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Abstract. In this paper, we consider partially observed optimal control for forward-backward stochastic
delay differential equations (FBSDDEs) where the control domain is non-convex and the control variable
is allowed to enter into both diffusion and observation terms. We obtain a general stochastic maximum
principle of these optimal control problems by using Girsanov’s theorem, the spike variational method and
the filtering technique. We also derive the adjoint equations to the problem. Finally, we apply our results
to study a linear-quadratic (LQ) optimal control with delay.

1. Introduction

The stochastic maximum principle is one of the most important approaches to solve optimal control
problems of stochastic systems. In the literature, control domains of these problems are considered in
two approaches, convex and non-convex. We refer the reader to [1-3], and references therein for more
information on maximum principle under convexity control domain. When the control region is non-
convex and the diffusion term involves the control variable, the first-order Taylor expansion is not sufficient
to obtain the maximum principle. Peng [4] introduced the second-order adjoint equations and used the
spike variation to overcome this difficulty in SDEs. Since then, investigation of this kind of optimal control
problems has been developed, for more information refer to [5, 6].

Forward-backward stochastic differential equations (FBSDEs) play an important role in lots of fields such
as finance, economics and, so on. They have become a powerful tool to study the maximum principle of
FBSDEs under the convexity assumption of the control domain, see e.g. [7-10]. It seems that obtaining
the maximum principle for forward-backward stochastic systems in a non-convex control domain would
be difficult. Due to the presence of the process z(t) in the backward equation (see the equation (4) in the
context), we cannot obtain the second-order variation and the second-order adjoint equations similar to
[4]. This problem is solved by taking the martingale process z(t) in the backward equation as a control in
[11-13]. The authors introduced a new stochastic control problem which is a forward equation for the case
with terminal state constraints. Also, Yong in [14] obtained necessary conditions of maximum principle for
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a controlled FBSDE with mixed initial-terminal conditions, which the control domain is not assumed to be
convex, and the control enters in the diffusion coefficient of the forward equation.

Maximum principle for partially observed stochastic optimal control problems has been discussed by many
authors as well. Li and Fu [15] established a maximum principle for partially observed optimal control
problems of mean-field FBSDEs without the convexity control domain. Tang [16] and Wang et al. [17]
investigated a partial information optimal control problem derived by stochastic systems with correlated
noises between the system and the observation in convex and non-convex domains, respectively. In a
non-convex domain control, a maximum principle of FBSDEs under partially observed noise and of fully-
coupled FBSDEs with partial noise is presented in [18] and [19], respectively. Be aware that, their results are
established when the forward diffusion coefficient does not depend on the control. So, how to reproduce a
maximum principle, in this case, is a new problem. We are interested to remedy this issue in this research.
It is quite natural to investigate the controlled delay systems which are much closer to reality. It is well-
known that a stochastic optimal control of stochastic delay differential equations (SDDEs) in the case of
the convex region has been studied in several articles, for example, see [20-26]. In the case of non-convex,
Meng and Shi [27] studied on optimal control of SDDEs where the diffusion term contains both control
and its delayed term. Also, Hao, and Meng [7] derived a second-order maximum principle for delay
stochastic optimal controls with recursive utilities as the backward diffusion term does not contain the
control variables.

To the best of our knowledge, there is no paper analyzing partially observed FBSDEs involving delays in
case that the control domain is not convex. In this manuscript, inspiring the results in [13] and [18] we obtain
a general maximum principle for these problems. In spite of the FBSDE discussed in these papers the main
contribution of our paper is to study the partial observed FBSDEs with delay when the forward diffusion
coefficient contains control variables. Indeed, we solve the problem by taking z(.) as a control process and
the terminal condition y(T) = 1(x(T)) as a terminal state constraint and utiliting the Ekeland’s variational
principle. However, what we should pay special attention to is that the adjoint equation, corresponding to
these problems with observation and delay is totally different from systems without these conditions.

The rest of this paper is organized as follows. In Section 2, we formulate the problem. We prove some
lemmas that are necessary to derive the main result in Section 3. In Section 4, we establish the general
maximum principle for FBSDDEs with observed noise. In Section 5, a linear-quadratic partially observed
optimal control problem with delay is studied.

2. Statement of the problem

In this paper, we consider (€2, ¥, P) as a complete probability space with filtration {F};~0 and (W(.), Y(.))
as an R™"-valued standard Brownian motion defined in this space. Throughout this section, R" denotes
the n—dimensional Euclidean space and |.| denotes the norm in a Euclidean space. We assume that ¥; =
of{W(s), Y(s);0 <s <t}. Let ¥ =Frand T > 0 is a fixed time horizon.

2.1. Motivation

Consider a financial market with two investment possibilities: a risk-free asset (bond) and a risky asset
(stock). The price dynamic of the risk-free asset is given by dSo(t) = a(t)So(t)dt, where a(t) > 0 is a bounded
deterministic function, and the price dynamic of the risky assets is given by d5:(t) = S1(t)[b(t)dt + o (t)dW(t)],
where b(t) > a(t) is the appreciation rate process, and o(t) is the volatility. As in [28], the wealth dynamics
with delay is

dx(t) = [a()x(t = ) + (b(t) — a(O)v(b)|dt + o(OVEAW(H), o
x(0) = xo(f), te[=6,0],

where v(t) represents the portfolio strategy of a policymaker. In fact, it is possible for the policymaker to

partially observe the wealth. See, e.g., [29] and [30]. Thus, the factor model is described by the following

dY(t) = (F5b(0) - o (t))dt + W), ®
Y(0) =0,
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where Y(t) = % log S1(t), and W(t) is a stochastic process with W(0) = 0. Note that the above factor model
is similar to [31] and [30]. The objective of the policymaker is to find a control strategy v(.) € U, so that

Jv() = min. %E"[(x(T) - M)+ (y(0) - NY?],

subject to (1), (2) and (3), where y is a recursive utility from wealth x(t) with the following backward
equation

©)

dy(t) = (- a(®y(®) + y(Hvd))dt — 2(HdW (D),
w(T) = Kx(T),

where K is a constant. See, [32] for more details about a recursive utility. Clearly, this is an LQ optimal
control problem of FBSDE systems.

2.2. Problem
We consider the following controlled FBSDDE

dx(t) = b(t, x(t), x(t — ), v(D)dt + o(t, x(t), x(t — T), v(E)dW(E),
dy(t) = a(t, x(t), x(t — 1), y(t), (), v(D)dt + z()dW(E), t € [0,T] 4)
x(t) = xo(t), te[-1,0], w(T)=vx(T)),

where 7 > 0is a constant regarding the time delay with 7 < T < 21, so the system is called a system with one
pointwise delay; (x(.), ¥(.),z(.)) € R" X R" x R"™ is the state process with initial sate xy € C([—7, 0]; R"); v(.) is
the control process taking valuesin U C R* which is not necessary convex, 0 <t < T,b: [0, TIXR"xR"xU —
R, 0:[0,TIxR"XR"Xx U — R™, 4:[0,T] X R" Xx R" x R" Xx R"™ x U — R™, ¢ : R" — R™ are given
continuous mappings.

