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Abstract. This paper is concerned with the existence and controllability results for a class of Hilfer
fractional differential equations of Sobolev-type with non-instantaneous impulse in Banach space. In order
to bring off the main results, the author used the theory of propagation family {Z?(7)}.»o (generated by the
operator pair (<7, %)), measure of non-compactness, and the fixed point methods. The primary goal of this
study is to determine the controllability of a dynamical system without assuming that 2! is a bounded

operator, and no relationship between the domain of the operators &/ and %. At the end, we provide an
example to illustrate the main results.

1. Introduction

Numerous evolutionary processes that are subject to sudden changes in state occur at certain time in-
stant, that sudden changes can be well approximated as being in the form of impulses. These processes are
characterised by impulsive differential equations, (see for instance, [8, 10, 24, 40]). Natural disasters such as
tsunamis, earthquakes, volcano eruptions, shocks etc., are the processes that involve negligible time instants,
sudden changes in their states and these short-term disturbances are predicted as instantaneous impulses.
Furthermore, drug distribution in the bloodstream and subsequent body absorption are moderate and con-
sequential evolution processes, whose dynamics are non-interpretable by instantaneous impulsive models.
These circumstance might be explained by an impulsive action that begins suddenly and lasts for a limited
amount of time, such impulsive effects that stays for finite time interval are known as non-instantaneous
impulse [25-27]. On the other hand, fractional calculus is a growing area of research which deals with the
derivatives and integrals of non-integer order. Nowdays, it became a major branch of mathematics. In
several scientific fields, the possibility of fractional calculus has been successfully applied. Fractional order
models are better than integer order models for several sorts of realistic application, [4, 6, 20, 22, 29, 35-38].
In twentieth century, Hilfer [21] introduced the generalised Riemann-Liouville fractional derivative known
as Hilfer fractional derivative. Hilfer fractional derivative have a large number of applications in the field
of fractional calculus. This operator appeared in the theoretical simulations of dielectric relaxation in the
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glass forming materials [15, 18, 23]. Furati et al. [17] discussed the existence and uniqueness for Hilfer
fractional derivative with initial value problem. Gu and Trujillo [18] investigated the existence of the mild
solution for a class of evolution equations with Hilfer fractional derivative using Laplace transform and
probability density function. Controllability is the elementary concept in the mathematical control theory
which plays an important role in the development of modern mathematical control theory. Controllability
is a qualitative property of dynamical control systems which means that various dynamical systems can
be steer from an initial state to any arbitrary final state with the help of some admissible controls. Many
authors have investigated controllability results extensively in both finite and infinite dimensional spaces,
for more details on it, readers refer to [2, 3, 10, 16, 18, 23, 28, 39, 41] and reference cited therein. Moreover,
Sobolev-type equation appears in a variety of physical problems such as the flow of fluid through fissured
rocks, thermodynamics, propagation of long waves of small amplitude, and so on [7, 13, 33]. Liang and
Xiao [31], studied the existence results for the mild solutions of fractional integro-differential equations of
Sobolev-type with nonlocal initial conditions in a separable Banach space using the theory of propagation
family the theory of measure of non-compactness [30]. Brill [11] established the existence results of the mild
solution for a semi linear Sobolev-type differential equation in a Banach space. Recently, many authors
[1, 5, 9] investigated qualitative behaviours including existence, controllability and stability results. Di-
neshkumar [16] et al. are formulated necessary and sufficient condition which guarantees the approximate
controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusion. Controllability
problem for various kind of systems are described by fractional differential Sobolev-type Hilfer equations
still have a lack of contributions. In [42] Sousa et al. extended the existence of mild solutions of the Hilfer
fractional differential system with non-instantaneous impulses using the results of equicontinuous, (¢, ¢)-
resolvent operator function and the Kuratowski measure of non-compactness in the Banach space. Kumar
et al. [23] investigated the controllability of Hilfer fractional integro-differential equation of Sobolev-type
with non-local condition in Banach space. To the best of authors knowledge, existence and controllability
results for a class of Hilfer fractional integro-differential equations of Sobolev-type with non-instantaneous
impulses has not been yet reported in the literature.

Motivated by the above discussion, in this study we consider the Hilfer fractional integro-differential
system of Sobolev-type with non-instantaneous impulses as follows:

q
D RR(T) = A n(0) + RF (1, %(1), [| O(T,1,%(x)) dr) + ZBuw(7), TEU(wi,TiH],
" - 1)
x(@) = Gt x(0), vel Jm ol
TL%%(0) = o, -

where Y =¢c+a —ca, @é;“ is Hilfer fractional derivative of type a (0 < a < 1), and order ¢ (0 < ¢ < 1),
u(-) is a state function in Banach space X; Igﬂ is the Riemann-Liouville fractional integral of order Y > 0; &/
and Z are closed linear operators (not necessarily bounded) with domains contained in X; w() € L*(J, #),
denotes the control function and % is an another Banach space; 8 is a bounded linear operator from %
into 2(#); the nonlinear functions .#: I X X X X — Z(#) and 6: L X X — X are to be specified later,
in addition, 0 = wp < 71 < w1 < T2 < W2-- < Ty < Wy < Tgy1 = band G : [75,wj] X X — X is non-
instantaneous impulsive function for all j = 1,2,3,--- ,9. £ = {(7,1) |0 <t < 7 < b}; %9 € Z(ZX), here
X={ne?dJ,X): lir% 1=001-9)5((7) exists and finite} and J = [0, b].
T—>

