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Abstract. The boundary element method has been widely applied to a lot of practical problems,such as
fluid mechanics and fracture mechanics. As one of the important topics in boundary element method,
the numerical calculation of hypersingular integrals is of great importance. This article deals with the
composite Hermite rule of the third order hypersingular integrals. Based on the error expansion, the
superconvergence result of the composite Hermite formula is obtained. We show that the convergence rate
is O(h®) when the local coordinate of the singular point is 7 = 0, which is one order higher than the global
convergence. The accuracy of the result is verified by several numerical examples.

1. Introduction

A large number of practical problems in modern science and technology engineering, such as fracture
mechanics, elasticity mechanics, mathematical physics, all involve the calculation of hypersingular integrals
(also known as Hadamard Finite-Part Integral). Therefore, the calculation of supersingular integrals is of
important research significance.

Hypersingular integrals are different from Riemann integrals and Lebesgue integrals. We take third
order hypersingular integrals as an example, the following hypersingular integrals are considered

b
_ f(x)
I(f,s) = j‘( o dx, (1)

(x -

there are various ways to define the equation (1), mathematically, these definitions have been proven to be
equivalent.

In this article, we use the following definition

b S—& b ,
f® f(0) ) 2f)
j{ (x—s)de‘gi%{fa (X—S)3+£E(x—s)3_ e } se@b), 2)
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where f”(x) is Holder continuous on interval [a,b] , fﬂb denotes a hypersingular integral, s is the singular
point, f(x) is the density function,1/(x — s)% is the singular kernel.

The numerical calculation of hypersingular integrals is an important research contents of the boundary
element method [9]. Approximation of weakly and strongly singular integrals [19, 20] were presented which
was based on the spline quasi-interpolation quadrature rules. As the research moves along, a number of
methods for calculating singular integrals have been proposed [8] such as the Gaussian method [4-6], the
Newton-Cotes method [2, 13, 17], Extrapolation method [11] and some other methods [12, 14]. In reference
[7], it is the first time to calculate the singular point as an independent variable, and the hypersingular
integral is calculated when the density function is approximated by the Lagrange interpolation functions.
The modified Newton-Cotes formula is studied when the singular point s coincides with interpolation
point [10]. As for reference [15], it mainly studies the solution of third order hypersingular integrals by
Newton-Cotes formula, and focuses on the superconvergence phenomenon based on the error expansion.
The superconvergence phenomenon of second order Newton-Cotes formula for solving hypersingular
integrals was first studied in [18]. Subsequently, the superconvergence phenomenons of the Newton-Cotes
formula for Hadamard Finite-Part integrals were studied in [1].

In this paper, we mainly study the numerical solution of composite Hermite interpolation function for
the third order hypersingular integral. Let

(P(T) = (T - 1)2(T + 1)2r TE (_1/ 1)/ (3)
and we define

1
1 @ dr, |t <1,
T (4)

_2 _%
1 (o)
—E [1 : dr, |t| > 1.

Based on the error analysis of the error functional, we study the superconvergence phenomenon with the
convergence rate reach to O(h%) from O(h?), when the special function S'(7) = 0 defined by

P(h) =

S'(1) =v¢" (1) + i [V Qi+t)+¢"(=2i+1)], Te(-11), (5)
=1

1

where ¢ is a function of second kind associated with apolynomial of equally distributed zeros[3], when the
local coordinate of the singular point s is the zero of S§’(7), the convergence rate is one higher than that of
the global convergence order.

The content of this article is organized as following. In the second section, the general composite Hermite
rule of hypersingular integral is proposed. In the third section, main conclusions of superconvergence are
given and the proof of the main conclusion is obtained. In the fourth section, several numerical examples
are given to verify the theoretical analysis.

2. Composite Hermite rule

Leta = xp < x1 < -+ < x,-1 < X, = b be a uniform partition of the interval [a,b] with mesh size
h = (b —a)/n, we define a linear transformation

x=2(1) = (T + 1)% +x, i=01,,n-1, 7e(-1,1), ©6)
from the reference element [-1, 1] to the subinterval [x;, x;;1]. The piecewise Hermite polynomial interpo-

lation function is defined as following

i+1 i+1
Ha(x) = Y () a0+ Y f (%) B0, x € iy xial, 7)

= j=i
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where a;(x),ai41(x),Bi(x),Bir1(x) are the Hermite interpolation basis functions [14] for the grid point x; and
Xi+1, and have