Also, we consider the observation

dY(£) = h(t, x(t), x(t — 7), v(t))dt + dAW(F), .
Y(0) =0, ®)

where W(.) is a stochastic process depending v(.) and i : [0, TI X R" X R" X U — R’.
Let Y, = 0{Y(s);0 < t < t}. An admissible control v(.) : [0, T] X Q — U is an Y- adapted process such that

sup Ep(t)f < o0, Vi=1,2,..,
0<t<T

the set of all admissible control variables is denoted by U,;. We consider the following assumption:
Hypothesis 1. The functions a, b, 0, h and ¢ are twice continuously differentiable with respect to (x,x, v, z),
and for some constant C,

L+ Il + 1T+ D THFE % 2, )+ 1 fy 2,0, v) <

(L1 + I+ 1yl + L2+ D) 7Hadt, x, X, y, 2, V)] + lak(t X, Xy, 2, )] + lans(t %, X, y,2,v)] < G,

Ih(t, x, x", v)| + |hg(t, x, X', v)| < C,

where f =b,0,q =x,x",xx,xx’, x'x', k=x,x',y,z,and r = x,x’,y,2, 5 = x,x’, y,z. Under the hypothesis 1, for
each v € U,,, the controlled FBSDDE (4) admits a unique solution denoted by (x"(.), ¥*(.),z"(.)). Define

Z"(t) = exp {j{; h(s,x"(s),x"(s — 1), v(s))dY(s) — % f(; hz(s, x'(s),x"(s — T),v(s))ds},

which is the solution of

477 (t) = 7' (Oh(t, 2 (), 2 (t — T), v(E)dY (D), ;
7(0) = 1. ©)
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Using Ito’s formula, we have forany I = 1,2, ..., sup,,.; EIZ(t)I' < +co0 and define a new probability measure
PY such that dP" = Z"(t)dP. According to Girsanov’s theorem and (5), we have (W(.), W(.)) is a R**"-valued
standard Brownian motion defined in the new probability space (QQ, 7, (), P").

The cost functional is in the form of

T
Jv() = E [ fo I, x"(B), x"(t = 7), y" (1), 2" (1), v(D)dt + p(x"(T)) + y(y"(0)) |, (7)

where [ : [0, T] X R* x R" x R" x R™4 x U — R, ¢:R" - R,y :R"” - Rand E" denotes the expectation
with respect to the probability space (Q3, ¥, (:), P'). We need the following assumption:

Hypothesis 2. The functions /, ¢,y are twice continuously differentiable with respect to (x, y,z), x and v,
respectively and there exists a constant C such that

L+ P + [P+ [y + 2P + WP x, 2, y,2,v)]
+ (14 Pl + [+ [yl + 2]+ W) x, X, y, 2,0 + st x, X, y,2, ) < G
1+ PP + (1 + x) (0] + lpae(x) < C,
A+ P W+ @+ D W+ by W < C,
wherek=x, x', y, z,and r = x,x’,y,z,s =x, %, y, z.

The cost functional (7) can be rewritten as

T
Jv() =E [ j; ZV(BIE, x" (), x"(E = 1), y' (1), 2" (1), v(B)dt + Z(T)P(x"(T)) + y(y"(0)) |- 8)
If there exists an admissible v*(.) such that
J'O) = inf J0:0),

subject to (4) and (6), the process v*(.) is called optimal control. The process (x*(.), ¥*(.), z*(.)), which is the
solution of state equation (4) corresponding to v*(.), is called an optimal trajectory. The purpose of this
paper is to derive a general maximum principle of FBSDDE (4), (6) with the cost functional (8).

We take z as a control variable while y(T) = (x(T)) in (4) is a terminal state constraint, which this method
is used in [13], [11] and [12]. So, we formulate a variation of problems (4), (6) and (8) as follows.

Consider the forward stochastic delay control system

dy(t) = a(t, x(t), x(t — 1), y(£), u(t), v())dt + u(OdW(b), tel0,T], )

dx(t) = b(t, x(t), x(t — ), v())dt + o(t, x(t), x(t — 7), v(£))dW(t),
X(t) = xO(t)/ te [_Tr O]r ]/(0) = Yo,

with a terminal state constraint
Ely(T) = (x(T))I* = 0. (10)
Problem is to minimize
T
J(yo, u(),v(.)) = E [ fo Z' I, x(t), x(t = 7), y(t), ut), v(t))dt + Z"(T)p(x(T)) + y(¥(0)) |, (11)

subject to (6), (9) and (10), where 1o € R™, u(.) € L2¢(0, T,R™), v(.) € Uyg.

Remark 2.1. For simplicity, we only study the one-dimensional case, i.e., n = m =k = r = d = 1, which is similar
to the case of n—dimensional.
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3. Preliminary Lemmas
For any v1(.), v2(.) € Upg o1 .EEF(O, T,IR), we choose the metric in U,; and .EZT(O, T,R) as
d(vi(.),v2(.)) = E[mes{0 < t < T;v1(t) # va(t)}],

where mes denotes the Lebesgue measure. It is easy to check that (U4, d(.,.)) and (L;(O, T,R),d(.,.)) are
complete spaces.

Let (v, u*(-),v*(.)) be an optimal control of the problem (11) and (x*(.), y*(.)) and Z*(.) be the corresponding
optimal state processes of (9) which satisfy y*(T) = ¢(x*(T)).

Define a new following cost functional

* % * 2 Vi,V v 2 2%
Ta(o, (), vQ) ={[Two, u(),v() = T, 1w (), v () + A+ [EIy' (D) = i )P}, (12)

where (x"(.), y'(.)) is the trajectory corresponding to v(.) and A > 0 is a constant. We have to take note that
the unboundedness R, L2.(0, T;R) and U,; cannot assure lower semi-continuity of J1(yo,u(.),v(.)). Thus
Ekeland’s variational principle ([33]) cannot directly be used to solve the optimal control of problem (9)
and (12). So we consider two steps.

Step 1. Assume that yo, u(.) take values in M, N' C R and M be convex and M, N, U are bounded.

Thus [ (yo, u(.), v(.)) : Mx L;(O, T; N)x U, — Ris a semi-lower continuous function and it is easy to check
that

Ja(o, u(),v()) 2 0, ¥(yo, u(.),v()) € MXLL(O, T; N) X Usa),
(o, w (), V() = A
Jalyo, (), v'() < (

inf  Ja(yo, u(-), v(.)) + A.
You()v()
Therefore we can apply Ekeland’s variational principle, [33], that there exists (yao, u1(.),vi(.)) € M X
L;(O, T; N) x U, such that

@) Ja(yao, ua (), va()) < Jalyp, (), v'() = A,
) d((y0, 82 (), V2 (), W, w () V() < VA,
(c) for any (yo, u(.), v(.)) € (M x L2¢(0, T;N) X Uy,
Ta(o, (), v() 2 JaWao, ur (), va () = VA((wo, (), v()), a0, 1a(), va()). (13)

Then (ya0, ua(.), va(.)) is the optimal control of problem (9) and (12). We can make the spike variations

() = u, d<t<d+e
A2 un(t), otherwise,

VE(h) = v, d<t<d+e
ANZT va(t), otherwise,

where 0 < d < T is fixed, ¢ > 0 is sufficiently small and u € N, v € U are arbitrary Y ;- measurable random
variables such that

sup [u(w)| < +oo,  sup v(w)| < +oo.
we) we)

Let 1o € Mbe a control variable such that v, + o € M, because the set M is convex, then we consider the
following perturbed control process of M

Yio=Ywo+tey, Y0<e<l
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Let (x{(.), y3(.) and Z{(.) be the trajectories corresponding to (y,, u{(.), v{(.)) and (x1(.), ya(.)) and Z,(.) be
the trajectories corresponding to (yx0, #A(.), va(.)).

For convenience, we use the following notations throughout the paper.