Without putting any limitations on the operator % (i.e., the operator % does not necessarily have a
bounded inverse), as well as without considering any relationship between %(«) and Z(%), we illustrate
our main result using the theory of propagation family { (1), T > 0} generated by the operators ./ and
Z. The definition of the propagation family of operators </ and # will be given in the next section. We
also use fractional calculus theory, measure of non-compactness and Sadovskii’s fixed point theorem in
our analysis. The exact controllability of Sobolev-type fractional integro-differential system (1) with non-
instantaneous impulses in a Banach space X has not yet been studied in any of the research paper. The rest of
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the manuscript is structured as follows: Section 2 provides some fundamental definitions and preliminary
results, which are useful in the later sections. In section 3, we take some assumptions which help us to prove
the main results. In the same section, we prove fractional differential system (1) is controllable with the
help of measure of non-compactness and Sadovaskii’s fixed point theorm. Finally in section 4, we discuss
a concrete example to demonstrate the application of the developed theory.

2. Preliminaries
Let (3, X)(3 = [0, b]) be the space of all continuous function on J with the norm given by

lldll = sup |#(7)],

N
and
613, X) = [ € C(F,X) : ' u(1) € G(3, X)),
be the weighted space of function on J" = (0, b], where 0 < Y < 1 with the norm ||»|l¢,_, = sup It Y (7)) is

1€y’

a Banach space. On the other hand,
PG (3,X) = (T - ) (1) € Gx(xy, 1], ) - lim(x - 1) T (1)

exist and finite forj = 1,2, - - - g, denotes the space of piecewise continuous function with the norm is given
by

1-Y 1-Y -
||x(f)||%,Y:max{sup||r (), sup ItV (x >||},
€Y €I

where #(7*) and »#(77) represent, the right and left limits of x(7) at 7 € J respectively.

Definition 2.1 ([36]). The Riemann-Liouville fractional integral of order ¢ > 0 for a function & € L3, X) can be
written as

I, (1) = % jO‘T(T —-VrZWydv, T>0,

where T is the gamma function.

Definition 2.2 ([36]). The Riemann-Liouville fractional derivative of order ¢, 0 <n—1 < ¢ <, is defined as

1 dav (T F)
L F(T) = 00— ————dv, >0,
D5 F (1) T=0dt Jy (rov)yri v, T
where .Z is an n-times continuous differentiable function.

Definition 2.3 ([21]). The Hilfer fractional derivative of the type a (0 < o < 1) and order ¢ (0 < ¢ < 1) for a
function & can be written as

o d , _a- -

o — [ 7o-9) (1-7) — 7909 pY

757 (@) = (109 L0020 = (17 7)o,

provided that the right hand side exists, where0 < a<1,0<¢<1,Y=c+a—-ca.
Consider the abstract degenerate Cauchy problem:

LAn(t) = In(1), TEY,
An(0) = Bn.
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Definition 2.4 ([31]). A strongly continuous operators family { & (7)}r=0 is said to be exponentially bounded propa-
gation family for (2) if there exists constant ¢ > 0, .# > 0 such that

2Ol < Ae|Ixll, T 20and x € D(%).
The exponentially bounded propagation family { (7))o is generated by ordered pair (o7, %) if
ANZ - )\ Tn = f e M P(t)ndr, for A > cand x € D(%),
0
holds.

Lemma 2.5 ([17, 42]). The fractional non-linear differential equation (1) is equivalent to the integral equation

(71
Ta(l-¢)+¢ %o

[ (- v)c—l[y(v, %), [ 6,1, x(x))dr) + Buw(t) + sz%(’[):ldv, 7€[0,11],

S R T € (13, wi, (3)
G, n(m) + & [ (r—v)!
X[ Z v, 1), [ 6, v, (x)d) + Bu(r) + o/ x(0)] dv, T € (wj, Tjsl-

Definition 2.6 ([18, 19, 42]). A function x € Z€1v(J, %) is said to be a mild solution of the system (1) if integral
equation (3) holds

Sca(T)no + fTVQ(T -v) [9’(1/,%(1/), fT G, 1, x(r))dr) + Bw(T)] dv, t€l0,11],
0 0

%(T) — Ci(T/ %(T))/ TE (Ti/ wi]/ (4)
Sca(1)Ci(T, 2(7))
+ [ K(x=v) [ 7, %), ;7 60,1, x()dr) + Bu(r)|dv, T € (@, Ty,
where

S_o(1) = 795 (1), K.(1) =17'Q (1), Q.(1)=¢ f B S (9)2(1°9)d9,
0

r 1
% sin(nmg), J € (0, o).

_1 -1-1/¢ -1/c _l . _q\yn-1q-nc-1
Pe®) = 29 E ), E®) = 2 ) DTS

n=1

Lemma 2.7 ([19D. If {Z2(7)}:»0 is norm continuous and || P ()| < A for some .# > 1 and any T > 0, then
{K (D} es0 and {S. o (T)} >0 are strongly continuous linear operators, and for any » € X and t© > 0, we have

ML
K ()| < ||,
1K ()| E) [12¢l
and
L @D-9)
ISa,c(T)l < mll%ll.

Definition 2.8 ([14]). Let %(X) be a collection of bounded subsets of X. The function A: B(X) — Z* defined by
n
A(D) = inf{e >0 : vl o, diom(®)<e (=12, ne N)}, D e BX),
i=1

is called the Kuratowski’s measure of non-compactness.
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Lemma 2.9 ([14]). If &1, &, and € are bounded subsets of a Banach space X, then the following statements are true:
(i) & is relatively compact set in X if and only if A(E) =0,
(i) A&Er) < A(&Ep)if & C &y,
(iii) A& + &) < A(&r) + A(E),
(iv) A(cE) < [c|A(E) for any c € X.
Lemma 2.10 ([32]). If S C X is bounded, there is a countable set & C S such that A(S) < 2A(E).