X —x;\ (x = x;1)
i) = (1- 222 ) = (8a)
3 X = Xia1 ) (x — %)’
i) = (1-22200 ) S0 (8b)
Bilx) = (x - x) T2 X)) x’“), (80)
_ .2
a0 = (- xiop) EI0 (8d)

Replacing f(x) in equation (2) with H3(x) gives the general composite Hermite rule

P H(x)

a (X - 5)3
v [ Hs(x)
(x—s)3

Qs f): =

dx = I(f,s) — Eu(f,9), )

i=0 VX

where &,(f,s) denotes the error functional, for x € [x;, x;;1], it has the following integral formula

Qu(f,5) = Z % | dx —Z(alﬁ+bf,+1+c,f Fdifl), (10)

i=0
where we get

1 32s—2x1~—h S — Xiy1

i(x) = — |
a;(x) 7 + 2 =) + i n p— (11a)
6 1 —25 + 2xi41 — h S — Xi+1
bi(x)=——= - 1 11
l(x) h2 2(x,-+1 - 5)2 3 h3 n S —Xi ( b)
_ —bs+6x;+h  3s—3x;—2h . |s—xi
ci(x) = 2 = 5) + n In el (11¢)
—65 + 6Xi41 — h 3s — 3xi+1 +2h S — Xi+1
() = 1 .
4i(x) 2h(xi41 — 8) * h? n s — X; (11d)
Let
— X; 1 —
y(7) = min Is —xil _ lTl,T € (-1,1), (12)

o<i<n b 2

where 7 is the local coordinate of the singular point s.
In this paper, C is represented as a constant, which is independent of & and s, C in different formulas
means different values.
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Theorem 2.1. Assume f(x) € C®[a,bland s # x;i = 0,1,--- ,n, for the general composite Hermite rule Q,(s, f)

defined in equation(10), there are the following error estimates

|Ea(f,9)| < Cy~ (0.
Proof. Assume R(x) = f(x) — Hz(x), then we have |[R(x)| < Ch*, and
! ) = Ha(x)

En(f,s) = =) dx
" R(x)
ARTES
n-1 Xit] R(X) X1 R(x)
= izémfx; (x — 5)3 dx + fxvm (x — 5)3 dx

For the first part of equation (14), we have

() - Ha(2)
Z f x(x—s;x dx

i=0,i#m

< Cht fxm 1 dx+fb 1 4
B a (x - 5)3 Xl (x - 5)3

= Ch [((ﬂ — 5)2 B (b - 5)2) - ((xm - 5)2 - (xm+1 - 5)2 )]

< Cy 2(1)h*.
For the second part of equation (14), taking the Taylor expansion for R(x) at s, we have
Tl R(x) (Xpa1 + X — 29)0 h ,
X = -R(s) + -R'(s
b o S R RO e KO

m

0(x) € (X, Xms1),

+ R6) In Xm+1 — S + fxmﬂ R(S)(Q(x))
Xy

dx
2 S —Xp 3! !

the errors of each part of the equation(15) are estimated respectively, we have
(Xma1 + X — 25)h
2(xm+l - 5)2(

R(s) 1
2

RO

< Cy X (n)i?,

1
(X1 =9 (o — 5)2]

h

(xm - S) (xm+1 - S)

“R'(s)

< Cy Y (o)K?,

R”"(s) . xm+1—5
— In si—xml < C|lny(r)|h2,
f ROO)

3 x| < CH2.

m

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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The theorem 2.1 is proved. [

The supersingular integral, hypersingular integral and the Cauchy principal value integral have the
following relationship [16]

b f(x 1d b fx 1 d2 x
fopea (J( o dx) 27as ( I ) 20
We can write
o= 2p0, @
y d , a2
Yt = Y= ﬁkb(t)/ (22)
we have

1
—f ¢ dr, |t <1,

(Tt
win=) D (23)

G
—fl o 4o M1

Let J := (—c0,—1) U (=1,1) U (1, +00), define the operator W : C(J) — C(-1,1) as

WHL(1):= f(t) + Z[f(Zi +7)+ f(=2i+1)], T€(-11), (24)
i=1
it is evident that ‘W is a linear operator, so we can write S’(7) by equation (24)

S'(1) = Wy'(x) =" (1) + Y [9"Qi+ 1) + (<2 + 7)), Te(-1,1). (25)
=1

3. Some lemmas

Lemma 3.1. [14] Assume f(x) € C®[a, b], Hs(x) be defined in equation (7), then for x € [x;,xi+1], and s € (a, b),
there holds

@) (s
76 = H0 - 2 (e 5 - 2 = E ), 26)
where
4
Ei(x) = Na () + No(x) = ) | EV () + Na(), (27)
j=1
with
®) (n.
El(.l)(x) = fs—('pll) (xi — x)° ai(x),
EP(x) = £ (p 2) (i1 — 0)° @i (x),
EP(x) = f (" 2) (xi — x)* Bilx),
EP(x) = 12pu) (" %) (= 0 Bina (0,
Jis (m)

12( )

(x —8) (x = x;)* (x = x41)%, (28)
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where p;j € (Xi, Xi+1), 1i € (x,8) or (s, x).