Setfor f = a,ay,ay, Axx, Ay, Ay, Ayy, Axy, Gy, L L Ly Ly Loy Lo s Ly Ly Ly,

f®) = f(&xa(t), xa(t = 1), ya(®), ua(®), va(t)),  fvi() = f(E x2(8), x2(E = 7), ya (D), uj (), v (1),
and for g = b, by, bxx, by, baw, 0,0x, Oxx, Oz, O By ey i, Mo o
g(t) = g(t, xa(t), xa(t — 1), va(), g () = g(t, xa(t), xa(t — 1), v} (1),
and
Ak(t) = k(v (t)) = k(t), fork=0b,0,h,a,1,by, 05, hy,ay,ay,by, 00, hy, 0.
We introduce the first-order and second-order variational equations
dx} () = |ba(B)x} (£) + by (DX (= 7) + Ab(t)]]dt
+ |ox(D)x} (£) + o ()} (E = 7) + Ao(t) |[dW(E), t€[0,T],
dyl (H) = [ax(Ox(t) + ap (xL(t = ) + ay (YL () + Aa(t)|dt + [ (t) - ua(B]dW (), (14)

dZ} (£) = [h()ZL (1) + Za(®)he(B)x} () + Za(E)he ()X} (8 — 1) + ZA(t)Ah(t)]dY(t),
() =0, te[-7,0], yi(0)=eyo, Zi(0)=0,

dx3(t) = [bx(t)xiu) + by (D25 (E = T) + 3 (DO (B) + 3bew (D] (E = 1))
+ by (DX (2] (F — T) + Abe(£)x} (1) + Aby ()} (t — ’l’)]dt
+ [ox(t>xi(t) + 0y (D)3 (t = 7) + 500D (5)? + 30w (DX} (= 1))

+ O (DXL (2L (- 7) + Aax(t)x;(t)]dwa), te[0,T], (15)

dy3(t) = [ﬂx(f)xi(t) +ay (X3 (= 7) + 3ax(B)(x} (D))* + Favw () (E - 1))
+ e (DX (DX (8 = 7) + ay (Y3 (1) + 385, (DY (D) + axy (D] By (1)
+ (DX (E = DY (1) + Aae(£)x) (B) + Ay (D (E = 7) + Aay(t)y}‘(t)]dt,

dZ3(t) = [h(t)Zﬁ(f) + Za () (e (D35 (8) + ho (D2 (= 7) + Shaa(8) () (1))
+ e (0L (= D) + B (DX (O} (¢ = 7) + A2 ()
+ Mg (D (£ = 1) + z;Ah(t)]dY(t),

xf\(t) =0, te[-10], yi(O) =0, Zi(O) =0.

Under hypothesis 1, (14) and (15) have unique solutions.

Lemma 3.1. Suppose hypothesis 1 holds, then for some constant C
1. sup Elxj(t)I* <Ce?, 2. sup EXj()P <Ce*, 3. sup Elx;(H['® < Ce?,

—1<t<T —1<t<T —1<t<T

4. sup Elxﬁ(t‘)l2 <Ce?, 5. sup Elxﬁ(t)l4 <Cet, 6. sup Elxﬁ(t)l8 < Ce8,

—1<t<T —1<t<T —1<t<T
7. sup E[xS(t) — xa(t) — x} () — 3 (D < Ceé?,
—1<t<T

8. sup Elx{(t) —xi(t) — x/l\(t) - xﬁ(i‘)l4 < C.et,

—1<t<T

where C, is a constant which lim,_,o C, = 0.
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Proof. See the Appendix. [
Lemma 3.2. Suppose hypothesis 1 holds, then for some constant C

1. sup Ely}\(t)l4 < Ce?, 2. sup Ely}‘(if)l8 < Cet,

0<i<T 0<t<T

3. sup Eli(H? < Cé?, 4. sup Ely3(HI* < Ce?,
0<t<T 0<t<T

5. sup Ely3(H) = ya(h) =31 () = i (OF < Cee?,
0<i<T

where C, is a constant which lim,_,o C, = 0.
Proof. The proof is similar to Lemma 3.2in [13]. O
Lemma 3.3. Suppose hypothesis 1 holds, then for some constant C

1. sup EIZ}\(t)I2 <Ce, 2. sup E|Z%(t)|4 < Ce?,

0<t<T 0<t<T

3. sup EIZi(t)I2 < Ce?, 4. sup EIZf\(t)I4 < Cet,
0<t<T 0<t<T

5. sup E|Z5(t) — Za(t) = ZA(t) — Z2(H)* < C.é%,
0<t<T

where C, is a constant which lim._y C, = 0.
Proof. See the Appendix. [

Define the Hamiltonian function H as follows:

Ht, x,x',y,u,v,p,q,k1,N,B) =pb(t,x,x’,v) + ga(t, x,x’, y, u,v) + ka(t, x,x',v)
+ ru(t) + Nh(t, x, X', v) + Bl(t, x, X', y, u,v),

and we formulate the first order adjoint equations as follows:

dm(t) = ~(N(OR(E) + B )dt + N(AY (D),

dp(t) = _[P(t)bx(t) +q(B)ax(t) + k(t)ox(t) + N(B)h(t) + Bli(t)
+ EX(p(t + 1)by (t + 1)) + EF1(q(t + T)ay (t + 7)) + ET1(k(t + T)o (t + 7))
+ E7{(N(t + T)he (t + 7)) + BET 1 (Lo (t + T))]dt + k(t)dW(t),

dq(t) = —(q(B)ay (1) + BLy(D)dt + r(HAW(B),

m(T) = Bp(x(T)), p(T) = Box(x(T)), p(t) =0, te(T,T+1], q(T)=0,

and we have the following second order adjoint equation:

dPy(t) = —[2P1(t)bx(t) + 02 ()P1(1) + 20,(£)Q1(t) + P3(£)ax(t) + Hyx(t)
+ ET{(P(t + )by (t + 7)) + ET1(P1(t + T)02 (t + 1))
+ EX (P (t + T)0x(Dow ( + 7)) + E7H(Q)(t + T)ow (¢ + 7))
+ ET{(Py(t + T)ap (t + 1) + H (t + D)]dt + QuHAW(),
Py(T) = Bpua(T) + 2u(x(x(T)))?, P1(t) =0, te (T, T+,

{ dPy(t) = —[2Py(ay(t) + Hyy(t)|dt + Qa(t)dW (1),
Py(T) =2y,

815

(16)

(17)

(18)

(19)
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dP3(t) = =[Pa(t)ay(t) + Pa(Dbu(t) + 20, ()P (t) + 5. ()Qs(t) + Hiy (2)
+ EZ{(P5(t + T)by (t + 7)) + ET(Qs(t + T)ow (t + 7))
+ 2ET Pyt + T)ag (t + 1)) |dt + Qa(HAW (),

Ps(t)=0, te[T, T+r1],

dpPi(t) = —[P;(t)bx(t) + 2P1(8)by (F) + 0x(H)Q] () + Py ()bx(t — 1)
+2Q1(How () + Q) (Dox(t — T) + P (t)ox(t )or(t - 1)
+ P3(t)ax (t) + P3(£)ax(t) + 2P1(t)ox (H)ox(t) + Haw (t)]dt + Qi (HAW(H),
P(T)=0te[T,T+r],

dPy(t) = —[Pg(t)ay(t) + Py(H)bo(t — 1) + Q5 (Hox(t — 7) + Hx,y(t)]dt +Qi(HdW(t),
Pit)=0, te[T, T+r]

Here ¢(t) = ¢(t,x,x’,v) for ¢ = b,0,h, by, 01y, P(t) = Y(t,x, X', y,u,v) for Y = a,ay,ay,11,1, and L(t) =
L(t,x,x’,y,u,v) for L = Hy,, Hyy, Hyy, Hyrx, Hyw, Hyy. Now, we prove the following Lemma which is neces-

sary to prove the main theorem in the last section.

Lemma 3.4. Let hypothesis 1 and hypothesis 2 hold, then we have two following terms

T 45O, V50) = T(ya0, (), va() = E fo ' [(z (5 + Z2O)(E)
+ Zy(O) LB () + B O) + Lo (O (= 7) + Bt = 1)
L0 + 0) + SO OF + 3L OO - 1)
+ Lo (e (= DX (B) + %lyy(t)(y}(t))2 + Loy (3 (¢ = Dy () + Al(t)]]dt
+ E[(Z3(H) + ZAB)p(a ()] + E[Zu(B)(pexa(T) (x} (T) + 63(T))
+ 20D + Ey s 0)eyo] + ofe)
and
[E 15D - v P] = [ lya(D - peaMP]
= 2E[Zu(DlyA(T) = p(xa(D)P]
* {ZA(T)EI(ya(T) = pea(MNEA(T) + YA(D)] + E(W (D))

+ 2E[ya(T) = Y(xa(T)) X (=¢x(xa(T) (3 () + 23(T)))]
+ E[ya(T) = pa(MN (= (xa(T) (3 (D)]

2
+ E[(x(xa(T)* (4 (T))2]) + E[(ZL(T) + Z2(D)lya(T) = pCea(T)P] } + o(e).