Lemma 2.11 ([14D. If & is a bounded subset in C([by,b2], X), then &(t) is bounded in X, and A(E(T)) < A(E).
Further, if & is also equi-continuous on [by, by], then A(E(7)) is continuous for T € [by, by] and

A(E) = sup{A(&E(1)), T € [b1, D21},  where E() = {n(1): x € E} S Eand by, by > 0.

Lemma 2.12 ([34]). Let {65,1};":1 be a sequence of functions in LY([0,0], Z"), and suppose that there are ¢1, 2 €

L1([0, 0], RY) satisfying sup |6,(x1)l| < ¢1(x1) and A({(ﬁq};"zl) < ¢o(r1) a.e. 11 € [0, 0], then for each 11 € [0, 0], we
g1

get

A(fvrl Gy()dr: g > 1) < Zfrl Po(r)dr.
0 0

Definition 2.13 ([14]). A mapping & : H C X — Y is said to be condensing map if & is continuous, maps bounded
sets into bounded sets and A(F(S)) < A(S), for all bounded sets S C H with A(S) # 0.

Lemma 2.14 ([14]). Let H C X be closed, convex, bounded in Banach space X. If § : H — H is a condensing map.
Then § has a fixed point in H.

3. Main result

To prove the existence and controllability results of Hilfer fractional impulsive differential equation of
Sobolev-type (1), we take the following hypotheses:

(A0) {Z(1)}rx0 is norm continuous and uniformly bounded, i.e. |[#(7)|| £ .# for some .# > 1 and any
T2>0.

(A1) The function .# : J X X X X — D(Z) satisfies the Caratheodary condition, i.e. the function % (z,-,-) :
X x X — X is continuous for each 7 € J and % (;, 1, #3): J — X is strongly measurable for any
n1, 1 € X. Foreacht € Jand x > 0,

there are (TI[/‘:;;),C € L£1([0,7],R*), i = 1,2 such that

sup{llZ (t, 21, 20)|I: ItV || < &) < 11 (7) + Loa(Dlbeall,  forae. T€3,

11m1nf—f ( boa (V) ————dv=1 < +oo,

K—00 T_Vlg

and

ggxolof (TK_ZV;); dv =1 < 0.
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(A2) The function ®: Z X X — X satisfies that the function ®(z7,v,-) : X — X is continuous for each
(tr,v) € X and the function 6(,-,1): £ — X is strongly measurable for each y € X. There exists a
function m € £1(Z, R*) such that

(1-a)(1—¢

16(z, v, n)Il < m(z, v)llv yll.

T
Take m" = max f m(t,v)dv.
0

TEYF

(A3) There exist a function g: [0,b] — R* with the condition (t —-)'™<o(-) € £L([0, 7], R*) and an integrable
function p: X — [0, o) such that

AF(1,8,9) < o(1) [A90798) + AS)],
and

A(G(t,v,8)) < p(T,V)AWIIE), foraere, and & S c X.

Also suppose that ¢" = max f (T =)' “o(v)dv and p* = max f p(T,v)dv.
€3 Jo 3 Jo
(A4) (IGi(T, u) = G(T, 0l » < Killu = vllgy, VT € (Th, w5,
and sup [|Cj(wj, #(wi)llg, < Na.

(A5) The linear operator Fz,ii” : LX(3, %) - X defined by

Ti+1
I’Z)le = K. (tis1 —v)Bwv)dv, 1=0,1,---,9,
wj
has an induced inverse operator (I';"")~! which takes values in £3(3, X)/ ker(I';"") and

ITa™) e < 6r, where %1 >0,

and for every bounded set & C X, there is an integrable function ®: | — R* such that

ATETIE(D) < D(DAE),

and
Q= quf (T =)' D@) dv.
€Y 0
(A6) Take
2.4 pl=a) (1<) 2.4 B||®* Apla-b=c)
N1 = {[ [1+ ]1+2* H—‘K
T ro 1M a9
2///¢*IIBII) /A ( ooy . 2298l 1
X |1+ ——— )+ =——(1 +2p")g* (b0~ C)+—)]}<—.
( Tc o\ +20)e Ic 2
Define

E =) eCQ,X): Il < x},
and

PG v
&SN ={ne PGy IUlloe , <k
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Theorem 3.1. Let conditions (A0)-(A6) hold, then controllability of system (1) is assured on J if

AS p1-a)(1-c) A
M {1 + r(g n 1)”.8”%]“} {W {ll + lzm }} < 1, (5)

is satisfied.

Proof. The control function for 7 € [0, 71] is defined as:

Wy (T) = (1"81)‘1 [xﬁ — M o(T1)10 — fﬁ K11 —v)F (v,k(v), fv G, 1, #1(r)) dr) dv] (7).
0 0

For 7 € (wj, tj+1];1=1,2,3,- -+ ,q, it is defined as:

wx (1) = (FZ;,H B |:%Ti+1 = M o(Tiv1 — V)Gi(wj, #4(7)) (6)

Ti+1

_ K (Tis1 —V).F (v, n(v), f ) G, r, %(1)) dr)dv](*r).
0

Wj

Put T = 7j41 in the mild solution of (4), we have:

x1(Ti+1) = Sca(Ti1) Gy, #(wy))

+ K (Tir1 —Vv) [ﬁ(v,%(v), fv G, r, x(x))dr) + Bw(*c)] dv;i=0,1,2,--- ,q,
0

wj

Ti+1

#(Ti1) = Sea(Ti41)Cilwy, x(wyp)) + K (Tis1 — V)[ﬁ v, 1(v), f G(v, r,%(r))dr)]dv
0