Lemma 3.2. Assume s € (Xp, Xpme1), let c; =2(s —x;) /h—1,0 <i < n—1, then we have

2 N (e — 2 )2 (r — )2
_}2? f . x& Exs)sxlﬂ) dx, i=m,
") = X;
h2 (x —s)3 ’ ’
Proof. For the case of i = m, according to the supersingular integral calculation formula (2), we have
fxmﬂ (x —xi )2 (x - x1+1)2 dx
(x =)’
s—¢ Tt (x — Xi)z (x — x; 1)2
= lim f f — — dx
e—0 (x—19)
4G -x) (s~ xm) +4(—-x) (5~ xm)z}
Cm_f
( ) lim f f ¢(T) 3 dt - E(P, (Cm)
=0 Cmt g T - CWI) €
2 Al
(1) [
2 -1 (T —cm)
hz
= 250" (). (30)

The linear transformation x = £;(7) is used in the proof, the case i # m can be proved by using the same
method in the correspondent Riemann integral. [

Lemma 3.3. Assume f(x) € C®[a, b], and E,,(x) be defined in equation (27), there holds

J( En(x) dx' < Cly (o). (31)

. P

Proof. According to the definition of E,,(x), then we have |E,,(x)| < Ch®, by performing Taylor expansion of
f(x) at the point s, we have

) £6s) j(" O
. (x—5s)3 (x_5)3 o (x—9)?
IO gy [ SO O - -2 (32)
. (x—9) 2 3!
we have
U E(®) L (e + X = 25)h h /
](,; G = e~ s Ot e Ty = B®

77 _ Xn+1 3

Pt [T 000 € ). )
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The errors of each part of the equation(33) are estimated respectively, we have

. Em(s)'

(xm+1 + Xy — 2S)h
2(Xmr1 = 8)*(Xim — 5)?

_|_ (s) 1 _ 1 . \
B 2 [(xmﬂ -8)2  (xm— 5)2] <Gy (Dh o
h ) s
(on =9 Gy =) @ =y o)
=2 In =2 < Cliny (o) (36)
Y1 p(3)
f W dx| < CI. -

From equation (34) to (37), we can obtain

fwe

The lemma 3.3 is proved. [

Chy2(n)r’. (38)

Now we give the Theorem 3.4 as following.

Theorem 3.4. Assume f(x) € C®[a,b], for the general composite Hermite rule Q,(s, f) defined in equation (10),
there are the following error estimates

12 £

&9 = A=)+ R, 9
where

[Ra(f)| < Cly™(@) + n(s)hl1, (40)
y(7) is defined in Equation (12), we define

1 1

n(s) = {(S i 5)2} (41)
Proof. As

fﬂxﬂmmxfifwm—%mm

i=0 (X B 8)3
hz f(4 (S) ,
=~ SO+ R, (42)

where

Ru(f) = Ri(s) + Ra(s) + R (s), (43)

1 3 Xm+1 Em(X)
R.(s) = Jg G- dx, (44)
n-1 ; n—-1 ;
1 Ni(x) 1 Nio(x)
R2(s) = i:oz‘#m f G OZ; f G (45)
(4) hz ) )
R3(s) = L 22(_531! [Z PRt + Y l,b’l(—2i+’r)}. (46)
i=m+1 i=n—m
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As for R (s), the proof has been completed in Lemma 3.3, which means
| Ri(6) |< Cy (o). (47)
As for R2(s), we know that

n—-1 -1

7{%(5): Z fxm (/::/i(;c))B Z Xi+1 /V,z(x) dx, (48)

i=0,i#m ¥

where

/Vzl x) ZE(])(x)

f(5) (m)

Nia(x) =

(x =) (x = x)* (x = xi1)%,

we can calculate it

S fXHl zl(x)
f " zZ(x)

n—1

Xit1
o f

i=0,i#m

dx < Cy (n)k®,

1

— Xirl 1
< h4 .
<C pa L =3 dx

1=0,i#m

< Cy_l(’[)h3,

i=0,i#m

then we get
| RA6) I Cy 2 (0. (49)
Where

< Ch*.