Proof. The first term is similar to Lemma 2.3 in [18], so we only prove the second term.
Using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we can derive

v, ,E £ 2 2 v 2 2
[E"41y4(T) = p e (MIP] = [E lyadT) - ea ()P
= [E@ @D - 9P - [EZaDIya() - v
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= [E[(Z5(T) - Za(T) = Z}(T) - ZAD)Iy5(T) - (s (TP
+ E[(Zu(T) + ZY(T) + Z3(T))
X (I (T) = Y (T)E = lya(T) + Y4 (T) + yA(T) = Pa(T) + x3(T) + (T)P))]
+ E[(ZA(T) + Z}/(T) + Z3(T))
X (Iya(T) + YL (T) + yA(T) = Y(xa(T) + x4 (T) + (D) = lya(T) = Ya(D)P)]
+ EL(Z(T) + Z3(T) + ZA(T)lya(T) = pxa(D) P2
~ E(Zi(D)lya(D) - pea)P]
= [E[@\(T) + Z}(T) + Z3(T))
X {2(yA(T) = PEATNWAT) + YA(T)) + (Y3(T)?) + 2E[ya(T) = $(xr(T)
X (@ (r (D)D) + BTN + YA(T) = YT~ Per(ia (T (T))?
+ (W2 (TP (D)) + (o a (ML (DY (T)]]
+E[(ZA(D) + Z2M)ya(T) = peaMP] + E[ZM)lya(D) - pea P
= [EZAT)lya(T) = paaD)P)P + o(e)
= 2E[Z\(T)lya(T) — $(xa(T))]
x {Z UM RE[(ya(T) = a4 (T) + vA(T)] + E(A(D))
+ 2E[ya(T) = p(xa(T)) X (=2 (ca (DL (T) + B (T)]
+ E[ya(T) = (e (M) (= (ea (DG (TP + ELW(xa (TP (T))?))
+E[(ZA(D) + Z2@O)ya( = paMP] ] + o(e).

Thus the proof is completed. [

4. A general maximum principle

In this section, we derive a general maximum principle, which is the main result of this paper.

Theorem 4.1. Let hypothesis 1 and hypothesis 2 hold, M, N, U are all bounded. If (y(.), u*(.),v*(.)) is an optimal
solution of the optimal control problem (9), (11) with the final state constraint (10), then there are two parameters f3
and p with B> + p? = 1, such that for any yo € M,u € N,v € U, we have

E" fo ' [H(E,x (1), %t = 1),y (), (), v(E), p(t), 9(8), K(B), (), N(E), B(£)

— H(t,x'(5), X' (£ = 1), " (£), 15, v'(B), p(), q(8), k(), r(8), N(), B() |at

- %[o(t, X (B, X' (t = T), V(D) = (alt, X' (), X' (t = T), v*(t))]zpl(t)

+ [0t ' (), ' (t = 1), v(H) - ot, % (), ' (t = 1), v"(1)) (23)
X (o(t = 7,2 (t = ), x'(t = 20),v(H)) — ot — T, %" (t = T), %" (t = 27), V' () | P4 )

+ [0t ' (), x°(t = 1), v(H) = ot, % (), ' (¢ = 1), v () (w(t) - u (t))]P3(t)

+ [0t = % (t = ), ' (t = 27), v(t)) - 0t - T,X'(t - T), 2 (t = 20), V' (1))
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x (u(t) = (1) |P(®)

+ %[(u(t) — ' (0)*[Pa(t) + Byy(yp)eyo + qO)yo 2 0, ae.,as.

Proof. From (c) in (13)

0 < a0, ua (), V4 () = Ja(yao, ua(), va()

+ VAW, 15 (), V5 (), Va0, 12 (), v2())

P 0,70 = (a0, 110, vA0) 2
= e O O Q) "¢ AN T ek 29

Using Lemma 3.4, we have

S0, 450, v5()) = T3 (a0, ua (), va(L)
= [ w OV = T 0O ) + A]

— [0, 10 v20) = 00,7’ () + A]

. 2 2

+ [Ey(T) = s (M)P] = [E ya(T) = pea(D)P]

= 2 J(ya0, 42 (), va () = (W, ' (), v () + A]
T
x {E fo [(zw) + 2O + ZaBO[LOEL ) +22(1)

+ Lo (B (= 1) + 23 (= 1) + L (O () + A1) + %zxxa)(x;(t))z
+ 2L (D = D) + L (DK} = DXk (1)

+ %lwaxy}(f»z + Loy (DL (E = D3 () + A«t)]]dt

+ E[(Z3(T) + ZAD)p(xa(T)) + Za(D)| b (xa (TN (x4 (T) + 2(T))

+ %cz)xx(xA(T))(x;(T»z]] + Vy(y)\o)r?]/o} + 2E[ZA(T)lya(T) = pa(M)P]

x {2ZA<T>E[<W(T> — P MNEATD) + (D)

+ E((3(T)?) + 2E[(ya(T) = p(xa(T)))
X (= (e (D) (T) + 23(T))]
+ E[(ya(T) = a9 xa(T) (3 (T)?)]

+ E[pon(T)P (L (TP + E[(ZA(D) + Z2T)lya(T) - ab(xA(T))F]z} +0(e).

So, from the above relation and by (24), we have the following variational inequality



A. Delavarkhalafi et al. / Filomat 37:3 (2023), 809-832

T
ﬁ;{E fo [(Z}(t) + Z2ONE) + ZaB LB 00 + x3(1)

+ Lo (D (t = ) + 23 (t = ) + L (O, (1) + y3 (1) + %lm(t)(ﬁd(t))2

+ e (O~ D) + L (O ¢~ D} 0)

+ %lw(txy}(t))2 + Loy (O (= Dy (1) + Al(t)]]dt
+ E[@A(T) + ZAM)pa(D) + Za(D[fuxa M@ (T) + x3(T)

+ %(pxx(xA(T))(x}\(T))z]] + ?’y(]/AO)EJ/O}

* u;{zzuT)E[(yA(T) = P (MY T) + A (D)) + E@i (D))

+ 2E[(yA(T) = $(xa (1)) X (~r(xa (D)} (T) + B (T))]
+ E[(ya(T) = pa(M))(~relia (D) (x (T))?)]

+ E[0e(ea(D)2(x} (D)?] + E[(ZL(T) + ZA(D)lya(T) - sb(xA(T))F]z}

+0(e) + e VA2 + ol > 0,

where

- 2a0,ua(,va0) = Jy,w (), v () + A
N s (O Vi) + aao, ua(),va())
. 2E" |yo(T) — p(ar ()P

B = W O O) + a0, 1), 72 ()

Let Ty (t) = Z1(1).Z7(t), Ta(t) = Z2(t).Z7L(t), using Itd’s formula, we get
dri) =[hx(t, x(t), x(t = T), V(D)X () + Iy (8, x (1), x(t = T), v(t))x'(t = 1)
+ h(t, x(t), x(t — 1), v(t)) — h(t, x(t), x(t — T),V(t))]dW(t),

AT () =[alt, x(8), 2t — 0), VIOR(E) + I (6, 2(0), 2t~ ), VO (E — D)
# 2l 20, X~ ), 9O (1))

# Sl (6 x(0), 300 = 0, WD)t = )Y

e (b 1(6), 106 = 0, WD) (¢ — )

+ (ot 100, x(8 = 0, (0) = It x(0), 26 = ), V()Y ()

+ (e (t, x(1), x(t — T),VE (1)) — he (£, x(8), x(t — T), v(£)))x(t — 7)
+ T1 () (h(t, x(t), x(t — ), vE(t)) — h(t, x(£), x(t — T),v(t)))]dW(t).