+(TaTrah™ [%(Ti+1) = Sca(Tir1 — V)G(wj, #(w)))

- K (tis1 —V[Z (v, »(v), j: G(v, r,%(r))dr)]dv]

wj

%(Ti+1) = Aqy-

Hence, the control function is well-defined for 7 € (wj, 7j+1] and [0, 71].
Using the control (6), we define an operator §: 2%, [3, X] — 2%1-,[J, X] as

Sca(t)no + fOTVQ(T -v) [9(1/, n(v), fT G, v, x(x))dr) + Bw(T)] dv, t€[0,1],
0

Ci(Tr %(T))r TE (Tir C‘)i]r

(&20)(1) = (7)
Sca(1)Gi(7, %(1))

+ fT K(t—-v) [ﬁ(v, n(v), fT G, v, x(x))dr) + Bw(f)] dv, T € (wj, Tis1]-
an 0
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For any y € €(3, X), #(1) = 7@ V1=y(1), T € J’. We define a map X as

T(l_a)(l_g)(S;,a(T)%O
[ K (- v)[y‘(v, ), [ 6, x()dx) + Bw(T)]dv), Te(0,m]

20-00-9¢, (7, x (1)), T € (T3, wil,

(Xy)(7) = (8)

T(1—a><1—c>(Sg,a(T)Ci(T ,#(1))
) ff Koo V)[gz(%%(v), fT O, r, #(x))dr) + Bw(T)]dV)' v @ tinl
wj 0

Ao —
Tla(l=0)+<l’ 7=0.

From equations (4) and (7), we conclude that any fixed point of § is equivalent to the mild solution of
(1). If » is the mild solution of (1) with the control (6), then x(b) = x,. For 7 € [0,11], let v € &, and
#(1) = 1@ D1=y(7), T € ' = (0,3]. Therefore, x € E,7“-". From (6) and Lemma (2.7), we get

%
7 a-Dl=9)
1Bw, (Dl < 1Bt [Ilkﬁll Tad-079" lIoll

RN T
+F(C)L (’1.'1 V)

€ 11—
<|8ller [Ilknll et @3¢ |

ﬁi(v,%(v), fv G, r, x(1)) dr)
0

]

Fa(l-¢)+¢)

+% fﬁ (11 —v)! {Im(v) + L2 (v) fv G(v, v, x(x)) dr }dv]
I'(¢) Jo o
= It [”%“” * ﬁfﬁ““l’g’nxou

+% fo (o1 - {rK,l(v)+m*11<,2(v)||x||%},}dv]

2 e V)
< |18l [H%zl” + Tad—0)+ 0 () [12¢oll
T1
+% f (11 —v)-! {Lea(v) + Km*IKlz(v)}dv]
0

I'(c)

For 7 € [1;, wj], we have

1Bw, (Dl = IGi(7, x(D)Il < Na. (10)
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For 7 € (wj, Tj+1], we have

1Bw, (DIl <

B(Tﬂil)_l[%m = Sca(tinn = v)Giwj, %(T))

Ti+1

| Kt - v)ff(v, xWw), fo " 6w, 1, 1(1) dr)dv]

@j

(Ti+1 - V)(a_l)(l_g)HCi(T/ %(T))”

]

(tix1 = V)i, 15(D)I]

f]

(tis1 =) i@y, 25|

4
IBw, (DIl < I1BlI6T [||%i+1|| Tal-9+9

<|8ler [Il%mll +

I(a(1-¢)+¢)

fv ®(v, v, #«(x))dr
0

+% f : (Tjr1 — V) {IK,1(V) +la(v)

@i

M
<I|8ler (I, |l + =————
18 T[n A Fed a1

+% L;m (Tis1 — v)et {l1(v) + Mo (v)} dv]

< 18l6r [nmmn + (tis1 = V)@ V(i 25(T))

M
T(a(l-¢)+¢)
+% j;i " (Ti+1 — v)! {le1(v) + Km*[K,z(V)}dV]

" (11)

We show that for some « > 0, X is self map, i.e X(E¢) € E. Suppose that X(E,) € & foreach x > 0, i.e for
each x > 0, Ay, € &, such that [|X(n,)(1,)|| > x for some 14 € U(a)l-,”ci+1]. Let %,() = %V (1), 14 €
i=0
[0, 71]. Using Lemma (2.7) and assumptions (A0)-(A5), we get

(1-a)(1-c)

% Tl o _ c-1
K < I (el < el + s [ (-

X ﬂ(v, n(v), fv G, 1, #«(1)) dr) + Bw, (v)|| dv
0

%T(l—a)(l—;) 7.
[0l + 1—f (T —v)*"
I'(c) 0o

fv G, r, x(x))dr
0

M
< - =
T Ta(l-¢)+¢)

X [Im(v) + L2 (v) + IIBuw(V)II] dv

7 1m0a=9)

M 1 e
< eagrglt Iy Y

x [Ik,l(w T la(v) + ||Bw%<v>||]dv. (12)
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Equation (12) is divided by « and taking x — oo,

a 1009
1< #31+ B||€; — [+ LmY} ;.
{ rerne T}{ rg e }}

For 7 € [1}, wj], we have

K <ol = e it se@)ll < ;- (13)
Equation (13) is divided by «x then taking x — oo, we get 1 < 0, which contradicts.
For 7, € (wj, Tj+1], we obtain

'// %Thl(l_a)(l_g) Ti+1 1
Wil faa—o+ o™t T 1o f (=)

