∨ z) < I∪ J, as I and J are lower sets, which implies
that y ∨ z ∈ B. Conversely, let t ∈ B, then ↓ t < I and ↓ t < J. Hence the fact t = t ∨ t gives that t ∈ A.

Lemma 3.8. Let L be a coframe. Then I =
⋂

x<
⋃
I
Rx for any I ∈ ΦL.

Proof. Let I ∈ I. It is obvious that x < I for any x <
⋃
I and hence I ⊆

⋂
x<
⋃
I
Rx. Conversely, if I ∈ Rx for any

x <
⋃
I, then I ⊆

⋃
I. Since I is an ideal of L and I is a Scott closed subset of ΦL, it follows that I ∈ I and so⋂

x<
⋃
I
Rx ⊆ I.

Proposition 3.9. Let L be a coframe. Then αL ◦ΦαL = αL ◦ µL.
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Proof. For any I ∈ ΦL, we have that

αL(ΦαL(I∗)) = αL({J ∈ Idl(L) : α−1
L (J) ∈ I∗})

= αL({J ∈ Idl(L) : αL(I) < J})
= αL({J ∈ Idl(L) : J ∈ RαL(I)})
= αL(RαL(I))
=
∧
{y ∈ L : ↓ y < RαL(I)}

=
∧
{y ∈ L : αL(I) ≤ y}

= αL(I)
= αL({J ∈ Idl(L) : J ∈ I})
= αL({J ∈ Idl(L) : I < J∗})
= αL({J ∈ Idl(L) : J∗ ∈ I∗})
= αL(µL(I∗)).

By Lemma 3.1 and Lemma 3.6, the maps αL,ΦαL and µL all preserve arbitrary meets. Then Lemma 3.8 gives
that αL ◦ΦαL = αL ◦ µL.

By Lemma 3.6 and Proposition 3.9, we can obtain the following result.

Proposition 3.10. Let L be a coframe. Then the pair (L, αL) is a Φ-algebra of the Scott closed set monad (Φ, µ, η)
over ConvexS0.

Lemma 3.11. ([1]) A retract of an injective object is injective.

The following conclusion can also be found in [10]. For the completeness of this paper, we deduce it
here, but with a different proof.

Proposition 3.12. ([10]) Let (X, αX) be a Φ-algebra with respect to (Φ, η, µ). Then αX satisfies the following
properties.

(1) (X,≤CX ) is a coframe;
(2) For each A ⊆ X, αX(RA) =

∧
A, where RA = {C ∈ CX : C ∩ A = ∅}. Hence X is a complete lattice;

(3) αX preserves finite joins.

Proof. (1) Since (X, αX) is a Φ-algebra with respect to (Φ, η, µ), we have αX ◦ ηX = idX and ηX ⊣ αX. Then X is
a retract of ΦX and so Lemma 3.11 gives that X is injective in ConvexS0. Thus, it follows by Corollary 3.3
that (X,≤CX ) is a coframe.

(2) From Corollary 3.3 and the proof of (1), we have (X,≤CX ) is a coframe, CX = Idl((X,≤CX )) and ηX ⊣ αX.
Then by the uniqueness of right adjoint and Lemma 3.6, we have αX(I) =

∧
{x ∈ X : ↓ x < I}. For each

A ⊆ X, it is clear that ↑A = {y ∈ X : ↓ y < RA} and then αX(RA) =
∧

A.
(3) By (1) and Proposition 3.7.

Now, by Proposition 3.10 and Proposition 3.12, we can immediately obtain the first main theorem in
this paper as below.

Theorem 3.13. The Eilenberg-Moore algebras of the Scott closed set monad over ConvexS0 are precisely coframes
endowed with the Scott convex structure. Moreover, the structured morphism αX : ΦX −→ X of an algebra with the
underlying S0-convex space X is given by αX(I) =

∧
{x ∈ X : ↓x < I} for any I ∈ ΦX.

In the following, we shall present the second main theorem in this paper.

Theorem 3.14. CoFrm is monadic over ConvexS0.
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Proof. We only need to show that a map f : L −→M between coframes is a coframe homomorphism iff f is
CP and f ◦ αL = αM ◦Φ f .

Sufficiency: By Lemma 3.5, f preserves finite joins. By Proposition 3.12, we have f (
∧

A) = f (αL(RA)) =
αM(Φ f (RA)) = αM(R f (A)) =

∧
f (A).

Necessity: By Lemma 3.5, it suffices to show that f ◦ αL = αM ◦ Φ f . We first prove that I = RB
for any I ∈ ΦL, where B = X\

⋃
I. It is clear that I ⊆ RB. Let I ∈ RB. Then I ⊆

⋃
I. Since I is

an ideal of L and I is Scott closed in Idl(L), we have I ∈ I and so RB ⊆ I. For any A ⊆ L, we have
f (αL(RA)) = f (

∧
A) =

∧
f (A) = αL(R f (A)) = αL(Φ f (RA)). From Lemma 3.1 and Lemma 3.6, the maps αL, αM

and Φ f all preserve arbitrary meets. Thus, f ◦ αL = αM ◦Φ f .

Remark 3.15. Obviously, the comparison functor K : CoFrm −→ ConvexSΦ0 is defined by L 7→ (Idl(L), αL)

and (L
f
−→ M) 7→ (Idl(L)

f
−→ Idl(M)). Let Idl : CoFrm −→ ConvexS0 denote the functor defined by L 7→

(L, Idl(L)) and (L
f
−→M) 7→ (Idl(L)

f
−→Idl(M)). Then the related adjoint pair is Φ ⊣ Idl : ConvexS0 −→ CoFrm.

By Corollary 3.3 and Proposition 3.12, it can be similarly proved that K is an isomorphic functor with the
specialization order functor as the inverse. This means that the monadicity of CoFrm over ConvexS0 is in
fact strict.
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