819

(25)

(26)

(27)

(28)
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We can rewrite inequality (25) as
ifE” fo [0+ 20 + L0 + 2 0)
+ L0 =)+ (= 1) + L OGLE + R O) + 30
+ e O = D + L (N = DX} 0) + 2Ty (O O
+ Loy (B} (E = Ty3 (1) + AlB)]dt + E[(TH(T) + TA(T)(xa(T))
+ (DL + D) + 200 MNP + ryao)evo)

+ 1 2B [(ya(T) = p M)A + A (T)] + E (v (1))

+ 26" [ya(T) = P (D) X (a2 M)E}(TD) + 25 (D)]

+ Eya(T) = a4 (DG} (D))

+ @ tea MR MP] + B [T + T )lya () - peea)F] |

+0(e) + € VA {2+ yol2 = 0. (29)

As before, we introduce the following adjoint equations:
dms, () = —(NS(Oh(t) + B 1Dt + N (DAY (2),
5 () = =[5 (D) + 45 (Dax(t) + K (Do) + NE (Do) + B (1)
+ E7(p (t + Dby (t + 1)) + ET1 (g (t + D)ae (t + 7)) + E7H (kS (E+ T)ow (t + 1))
+ EP(NE(t + Dho (t + 7)) + BET (Lo (t + T))]dt + K (HAW(H), (30)
das (t) = (g5 (Day (1) + B L,(0)dt + 5 (HAW(),
m5 (T) = B 0ea(T)) + iy (ya(T) = Pa(D)?, ¢(T) = 215 (ya(T) = p(xea(T)),
piT) = Bidx(xa(T)) = 25 (ca (T (ya(T) — (xa(T)), pi(H) =0, te (T, T+1]
This is a time-advanced BSDE. Then by Theorem 2.1 in [20], we know that (30) admits unique solutions
under hypothesis 1.
Define the Hamiltonian function H as (16). Applying Ito’s formula to p? (£)(x] () + x5 (1)) + 45 () (v} () + 5 (D) +
mé (£)(T} (£) + T3(#)) and by the variational inequality (29) we get

T T
E" fo AH(Ht + B fo [ 0)2 + Hyy (WA B)? + 2Hr (O O} (0)

+ How ()} (t = 1)) + 2Ho ()} (D] ( = 1)) + 2H o (Y} (8)x] (£ — 1)) ]t

+ %EVA‘B; [(qux(x/\(T))(x}\(T))z] + ﬁﬁ)/y(y/\o)eyo + 6];(0)5]{0
- E#;[]//\(T) - lyb(x/\(T)))(_lszx(x/\(T)(x}\(T))Z]
+E" [(be(xA(T))z(x}t(T))z] +E™ yf\[y}(T)]Z +0(e) + e VA2 + [yol2 > 0, (31)

where

L(t) = L(tr x/\(t)/ x/\(t - T)r y/\(t)/ Ll)\(t), V/\(t)r Pf\(t)/ qi\(t)/ kj\(t)/ Vf\(t), N/é\ (t)r ,B; (t))r
L =H, Hy, Hyy/ ny/

AH(t) = H(t, x2(8), x2(t = 1), ya(t), uj (), vi (), p3,(8), 43 (£), k3, (), 3, (), N (8), B3 (£) — H(B).
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Now, we formulate the following adjoint equations:

dP,(t) = _[2Pf\1(t)bx(t) + 02(H)P, (1) + 20:()Q5, () + P4 ()ax(t) + Hyx(t)
+ET(PE (t + T)bw (t + 1)) + ET1(P% (t + T)02 (t + 7))
+E7 (P (t + T)ox(t)ow (t + 7)) + ETH(QF (E+ D)o (t + 1))

+ET(PE (t + Dap (t + 7)) + How (t+ T)]dt + Q5 (HdW(t), (32)
PL(T) = B bea(xa(T)) + 208 [ (y(T) = Paa(T))(—tae(ea(T)) + (W2 (T))?],
P () =0, te(T,T+1]
{ dPs, (1) = —[2P5, (Bay () + Hyy(1)|dt + Q5, (WD), 39)
Piy(T) = 24,
dP, () = =[P, (Bay(t) + P (Oba(t) + 2, ()P, (1) + 0. (HQ5(1) + Hay ()
+E71 (P4, (t + T)byw (t + 1)) + ETH(Q4,(E + D)o (t + 1)) (34)
F2ETH(P, (¢ + Dy (t + T)]dt + Qs (HAW(E),
Pi(T) =0, P,(H) =0, te(T,T+1],
dP; (1) = =[Pg (O () + 2P5 (B (1) + 0x(HQ (B) + PLf (Dbslt - 7)
+2Q5, (How (1) + Q7 (Dox(t = T) + P (Dox()ox(t = T) + P, (Dax () (35)
+P'5 ()ax(t) + 2P (H)ow (D)0x(t) + Hyw (t)]dt +QE (DdW(h),
PE(T) =0, te[T,T+1],
dP(H) = =[P (Bay(t) + P (Oba(t — 1) + Q5(H0x(t = 7) + Hey()]dt + Q5 (HAW (), 36)
Pi(t) =0, te[T,T+1]

Clearly
tim (B + 15 = 1,

so there exists a subsequence still denoted by (8, ) that converges to (B, 1), which [Ba]* + | * = 1.
Consequently, we can verify the following limits as ¢ — 0 in L;(O, T;R)

mi () = ma(), ,Ni() = Na(), pi() = pa(), 950) = q1(), k() = ka(),
() = 1), Pt = Pu(t), Pi,(t) — Paa(t), Pis(t) — Pas(t),

Q) = Qu(), Q) = Qu(), Qi) - Qu(®),
Pii(t) = Py, PR = Pis®), Qi = Qu®), Qi — Qs

where (ma(.), Na(), (pa(), ka (1)), (qa(), 7a()), (Par(), Qa1 (), (Pa2(.), Qaz()) and (Pas(.), Qas (), (P (), Q1 (),
(P}5(), Q5()) satisfy in (30)-(34) with (B, uf) replaced by (B, p11) and

L(t) = L(tr x/\(t)l x)\(t - T)r y/\(t)/ u/\(t), V/\(t)) for L = Hyy, Hyy/ ny/ Hyryr, Hyw, Hx’y-

Applying Ito’s formula to Py (£)(x} (1))?, P/, (£)(x} (DX (t = 1)), Paa(B)(y3 (H)?, Pas(t)x; (Dy; (b,

P (Hx} (t — 1)y (t) and letting (31)x! and ¢ — 0, also, we note that x!(t — 27) = 0, because we use one
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pointwise delay, so we have

EY fo ' [H(t xa(8), x(E = ), ya (8), u(®), v(E), pA®), 92 (8), Fa (8), 12 (8), Na(8), Br(9)
— H(t, xa(8), xa(t — 1), ya(t), ua(t), va(t), pa(t), ga(t), ka(t), r/\(t)rN/\(t)r.BA(t))]dt
+ %[o(t, xA(8), xA(t = T), v(D) — (a(t, X1 (1), xA(t — T), v,\(t)))]zPM(t)
+ [0t xa(B), 22 (= 1), v(B) = ot 20 (), X2 (t = D), va (1))
X (o(t = T, xa(t = 7), Xt = 20), v(H)) — 0t = T, X(t = 7), x2(t — 27), va (D)) [P, (8)
+ [(U(f x2(8), xa(t — 1), v(t)) — a(t, x2(8), xa(t = T), va(£)))(u(t) — ”A(t))]P/\B(t)
+ [0t = 7 xa(t = ), 30 (= 27), ¥(D) = 0t = T, %2 (= T), X2 (¢ — 27), VA (1))
X (u(t) = 1 (1) |Ph5(0)
= §[<u<t> — (B ]Paa(t) + Bryy(Wa0)eyo + qaO)yo + VA \/m > 0. (37)