I

K < [|1X0(

X dv

F (v, n(v), fv G, 1, #(1)) dr) + Bw, (v)
0

(1-a)(1-¢c) )
M %Tﬂl Ti+1 1
“Tai-9+9 ™" 7T fw (=)

X [[K,l (V) + IK,Z(V) ]dv
L//T(l—a)(l—c)

[ 6t
0
i+1 R
T fmi (el

(1-a)(1-c) )
< M N + ATy f i (T, — v)1-001=0)
[(a(l-¢)+c¢) I'(c) %

i

I'(c)

M (a-1)(1-
Tai—0)+ o) i

(1-a)(1-c) Tis1
X [le1(v) + xm o (v)]dv + S — f (1, — v)17001=9)
(s . NG (@, )

dv. (14)

+% fwi " (Ti1 = V)" {lea (v) + 1M Lo (v)) dv] )

Equation (14) is divided by « and taking x — oo,

M 1-0d=c)
i+1 i+1 "
1< ///{1 + T+ 1)||B||<5T}{ T {1 + bm }}

Again we get contradiction for 7, € (wj, Tj+1]. Hence X is self map. Next we show that X is continuous
on &. Let {y,} € & withy, > v € Ec as g — o0. Take (1) = 1@ D=y (1), T € J’ = (0,b]. Then from
equation (9) and assumptions (Al)-(A3), we get

@) 16(z, v, 34(v)) = 6(z, v, x @)l < (T, V)V W)]] + [ n )] < 26 m(z,v), 0 <v < 7.

(i) [16(T,v, %4(v)) = 6(7,v, x(V))| > 0asg — 00,0 <v < 1.
(i) |7 (2, 2400, [} 6t,v, 240 dv) = F (1,%(0), [} 61, v, %) dv) || < 2t (2) + mTea(0].

(iv) “9 (T, 1y(7), fOT O(t,v, #4(v)) dv) - F (T, 1(1), fOT ®(t, v, n(v)) dv) ” — 0asg — o.
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V) 1Bws, (1) = Bw, ()l < 24"

Combine above condition with Lebesgue dominated convergence theorem, we get for 7 € [0, 71]

1Bws, (7) = By (Tl < IIBII%[F( )f (r=v)"

(v 1y (v), f O, 1, %4(r)) dr)

—ﬁ(v,%(v),f (Y)(v,r,x(r))dr)
0

dv]—)Oasn—>oo.

For 7 € (wj, Tj1],

1B, (1) - B, (D)l < |1Bl1%r b DK [lxy(0) — (D]

[m

(T - v)‘;*1

+ TG) éz(v, xy(v), jo‘ O, 1, %,(x)) dr)

- y‘(v, xW), fo " (1, %(1)) dr)

dv].

Therefore, we obtain for 7 € (w;, 7141, 1 =0,1,2,3,--- , 4.

///7((;1“%”(’[)—%(’5)“ L)< i -1
Mal-970 ‘T )f ©=v)

x[ (v x(v), f ®@,1, xq(r))dr) (v n(v), f G, 1, «(1)) dr)

+ ”B% (v) - BwK(V)H] dv

[1X1),(7)) — X (D)l <

— 0as g — oo independent of 7.

Therefore, F is continuous. Now, we aim to prove (&) is equi-continuous. Let 1y € &, and x#(1) =
e N0-Dy(c), T €

For any A4, A, € [0, 71] with A1 < A; and % € &, we have

1¥(A2)) — Xn(Ap)ll < [|AS™VOS 4 (A2)x0 = ALTVIS L (M)t

+ f [A87009% (A = v) = AL (A - v)]
0

X

F (v, n(v), fv G, 1, %«(r)) dr) + Bw, (v)|dv
0

An
+ %AQ‘“’“‘C’ (A2 = )" X [l (V) + kM T (v) + 2] dv
I'(c) M

=A1+A2+A3,
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where

7

Al — ||A(21_a)(1_;)8;,a(A2)%0 _ /\gl_a)(l_g)sg,a(/ll)%o

A1 v
Ay = ” f [AQ‘“W‘CWQ(AZ —v) = A9 (4 - v)] [gz (v, %(v), f G, 1, x(1)) dr)
0 0

7

+ Bw%(v)] dv

Ao
As = %AS“”“‘C) (A2 = 1) L1 (v) + kML o (v) + 2] dv.
M

We have that A3 — 0as A, — A4, independent of x.

1

M= Faa—o)

A2
A1) fo (As = 1)20=9"1571Q_(v)3¢o dv

A1
—A{ =) f (A1 = 1) =97 1Q (1) dv
0

Ad-al=) Aa

-2 _ )ed-0)-1,¢-1
= I(a(1-¢)) Ji, (2 =) VIR (v) ol dv

1 A dea)ie i —a)(lc i
+ AQ-a-9 ) - ya-0-1 _ 3 (-a)1-¢) 3 ya(l-c)-1
Imﬂﬂ»£|2 (=) I =

X v Q. (v)3¢oll v
AT ol Al
T Ta@-o)I'(c) al-9) T(a(l —¢)I'(c)

A1
% f |[A(21—05)(1—C)(/\2 _ V)a(l—g)—l _ A(ll—a)(l—C)(Al _ 1/)a(l—g)—l] Vg—l‘ dv
0

(A2 = 20079 +

— 0as A, — Ay independent of x.