Na()] < CI, ‘M
X—S

has been used.
As for R3(s), the function ¢”(1), defined in equation (23), s = x,, + %h =a+ (m + TT”)h is already
known, then we get 2(s —a)/h = 7 + 2m + 1, and we have

<C
Z f |t—21—’c|3

i=m+1

“ dx C Ch?
_szm 3_15_[—(T+2m+1)—2]2s(5_,1)2' (50)

Z V(26 + 1)

i=m+1

For the other part, we know b = a + nh, then we get 2(b —s)/h = 2(n —m) —1 — 7, and

<C Z f [t = (- 21+7:)3|

dx C Ch?
=Cuf(n m) 1—75_[2(n—m)—1—T]2=(b_S)2' (51)

"’
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Combining equation (50)and equation (51), we have

Z V(20 + 1) + 2 W (=2i + 17)| < Cr(s)h2.

i=m+1 i=n—m

1(s) is defined as equation (41), then we have

W2 [ & c
f 22(.54)1! Y opreito+ Y gr-2i+q)

i=m+1 i=n—m

R3(s) =

Above all, we get

[R(F)| < [RAS)| + [R2)| + [RE(s)]
< Cly (1) + n(s)h}i>.

The theorem 3.4 is proved. [

Remark 3.5. In the same conditions as theorem 3.4, when t* is the zero of S’ (7) = 0, then we have

| En(f,s) I< Cly (") + n(s)h}h>.

< Cn(s)h*.

10073

(52)

(53)

(54)

(55)

Theorem 3.6. For the error functional special function, defined as equation S'(7), has least one zero in (=1, 1).

Proof. Let Q,(x) be the function of the second kind Legendre polynomial, and

1 x+1
Q) = 5In|==

s Qi) = xQo(x) - 1.

We know ¢(7) and (1) is defined as (3) and (4), we have

Y1) = 8Qx(1), TE(-1,1),

where
2 _
Q)= E I3 e,
1-7 2
if T = 0,we have
]7[}//(,_[) — O,

Y w2y =)~y i),

i=1 i=1
then we get

S§(0) =0,

so T = 0 is the zero of §’(t) = 0. The theorem 3.6 is proved . [

(56)

(57)

(58)

(59)

(60)

In Theorem 3.6 we have prove that §’(0) = 0, by Figure 1, we can see that there is only one zero in (-1, 1).
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Figure 1: The figure of special function S§’(t) = 0

4. Numerical Examples

Example 4.1. Consider the following third order hypersingular integrals

T x6 60s> — 90s* + 2053 + 552 + 25 + 1 1-
j( Y = 2B T AR YO I 158t in—2, se(0,1).
o (x—5s)3 4(s —1)2 5

Table 1 shows the error of the Hermite integral formula with singular point s = Xpua) + (1 + T)h/2, the convergence
order of the superconvergence point is O(h®), which is higher than that of the non-superconvergence point. The
accuracy of the Hermite integral formula with singular point s = a + (1 + ©)h/2 is O(h*),which is organized in Table
2. Table 3 shows that the accuracy of the Hermite integral formula with singular point s = b — (1 + 1)h/2 is O(h?).
The theoretical analysis is justified by calculated results.

Table 1: Error of the Hermite rule with s = xp,/4) + (1 + 7)h/2.

n =0 T=-0.5 =05 T=-0.8 7=0.8

8 3.2798E-04 3.6702E-02 -4.4652E-02 3.1352E-02 -5.2754E-02
16  24109E-05 7.6891E-03 -8.6092E-03 7.0666E-03 -9.5004E-03
32 2.1738E-06 1.7557E-03 -1.8656E-03 1.6858E-03 -1.9745E-03
64 22586E-07 4.1927E-04 -4.3269E-04 4.1231E-04 -4.4741E-04
128 2.5601E-08 1.0243E-04 -1.0409E-04 1.0199E-04 -1.0632E-04
h* 3.20 2.10 2.15 2.05 2.20

Table 2: Error of the Hermite rule with s = a + (1 + 7)h/2.