Similarly, there exists a subsequence of (8;, 11) that converges to (8, u), with |8 [+ | plz = 1. Since yao — Y,
uy(.) = u*(), va() = v*() as A = 0, we have the following limitsas A — 0

(@) =20, )=y, Za0)—=2°0), ,y(1)=y(T),

also, in £§c([0, T1],R), we have the following limits

my(.) = m(), ,Na() = N(), paC) = p(), ga() = q(), ka() = k(),
() = r(), Pa(t) = Pi(t), Pr(t) — Pa(t), Pas(t) — Ps(b),

Qu(t) = Qu(), Qu(t) = Qa(t), Qust) — Qs(b),

Ply(t) = Py(t), Pl(t) = Py, Qi) = Q1) Qj5(H) = Q5(b),

sending A — 0in (37), we derive (23). O

Step 2. For the general case of control domains, let

M ={yo € R;|yol < lypl +n}, N" = {u(t) € R;[u(t)| < [u*(t)| + n},
L2(0,T; N™) = {u() € L0, T; R); u(t) € N},

U, = {v() € Uyl sup Ev(t)] < sup Ep*(H)l +n}, n=1,2,..
0<t<T 0<t<T

It is easy to see that M" is convex and M", L;(O, T;N™) , U, for n=1,2,... are all bounded. Then by the
proof in Step 1 and in a similar way as Step 2, in [13] we have the general maximum principle (23). Since
(yo, u(.),v(.)) is arbitrary we have the following theorem:

Theorem 4.2. Assume hypothesis 1 and hypothesis 2 be satisfied, (x*(.), y*(.), z*(.), v*(.)) and Z*(.) is a solution of the
optimal control problem (4), (6) and (7). Then there exist f and p with B> + u* = 1, such that for any yo € R, u € R
and v € U the condition (23) holds, where H is defined by (16) and (m(.), N(.)), (p(.), k(.)), (g(.),7(.)), (P1(.), Q1(.)),
(P1(), Q1()), (P2(.), Qa(4)), (P3(-), Q3(.)), (P5(.), Q5(.)) are the solutions of the equations (30)-(36) with u*(.) replaced
by z*(.), respectively.
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5. Example

In this section, we will study a linear-quadratic partially observed problem with delay.
We consider the following control system:

dy(t) = (fx(t) + gy(t) + mz(t) + nv(t))dt + z(t)dW(¢), te[0,T], (38)

dx(t) = (ax(t) + a' x(t — ) + bv(t))dt + (cx(t) + ¢ x(t — ) + ev(t))dW(t),
x(t) = xo(t), te[-7,0], y(T)=kx(T),

and the observation process

dY(t) = hdt + dW(¢),
{ Y(0) =0. (39)
Our objective is to minimize the following cost functional over U
1 T
Jw() =3 EV[ f (WA(t) + sz*(H)dt + ax(T)* + wyz(O)], (40)
0

subject to (38) and (39), where g, a,bcce, f,9,m,n,h,1,a,sand w are constants satisfying / > 0, « > 0 and
w > 0.
The Hamiltonian function is
H(t,x,x',y,u,v,p,q,k1,N,B) =plax(t) + a'x(t — 1) + bv(t)) + g(fx(t) + gy(t) + mu(t) + nv(t))
+ k(cx(t) + ¢ x(t — 7) + ev(t)) + ru(t) + Nh

+ %‘B(lvz(t) +52°(1)). (41)
The adjoint processes take the form:

dm(t) = —(N (Hh + %ﬁ(lvz(t) + szz(t)))dt + N@)dY(?),

dp(t) = —[p(t)a +q@)f +k(t)c + ET (pt+ 7)a’) + EFt(k(t + T)c')]dt + k(t)dW(t), (42)
dq(t) = —q(t)gdt + r(t)dW(t),

m(T) = %,Bax*z(T), p(T) =apx*(T), p(t)=0, te(T,T+1], q(T)=0,

dP () = =[2Py(t)a + c2Py(t) + 2cQu (1) + Ps(t) f
+ET(P(t + 1)) + ET(P1(t + 7)c'?)

+ Eﬁ(P'l(t +1)cc’) + EF (Q(t+ T)c')]dt + Q1 (HdW(®), #3)
Pi(T) = Ba+2uk?, Pi(t)=0, te(T,T+1],
dPy(t) = —[2Py()g]dt + Qu(tidW(t), )
Py(T) =2y,
dP3(t) = =[Ps(t)g + Pa(t)a + 2fPo(t) + Qs(t)c

+ E7{(P3(t + 1)) + E7/(Qa(t + 1)) |dt + Qs (AW (), (45)
P3(t)=0, te[T, T+1],
dP;(t) = =[P} (tla + 2Py (t)a’ + cQ)(t) + P’ (D

+2Q1(H’ + Q) (P + P) (1) (46)

+Py()f + 2P1(t)c’c]dt + Q1 (hadw(t),
PI(T)=0te[l,T+r1],
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dPy(t) = =[P (t)g + Py(t)a + Qi (t)c]dt + Qu(HAW(E), @)
Py =0, te[T,T+1],

where p and B are constants satisfying y? + g2 =1, u > 0, > 0.
Because the case of § = 0 is trivial, so we only study the case § > 0. Let u = z* and v = v* in the maximum
condition (23), so we have pwy; +4(0) = 0, i.e.,

9(0)

]/0 == ﬁw : (48)

Let v(t) = v*(t) and yo = y; in the condition (23) , so we have q(t)m + r(t) + fsz*(t) = 0, therefore
eepy . maq(t) +1(t)

Z'(t) = BT (49)

Letting u(t) = z*(t) and yo = yj, in the inequality (23), the optimal control v*(t) should satisfy
1
(p(Db + q(t)n + k(t)e)(v(t) — v'(1)) + Eﬁl(vz(t) - ()
+ %Pl(t)ez(v(t) —v2(t) + e (v(t) — v (1)*P,(t) = 0.

Then we have

) = _p(t)b + q(ﬁtl)a + k(t)e' (50)

Proposition 5.1. If y*(0) and z*(.) satisfy in (48) and (49),then for given B > 0, v*(.) given in (50) is an optimal
control for LQ optimal problem (38), (39) and (40).

Proof. Using It6 formula to p(t)(x(t) — x*(¢)) + q(®)(y(t) — y*(t)) from O to T, and according to (48), we derive
E[apx (D((T) - x(T)) + poy (0)(y(0) - y*(0))]
T
=E’ ](; (p(b + k()] + g(On)(v(E) — v’ (#)) + (mq(t) + r()(z(E) — 2°()). (51)

Noting a > 0,w > 0, we have

Jv() =)
T
= %EV fo [Z(Vz(f) —v2() +s(Z3(t) — 22(1))
+ a(H(T) = xX(T)) + w(y*(0) — y2(0))|dt
(Tl . 1 .
>E fo [El(vz(t) —v2(t) + Es(zz(t) ~22(t)

+ax"(T)(x(T) — x(T)) + wy (0)(y(0) — y*(O))]dt.
So, using (51), we have

J() =T () (52)
T
> E fo [%l(vz(t) —v2(t) + %s(zz(t) ()

+ %(p(t)b + k() + g(Oyn)(w(t) = v'(£) + (m q(t) + r(B)&(b) - 2'())|dt. (53)
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From (49) and s > 0, we have

T
EY fo [%S(Zz(t) -Z2(t) + %(m q(t) + () (z(t) - Z*(t))]dt

s f " [Rstett = 007 + 620 + om0 + (e — 6
0 2 ‘B
> 0. oY

From [ > 0 and (50), we get
[%l(vz(t) —v2(t) + %(p(t)b + k()] + q(ym)(v(t) — v (1)) = 0. (55)

Then from (52)-(55), we have
Jw() = J('()) 2 0, Yv(.) € Upg.