Now,

A1
Ay < f [ AT09(1, et - A0y, V)g—l] Q.(A - )
0

4 A0

fo i (A=)

X [52 (v, n(v), fv G, 1, #«(1)) dr) + Bw%(v)] dv
0

X[Qc(12 = v) — (M — V)] [9 (V/ u(v), f ) G(v, 1, %(xr)) dr) + Bw, (v)|dv
0
% /\l —a)(l—¢ — —a)(1-¢ . . X
: Tg)ﬁ |A(21 % -y - /\(11 9 - vy 1| [Lea (V) + xent’L (V) + A dv

A1
4 A0-01-9 f Ay = vl
0

+ Bw%(v)] dv

=NAp1 + Ao,

[Q. (A2 —v) — Q(A — V)] [ﬁ (v, n(v), fov G, 1, %«(r)) dr)

10044
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where
MM - (1-a)(1-)
Aoy = e f A8 (A — )=t = ALy — )Y L1 (1) + kT2 (V) + ] dy
0

and

A1
gy = AU-010 f (A = v
0

[Q.(A2 —v) — Q.(A — V)] [9 (v,%(v), ]Ow G, r, x(r)) dr)

+ Bw,, (v)] dv.

If € € (0, 71), then we have

Agp < AL f (A1 =) HIQ (A2 = v) = Q(A = W [l1 (v) + k'l (v) + "] dv
0

2%/\?—0‘)(1—@ A1
[
I'(c) T—e

T1—€
< A= f (A = V) e (v) + xm Lo (v) + 2] dv
0

(A1 = V)T L1 (v) + kT o (V) + .42 dv

x sup [IQ(A2 —v) = Qc(A =)l

vel0,1—€]

1-a)(1-
242700~y . * *
g (A1 = )" e (v) + kML o (v) + 7] dv.
(C) A1—€

For any A4, A3 € (wj, Tj+1] with A1 < Ay, we have
1¥0(A2)) = ¥p(A)ll < [[AY IS, 2 (A2)Ci(@i, Tiar) = ALVTIS 0 ()G @i, T

A1
+ f [AS= V09K (A = v) = ALK (A - v)]
0

X [9‘ (v, n(v), fv G, 1, «(r)) dr) + Bw%(v)] dv
0

A2
1,4/\(21_“)(1_@ (A2 = V)X [l (v) + kM Lo (v) + 4] dv
(c) M
=A]+ A+ A,

where

A; — ||A§1—LY)(1—C)S;“(A2)%0 _ A(ll—a)(l—;)sgla(Al)%O

7

/\1 v
A = H f [)\S‘“WCW(Q(AZ —v) = A9 (4 —v)] [gz (v, %x(v), f G, 1, %(r)) dr)
0 0

7

+ Bw,, (v)} dv

A2
A = %AQ‘W‘@) f (A = )" [l (v) + kT o (v) + 4] dv.
A
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We get A} — 0as A, — A; independent of x.

1
I(a(1-09))

A
—A{i-ad=0) f (A = v)* 1 71Q () dv
0

A2
Ayi _ A;l—a)(l—c) f Ay — V)a(l—g)—lvc—lgg(v)%() dv
0

A9 oy
S e
I(a(1-¢)) Ja,

A
+ f |A(21—05)(1—C)(/\2 _ V)a(l—g)—l _ A(ll—a)(l—c)(Al _ 1/)a(l—c)—1| Vg_ang(V)%O” dv
0

(A2 =) =9 IQ (v) ol dv

AATAT il Mol
I'a(I-o)I'(c) a(l-cq) I'(a(l—-o)I'(c)

A1
x f ‘[A(zl—“)(l—é)(/\z _ V)a(l—g)—l _ A(ll_a)(l_g)()\l _ V)a(l—«;)—l] Vc—l‘ dv
0

IN

(A2 = Ap)*179)

— 0as A, — Ay independent of x.

Also,

A1
A; < Hf [A(zl—a)(l—c)(/\z _ V)g—l _ A(ll—a)(l—c)(Al _ V)g—l] Qg()\z —v)
0

+ AU-00-9

fo " =yt

X[Q (A2 —v) — Q.(A1 — V)] [ﬂ (v, n®v), fov G, v, x(r)) dr) + Bw%(v)] dv

X [ﬂ‘ (v, n(v), fv G, r, x(1)) dr) + wa(v)] dv
0

Ay
< % f A8V (A = v)=t = ATy — )T 11 (0) + 20 Lo (v) + ] dv
0

A1
4 2009 f Ay — vl
0

[Q.(Ay —v) — Q.(A — V)] [ﬁ (v, n(v), fv G, r, x(r)) dr)
0

+ wa(v)} dv

=Ny, + 1A,

where
* % /\1 —0 —C c— - —C c— * *
Ay, = ) f AL (A — 1)t = AT — )Y [1es (1) + kMU T2 (v) + ot dy
0

and

"V

A
Ay, = AL fo (A1 = V) TH[Q(A2 = v) = Qc(Ar = )] [9(v,%<v>, fo

6,1, n(r)) dr)

+ Bw,, (v)] dv.
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If € € (wj, Tj+1), then we have

Ti+1—€
A, < ATO0 f (A1 = V) Q- Ay = v) = Qe(Ay = V)l [lea (v) + k' Ta(v) + .247] dv

1-0)1-0)  ~iyy
2%/\1 ¢ i 1 . 14
+ —F( ) (A =) [l (V) + kT o (V) + 47 dv
g Ti+1—€

Ti+1—€
< A9 f A1 = V) 1 () + koo (v) + 4] dv

wj

X sup QA2 —v) - Q. (A — V)|l

ve[wj, Tiv1—€]

1-a)(1- Tin
24070 e . ) )
+ T (A1 = V) [Lea(v) + ko (v) + 447 dv.