n =0 T=-0.5 =05 T=-0.8 7=0.8

8  -1.2593E-04 1.1482E-03 -3.1900E-03 6.0626E-04 -5.5738E-03
16  -1.3953E-05 6.6091E-05 -2.0591E-04 3.2452E-05 -3.5520E-04
32 -1.2261E-06 3.7886E-06 -1.3236E-05 1.6931E-06 -2.2574E-05
64 -9.8006E-08 2.1578E-07 -8.4902E-07 8.5020E-08 -1.4329E-06
128 -7.4272E-09 1.2195E-08 -5.4376E-08 4.0295E-09 -9.0874E-08
h* 3.58 4.12 3.96 4.30 3.98
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Table 3: Error of the Hermite rule withs = b — (1 + 1)h/2.

n 7=0 7=-05 =05 T=-08 7=0.8
8 1.4547E-02 -3.3611E-01 3.5606E-01 -2.9323E-01 3.3809E-01
16  3.2503E-03 -8.9185E-02 9.6283E-02 -7.6794E-02 9.4122E-02
32 7.6667E-04 -2.2954E-02 2.5018E-02 -1.9641E-02 2.4797E-02
64 1.8615E-04 -5.8213E-03 6.3753E-03 -4.9657E-03 6.3617E-03
128 4.1498E-05 -1.4674E-03 1.5892E-03 -1.2495E-03 1.4792E-03
h* 2.11 2.09 1.95 2.06 1.96

Example 4.2. Consider the following third order hypersingular integrals

L ¥+l

0o (x—s)

dx = 105> + 5s +

3

10 b5s+4

s—3

+
252 252(s — 1)

1_
= +105°In Ts s€(0,1).

10075

The error results of the Hermite integral formula with singular point s = x4+ (1 +71)h/2 are organized in Table 4, we
can see that the accuracy is O(h®) at the superconvergence points, the convergence order of the non-superconvergence
point is O(h?). As the singular point is close to a, the results showed that the convergence rate of the Hermite integral
formula is O(h3), which is gathered in Table 5. Furthermore, from Table 6, the quadrature rule reach the convergence
rate of O(h?) when the singular point s = b — (1 + T)h/2. The results are consistent with our theoretical analysis.

Table 4: Error of the Hermite rule with s = xp,;/4) + (1 + 7)h/2..

n =0 7=-0.5 =05 7=-038 7=038

8  2.0159E-04 4.0618E-02 -4.4803E-02 3.7396E-02 -4.8754E-02
16  1.6641E-05 9.3394E-03 -9.8799E-03 8.9727E-03 -1.0410E-02
32 1.5387E-06 2.2346E-03 -2.3033E-03 2.1978E-03 -2.3786E-03
64 1.5792E-07 5.4622E-04 -5.5487E-04 5.4390E-04 -5.6656E-04
128 1.7548E-08 1.3501E-04 -1.3609E-04 1.3529E-04 -1.3812E-04
h“ 3.37 2.07 1.98 2.04 1.74

Table 5: Error of the Hermite rule withs =a + (1 + 1)h/2.

n =0 7=-0.5 =05 7=-038 7=038

8  4.8623E-04 7.1656E-03 -1.0487E-02 4.8013E-03 -1.4190E-02
16 5.7843E-05 8.9297E-04 -1.3141E-03 5.9755E-04 -1.7771E-03
32  7.0597E-06 1.1146E-04 -1.6444E-04 7.4533E-05 -2.2232E-04
64 8.7216E-07 1.3922E-05 -2.0565E-05 9.3066E-06 -2.7800E-05
128 1.0843E-07 1.7396E-06 -2.5712E-06 1.1621E-06 -3.4757E-06
h“ 3.04 3.00 3.00 3.05 3.00

5. Conclusion

In this paper, we study the Hermite integral formula for numerical evaluation integrals defined on
interval with third order hypersingular kernel. The superconvergence phenomenon occurs at the midpoint
of the subinterval. The convergence order of the superconvergence point is O(k®), which is one order
higher than general. To sum up, an effective method for calculating third order hypersingular integrals is
summarized, and its correctness is proved.
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Table 6: Error of the Hermite rule withs = b — (1 + 1)h/2.

n =0 7=-0.5 =05 7=-038 7=038

8  4.3209E-03 -1.1882E-01 1.2811E-01 -1.0234E-01 1.2503E-01
16 1.0209E-03 -3.0599E-02 3.3340E-02 -2.6185E-02 3.3033E-02
32  24809E-04 -7.7614E-03 8.4993E-03 -6.6208E-03 8.4804E-03
64 6.1145E-05 -1.9543E-03 2.1454E-03 -1.6645E-03 2.1479E-03
128 1.9155E-05 -4.8854E-04 5.5453E-04 -4.1608E-04 6.3638E-04
h“ 1.95 1.98 1.96 1.99 1.90
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