Thus, v*(.) is the optimal control. [

6. Conclusions

In this paper, we have studied the optimal control of forward-backward stochastic delay systems with
a partial observation noise. The maximum principle is obtained under the assumption that the control
region is not necessarily convex and the forward diffusion coefficient contains control variables and the
control enters into the observation. We have regarded the martingale term in the backward equation as
the control and have employed Ekeland’s variational principle to obtain the maximum principle. Also, we
have derived the first and second-order adjoint processes.
In the future, we would like to obtain the maximum principle for forward-backward stochastic control
systems involving both delays in the state variable and the control variable.
Acknowledgments
We would like to thank the journal editor and the referees. This work was supported by the fundamental
research fund for Yazd University, Iran.
Appendix
Proof of Lemma 3.1. Because the higher-order moments imply lower-order ones, thus we only prove
estimations 3, 6, 8.
From hypothesis 1 and Doob’s martingale inequality, we get

¢ ¢
sup Elx}(f)l16 < C[ sup E Ix}‘(s)|16d5+ sup Ef |x}\(s—”c)|16ds
—T<t<T —1<t<T 0 —1<t<T 0
+e d+e
+ePE fd Ib(v%,(s)) — b(s)|'®ds + €’E f lo(v5 (s)) — o(s)|16ds]
d d

t
<C(sup E f lx} (5)|"6ds + €°).
0

—1<t<T
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Thus with Gronwall’s inequality, the proof of estimation 3 is completed.
Similar to the above analysis,

¢ ¢
sup Elxﬁ(t)l8 SC[ sup Ef |x§(s)|8ds+ sup Ef |xﬁ(s—’[)|8ds
—1<t<T —1<t<T 0 —1<t<T 0

+ sup Elx}\(t)|16+ sup Elx}\(t—’[)|16+ sup E|x}\(t)|8|x}\(t—’[)|8

—1<t<T —1<t<T —1<t<T
d+e
+¢E f b2 (5)) = b(s) Pl (5) s
d
d+e
+ f 04 (5)) — 03 (&) (5) s
d

d+e
# T [ o456 = be Ok s — 0]

(sup E f I3 6)Pds + sup Elx}(t)' +&® sup Elx}(1)F)

—T<i’<T —1<t<T —-1<t<T

( sup Ef IxA(s)|8d5+e

—T<i’<T

From estimations 2, 3, and Gronwall’s inequality, we derive estimation 6.
By Taylor expansion we have

t
f b(s, xx(s) + x}(s) + xﬁ(s), xXA(s—1)+ xk(s —-7)+ xﬁ(s —1),v4(s))ds
0
¢
+ f o(s, xx(s) + x}\(s) + xi(s), xXp(s—1)+ x}\(s -7)+ xi(s - 1), v4(5)dW(s)
0
=x, +xA +xA Xo(t) + f [A1(s) + A5(s) + A5(s)]ds
f [Bi(s) + B5(s) + B5(s)1dW(s)
¢
+ fo (005) = BN + [ (br(41) = bl s — s

t t
" fo (0:() = 022 ()W) + fo (025 — 0 (N2 (s — DAW(S),
where (using (14) and (15)),

A45(5) =3baG (A6 + 26,3 5)

1 1
+ fo fo A[bxx(s,xA(S)+Ay(X}(S)+X§(S))

,x0(5 = T) + Ap(xy (s — 1) + x3(s — 1)), V5 (9)) — bxx(s)] dAdu(xl (s) + x3(9))%,
A3(s) Z%bx’x’ ($)((3(s = 1)) + 2x) (s — D)X} (s — 7))

1 1
+ fO fo A (s, x1(5) + A} (s) + 33 (5))

,xa(5 = 1) + Ap(xh (s = 1) + 23(5 = 1), V4 (5)) — bax(5) | dAdp(x} s = ) + X3 (5 - 7))?,
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AL(S) =byy ()X} ()23 (s — 7) + X5 (8)x5 (5 — T) + X} (s — D)3 (s — 7))

1 1
+2 f f Ay (5, x0(5) + Ap(x} (5) + 2 (5))
0 0

,x0(s— 1)+ /\y(xk(s —-7)+ xi(s - 1)), v4(s)) — bxx(s)] dAdu

X (X} () + x5 (8)) (6} (s = ) + x5 (s = 7)),

Bi(5) =506 + 26,3 (5)

1 1
o [ Aots o+ uo + )

,X(8 = ) + Ap(xy (s = 7) + 23(s = 1), Vi (8)) — Gxx(S)] dAdp(x; (s) + x3(5))°,

BS(S) =500 BN = 1) + 245 - D (s — 1)

1 1
+ f f A [oxzxf(s, x,(s) + Ay(x}\(s) + xﬁ(s))
0 Jo

,x0 (s — 1)+ /\[u(x}\(s —-T)+ xﬁ(s - 1)),v{(s) - axx(s)] d)\d[u(x}\(s —-T)+ xﬁ(s - 1)),

B5(5) =0xv () (X (5)X3 (5 — T) + X5 (s)x} (s — ) + X} (5 — T)XA (5 — 7))

1l
+ 2](; j(; A [axxf(s, xa(s) + Ay(x}\(s) + xﬁ(s))
,x0(s — 1)+ /\[u(x}\(s —-T)+ xﬁ(s - 1)),v{(s) — axx(s)] dAdu

X (x}t(s) + xﬁ(s))(x}\(s -T)+ xﬁ(s - 1)),

which using estimation 3, we can verify

t 4 s 4
sup E fAi(s)ds ]+ sup E[fA;(s)dW(s) }
—1<t<T 0 —1<t<T 0
t 4 t 4
+ sup E[f A5(s)dY (s) ]+ sup E foj(s)ds ]
—T<i<T 0 —T<t<T 0
t 4 t 4
+ sup E[f B5(s)dW(s) ]+ sup E[f B5(s)dY(s) J:0(£4).
—1<t<T 0 —1<t<T 0

Thus we can derive
t
X, () = 2(H) = x4 () — 23(8) = fo |65, 24(5), 5 = ), v4(5))
— (b(s,xa(5) + x}(5) + 23, x4 (5 = 7) + 2} (s — T) + X3 (s — 1)), )| it

¢
+[) [a(s,xf\(s),xj(s—T),Vf\(s))

—o(s,x1(s) + x}l(s) + xﬁ(s), xXA(s—1)+ x}(s -7)+ xi(s - 1), vj(s))] AW(s)

827



A. Delavarkhalafi et al. / Filomat 37:3 (2023), 809-832 828
t t
— [) [Ai(s) + A;(s) + Ag(s)]ds — fo [Bi(s) + B;(S) + Bg(s)]dW(s)
f t
+ fo (b (%) — by ()2 (5)ds + fo (b () = by ()2 (s — s
t t
+ fo (0:(0) = 0x()2 (S)AW(s) + fo (0014 = 0 () (s — DAW(S).

Thus, the estimation 8 can be obtained from It6’s formula and Gronwall’s inequality. The proof is completed.
Proof of Lemma 3.3. Since the proof of the estimations 1, 2 are similar to Lemma 3.3 in [18], we omit it for
simplicity.