i+1—€

Since Q.(7) is continuous in uniform operator topology for 7 > 0 and (t — v)* ! 1(v), (T — V) 2(v) are
integrable over [0, 71],[wj, Tj+1]. Clearly, as € — 0 independent of v and A; — A, the integral A1, Az and
A5, and Aj, tend to 0 therefore from above results we concluded that X(Ey) is equi-continuous on J'. Since

T(ll_a)(l_g)sg,a(’f) is uniformly continuous on J, therefore X(&,) is equi-continuous on J. Let S C & using
Lemma (2.10), we obtain a countable set S; = {y,;} C S such that

A(X(S)) < 2A(X(S0))-

Let #4(t) = t@ D=y (7). For 7 € [0, 71], we have

AE(S)(@) < A({V098 1 (1)x0))

+A({T(1_a)(1_g) fo «g(z—v)y(v,%q(v), fo (S(V,r,%q(r))dr)dv})
A (1-a)(1-¢) Tq(c —v)Bw,, d })
+ ({T j; (T = v)Bwy, (v)dv

=1L + I, + 113, (15)
where

I, =A ({T(l‘“)(l_;)Sg,a(T)xo}),

I =A ({T(l—a)(l—c) fr K(t—-v)F (v, 1y (v), fv G, 1, 1,(v)) dr) dv}),
0 0

II;=A ({T(l—a)(l—g) fT K (t - v).‘Bw%q(v)dV}).
0

Therefore, from Lemma 2.7, we have

M
IT; < mA(%o) <0. (16)



P. Kumar et al. / Filomat 37:29 (2023), 10033-10053 10048

By assumption (A4) and Lemma 2.12, we have

I, < %j)(mf (t—v)~ 1A({ (v %n(v),f G, , %n(r))dr)})
S%:)(mf (t—v)? (v)[ ({v(1 )(1=c) (v)})
+A({ f (B(v,r,%q(r))dr})]dv
< 2///[}1(;)(1 S)f(T—V) 1 V)[ ([#0-90-25¢,1)))

+2 j; p(v, A ({0 ")%q(r)})dr]dv

2.400-00-9[1 4 2p°]

S T= A )] @
Also,
2.4 |B|p1-ad-) T
, < 271 r”(bg) f (T =v) A ({ws, 0))) dv
2.4 ||B][p1-01-9) - _/plaD-9)
<2 [e-vrow )[r(aa BESial
b
+A({ fo K.(b-v).F ( %y V), f G(v, v, 2,(1) dr) d})]
2.4 ||B|p1-00=9) 241+ 2p*]
T a®
Thus, we can evaluate from (15), (16), (17) and (18), and from Lemma 2.11 that
AX(S1)(7) < NA({ng))- (19)
where

2./ p1~90=) [ 14 2.4 8|
I'(c) I'(c)

For 7 € (wj, Tj+1],

](1 +2p7)0"

AX(S)(D) < A({r179098_ (i@, ¢g(@)))

+A ({T(l—a)(l—C) fﬁ” K. (Tir1 —V).F (v, 1y (v), fv G, 1, %4(v)) dr) dv})
wj 0

+A ({Tﬂ-a)(l—@ K (1 —v)Buw,, (v)dv})
=TT} + 1T, +IT;, (20)
where

I} = A({r090-98_y(1)vi(wi, %q(wp)}),

I, = A({T(l—a)(l—c) f -z (1/, *,), f "Gt (1) dr) dv}),
[ 0
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and
IT, = A ({T(l—a)(l—c) f K (t —v)Bw,, (v)dv}).

From Lemma 2.7, we have

M

. : (a-1)(1-<)
IT; < Mol -7 C]A T “A({vg})- (1)

MK,
(Ci(wi/ %q(“’i))) = Tla(l-¢)+c]

By assumption (A4) and Lemma 2.12, we have

M < % fw .TM(T - V)c—lA({gz(v, #,), fo TGt 2,(0) dr)})dv

R R N Tat)

; A({ fo 6t (1) dr})]dv

<HO [ e |a ()

+2 jow p(v,1)A ({r(l’“)(l’g)%q(r)}) dr] dv

2 4 bA=0A=9[1 4+ 2p*
HO e s () -

Also,

I'(c)

2.H ||B||b(1—a)(1—;) Tivl 1 A/ ha=D1-9) o |
< I'(c) Li (T—v)OW) [mA(Cl(wl, %q(w])))

Ti+1 v
+A ({ K (i1 —v).Z (v, %q(v),f O (v, 1, 24(v)) dr) dv})] dv
@j 0
L2 A ||B[p(-001-9) @*[ 4/ pla-H-o) ge. B9 4 2411+ 2p7] ]

. 2.4 || B|[p0-0d=e)  (Tin _
;< 27181 [ @ = (0

I(c) T(a(l-c)+c) = I(c)
x sup A ()
0<v<8B
248 .. o Bla-1)1-c) , 2///[1+2p*] *]
T ¢ [T(a(l—c)+c) R R e L)) 23)

Thus, we can evaluate from (20), (21), (22) and (23), and from Lemma 2.11 that

AGS)(D) < N°A(Iy)). (24)
where
2 g (1 O 2, 201
“Tal-9+9 CK( Ie )*r(c)“”‘”@ b T )
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Let
max{N,N*} = Ni.
Since X(S1) € X(Ey) is equi-continuous, it follows that from Lemma 2.11

A(X(S1)) = sup A(X(S1)(7))-

T€YF
Thus from the equi-continuity of X(&,) and the hypothesis (A6), we have
A(X(S)) < 2A(X(S1)) < 2N1A((S)).