Because the higher-order moments imply lower-order ones, thus we only prove estimations 2, 4 and 5.
From hypothesis 1 and Doob’s martingale inequality, we get

t t
sup E|Z3(#)|* < C [sup E f |Z3(s)I*ds + sup E f |1ZA(s)x5 (s)I*ds
0<t<T 0<t<T 0 0<t<T 0
t t
+ sup Ef IZ/\(s)xi(s - T)|4dS + sup Ef IZ,\(S)(x}\(s))Zl‘lds
0<t<T 0 0<t<T 0

¢ ¢
+ sup Ef |Z;\(S)(x£(s —1))*|*ds + sup Ef |ZA(s)(x}‘(s)x}(s - 1))|*ds
0<t<T  Jo 0<t<T  Jo
d+e

reE [ 123605, 0,36 = ), 1(9) ~ I G

d
+¢eE fd h |Z(8) (e (5, X(5), (5 = ), ¥(8)) = I ()X} (s — T)I*

d

d+e
+eE L IZX(S)(h(s, x(s), x(s — 1), v(s)) — h(s))|4ds]

t t
< C[,/E Ix2(s)]® + sup E f |Z3 (s)|*ds
0 0<t<T 0
t +é +e
+4|E f lxl (s)[16 + ¢E f |ZA(s)x}(s)*ds + €E f |Z} (s)|*ds
0 d d

t
< c( \/T sup El2(f)fds + sup E fo 172 () s

0<t<T 0<t<T

+ \/T sup Elxl ()]16ds + ¢ \/ sup ExL ()8 + ¢ sup E|z;(t)|4ds).

0<t<T 0<t<T 0<t<T

Thus, with Gronwall’s inequality and by Lemma 3.1 and estimation 2, the proof of estimation 4 is completed.
We have

t t
f (Z3(s) + Z3(s)h(s)dY(s) + f Z(s)Ah(s)ds
0 0
t
+ f Z(8)h(s, xa(s) + x3(s) + 23(5), xa(5 — T) + x5 (5 — T) + x3(s — 7), V5 (5))dY (s)
0

=Z\H+Z\(h+Z3(H -1+ fo t ZA(5)AS(s)dY (s),
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where
A) = haG (GO + 2066 + Ao 6)

+ %hxrxr (s)((xi(s — T))2 + Zx}(s — T)xi(s - 7))+ Ahxr(s)xi(s - 1)
+ hxx/(s)((x}\(s - T)xi(s -7)+ x}\(s)xi(s —-7)+ x}‘(s - T)X%\(S))

1 .l
+ jo‘ fo Ay (s, x1(s) + /\y(xi(s) + xi(s)), xXA(s—1)+ Ay(x}(s -7)+ xi(s - 1)),v4(s))
X dAdp(x; (s) + x5 ()

1 1
+ f f Al (3, 22(8) + Ap(xi (8) + x5(5)), x4(s — T) + Ap(xh (s — 7) + X3 (s — 1)), v, (9))

0o Jo
X dAdu(x (s — 1) + 25 (s — 1))
SN

+ Zfo fo Al (s, x,(s) + )\y(xi(s) + xﬁ(s)), xp(s—1)+ /\[,L(x/l\(s -7)+ xi(s - 1)), v4(s))

X d)\dy(x}\(s) + xﬁ(s))(x}\(s -7)+ xf\(s - 1))

From hypothesis 1 and Lemma 3.1, we can verify
2

t
sup E( fo ZA(s)A"(s)dY(s)) = o(e?).

0<t<T
We have

ZE(D-Za(t) - Z3 (1) - Z5(8)
t

¢
=f0Zf\(s)h(s,xj(s),xj(s—T),vf\(s))—fO(Z}(s)+Zi(s))h(5)dY(s)

t t
— f Z3(5)Ah(s)ds + f ZA(S)AE(s)dY (s)
0 0
t

- f Z2(s)h(s, x1(s) + xﬁ(s) + xi(s), xp(s— 1)+ x}‘(s —-7)+ xﬁ(s —1),v4(s))dY(s)
0
¢

= fo (Z(5) = Z(s) = Z3(5) = ZX(9)h(s, X (), x5 (s = 7), v ()Y (5)

t
+ fo (ZA(s) + ZL(s) + Z2(s)) [h(s, X (), x5 (s — 1), v4.(5))

— h(s, xa(s) + x} (s) + xi(s),xﬁ(s -7)+ x}\(s —-7)+ xi (s— T),vj(s))] dY(s)

t
+ f (Z}\(s) + Zﬁ(s)) [h(s, xa(s) + x}\(s) + xﬁ(s),xA(s -7)+ x;(s -7)+ xﬁ(s - 1),v4(s)
° t t
—h(v;(s))] dY(s) + f (Z2(s))Ah(s)dY(s) + f ZA(S)AS(s)dY (s)
0 0
t
= fo (Z5(5) = Za(s) = Z}\(s) = Z3(9))h(s, x(5), X (5 — T), v (5))dY(s)
t t
+ f ((Za(s) + Z)(s) + Z3(s)EX(s)dY (s) + f (Z}(s) + ZA(s)TE(s)dY (s)
0 0

t ¢
+fO(Zf\(s))Ah(s)dY(s)+f0 ZA(S)AS(s)dY (s),
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where

1
Es) = f h(s, X2(5) + () + X3(5) + A(x{(5) = xa(5) — X} (5) = %3 (5))
0
,x2(s — 1) + x}\(s -7)+ xi(s — 1) + A(x}(s — 1) —xa(s — 1)
—x3(s = 7) = X3(s = 1)), Vi ()AA(X (5) = xA(5) = x)(5) — X3 (5))

1
+ f I (5, 20(5) + XL (5) + 22(5) + A5 (5) = x2(6) — 21 (5) — 22(6))
0
,xa(s — 1)+ x}(s —-7)+ xﬁ(s - 1)+ A (s — 1) —x)(s — 1)

= x3(s = 1) = x3(5 = 7)), V4 ()

dA X (x§(s = 1) —xa(s — 7) — x}(s -17)— xﬁ(s - 1))
1 1
+ f f M5, 2(6) + X1(5) + 32(6) + A4 (5) — 12(6) — xL(5) = 2 (9), v56))
0 0
dAdu X (x5(s) — xa(s) — x}\ (s) - xi (s))?
1 1
+ f f Mg (5,22(6) + X1(5) + 2(5) + A (6) = 12(6) = x1,(5) — (), ¥4(9))
0 0
dAddu x (xi(s — 1) —xa(s — 1) — x}(s -T)— xi(s —1))?
1 1
+2 f f Ay (s, x2(5) + X3 (5) + 23(8) + Ap(x (s) — xa(s) — x}(5) — x3(5)), V5 (5))
0 0
dAdp X (x4 (s) — xa(s) — x3(s) — 23(5))

(xi(s—1)— X)\(S—’l')—x (s—1)-— xi(s—’c)),

I(s) =hy($)(x(5) + 2(5)) + f f

X hyx(s, 22 (s) + )\y(xA )+ x/\(s)) xXp(s—1)+ /\/,t(xA(s -7)+ x/\(s - 1)), v4(s))
dAdu x (x}\(s) + xi(s))2 + ](; j(; A
X o (3, %2(5) + Ap(x (8) + x3(8)), x2(5 — T) + Ap(x} (s — ) + 25 (5 — 1)), V5 (5))

1l
d)\d‘ux(x}\(s—T)+x§(s—7))2+‘f0‘fO‘Z)\

X By (s, x7(8) + Ap(x}\(s) + xi(s)), xXA(s—1)+ )\y(x}(s -7)+ xﬁ(s - 1)), v4(s))
dAdu x (x}\(s) + xi(s))(xi(s -7)+ xi(s - 1))

From this relation and by hypothesis 1 and [t6’s isometry, we have
612,00~ 2,0~ 240 - 20F < £ [ 216924 - 20 - o
t
+ Ef (1ZA(BOF +1Z3 ()P +1Z3 ()P (s)Pdls + Ef (1Z3 )P +1Z3 P ()P)ds

¢ 2
+¢E f |Z3(s)PPds + sup E( f ZA(s)As(s)dY(s)) ]
0

0<t<T

Using Gronwall’s inequality and Lemma 3.1, we can obtain the estimation 5.
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