Since N; < 1, therefore the map X is a condensing map. With the help of lemma (2.14) X has a fixed point
Therefore we deduced that, Hilfer fractional differential equation (1) has a mild solution »(t) = 7%~ D=y (1)
satisfying that #(b) = ;. Hence, Hilfer fractional derivative equations (1) is exactly controllable on [0, b]. [

4. Application

Let X = £*([0, ], R) with norm || - ||. Consider the following fractional differential system with non-
instantaneous impulses:

78" (1,0 — Zx(r,0] = Zin(x,0)
+.7 (1, %(1,0), [} 6(x,1,%(x,0) dr) + Bu(r,0), Ce[o,n]Te©i|ud]

x(1,0) = »(t,m) = 0, T€[0,1], (25)
(1, 0) = gty Sin #(T, 0), Celo,nland T € (3,3],
T0-90-9 [3(7,0) = Fx(7,0)] = %0(0), celo,m],

4 —
where @07+,zx is a Hilfer fractional derivative of order % and typea, 0 <a <1, %y € X. Let 19 =0 = wp, 11 =

%,wl = %,12 =lie O0=190=wp <11 = % <wy = % < 12 =1, where C; is positive constant.

Consider

exp(-1) (1 2

%%(T) [%(T,C) mSln%(T,C), TE 5,5 ,

= 2 o, )] Gi(t, %(0) =

We define operators &/: X — X and #Z: X — X respectively by &/ = y’" and Zu = y — u” with domain
D(A) = D(R) ={u € X: ' isabsolutely continuous and u” € X}.
Obviously, the operator .7 and Z are given by
=Y Huepe, pe o),
q=1

and

Ay = Z(rf + 1w epreq,  p € XR),

=1



P. Kumar et al. / Filomat 37:29 (2023), 10033-10053 10051

respectively, where ¢,(C) = \/% sin(gC),q € N. Clearly the set {¢;: ¢ € N} consists of eigenfunction of the
operator &/ and forms an orthonormal basis for X. One can easily obtain that

A=Y @+ D) ey, peX
q=1

We can see from paper [31] that the pair of operators </ and Z generates the propagation family ()
of bounded linear operators is given by

oo 2
P(t)u = Z exp (—q2q+ 1

q=1

’ZT) (u,eqreqy, peiX.

Obviously, &/ a generates a Co-semigroup {Z(1)}.>0 of bounded linear operator operators, which is
self-adjoint in Hilbert space X and || #?(7)|| < 1. The functions .# and ® are described below:

f(f,x(f, Q), fT ® (1,1, #(x, Q) dr) =RF (T,%(T, Q), fT ®(t, 1, #(x, Q) dr),
0 0

and
Buw(t, ) = ZBuw(z, 0).

We now take 6(z, v, x(v, C) = 6(t, v, x(")() = Z(1—v) Tvi*u (1, (), F (1, (1, 0), p(0)) = (wt(f) <¢>) Q) =
<z [cos(%(’c, Q)+ (P(C)], here 0, . are constants. The bounded linear control operator B : (%) — X is

defined by 8x = x,x € (%) and w(t)(C) = w(t,C). We are now able to rewrite the system (25) as in
the form of (1). It is easy to verify that functions .%#, ® satisfy the conditions (A1) to (A3) with the fact

that lg1 = Lo = 2], T = 0, m(z,v) = p(t,v) = Dz —v)2v72, 1, = ¢ = = |21, m* = p* = ol |IBIl = L.

Also, [Gi(t, 21(7)) = G(T, 2(0)] < Epme] sinxa (1, Q) = sin (7, O)l < Caola (T, Q) = 22(, 0, G, is positive

constant. Therefore impulsive function satisfies assumption (A4). The linear operator l";ii” — Xis given by

b
o0 = [ K= vt O
0

Since {Z (7))o is self-adjoint in Hilbert space X, K_(7) is also self-adjoint in Hilbert space X. Let u € X
be any element and pi; = (i, ¢;). Then u = Y.27; pize;, and we obtain

19 (Dl = 1Kz = (Ke(Dw, K (D))
= (7' Q. (D), T Q(D))

=T fo f S09(9)y(0)
X <Z exp( )yqeq,z exp( )vmem>d8 do
g=1

m=1

> %22 fom fom 30U ()Y (0) exp (—b°(9 + 6))dd dO [Z qu|2]
q=1

2,2¢c-2 2
= /\17 g ”H”(\n
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where A2 = ¢2 [ [ 80y (9).(0) exp (—b(9 + 0))d9 dO < co. This implies

b
f 1K (@)plly dw > A*||ul},  forall pe X,
0

where A2 = 126! Thus we conclude from [12, Theorem 4.1.7] that controllability map I';”" has induced

inverse (T ™)™ in L2(3, 2(%))/ ker(Ti") and [|(Ti™") 7!l < 1. Also I} satisfies the assumption (A5). The
assumption (A6) along with the condition (5) holds as we take the constants |o|, || as small as possible.
Thus all the hypothesis of Theorem 3.1 hold, Hence we concluded that the Hilfer fractional differential
equation (25) is exactly controllable.

5. Concluding remarks

We investigated the existence of the mild solution and controllability results of Hilfer fractional differen-
tial equation of Sobolev-type with non-instantaneous impulses. We proved the main results with the help
of propagation family {Z(7)}:s0, (generated by the operator pair (<7, %)), measure of non-compactness
Sadovskii fixed point theorem. We analysed (1) without assuming the existence of %Z~! as a bounded
operator as well as without any assumption on the relation between the domain of the operators o/ and
Z. Further, one can extend the above-obtained results to the various dynamical systems such as stochastic
and delay systems.
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