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Abstract. In this study, we construct q-analog C(q) of Catalan matrix and study the sequence spaces
c0(C(q)) and c(C(q)) defined as the domain of q-Catalan matrix C(q) in the spaces c0 and c, respectively. We
exhibit some topological properties, obtain Schauder bases and determine α-, β-, and γ-duals of the spaces
c0(C(q)) and c(C(q)). Finally, we characterize certain class of matrix mappings from the spaces c0(C(q)) and
c(C(q)) to the space µ = {ℓ∞, c0, c, ℓ1} and give the necessary and sufficient conditions for a matrix operator
to be compact.

1. Introduction and preliminaries

The q-analog of a mathematical expression means the generalization of that expression using the pa-
rameter q. The generalized expression returns the original expression when q approaches 1. The study of
q-calculus dates back to the time of Euler. It is a wide and an interesting area of research in recent times.
Several researchers are engaged in the field of q-calculus due to its vast applications in mathematics, physics
and engineering sciences. In the field of mathematics, it is widely used by researchers in approximation
theory, combinatorics, hypergeometric functions, operator theory, special functions, quantum algebras, etc.

Let q ∈ (0, 1). Then, the q-number (cf. [28]) is defined by

[r]q =


r−1∑
v=0

qv (r = 1, 2, 3, . . .),

0 (r = 0).

One may notice that, when q→ 1− then [r]q → r.
The q-analog of binomial coefficient or q-binomial coefficient is defined by(

r
s

)
q
=


[r]q!

[r−s]q![s]q! (r ≥ s),

0 (s > r),
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bh_gu@gauhati.ac.in (Corresponding author) (Bipan Hazarika), karaeevren@gmail.com (Emrah Evren Kara)



T. Yaying et al. / Filomat 37:3 (2023), 839–850 840

where q-factorial [r]q! of r is given by

[r]q! =


r∏

v=1
[v]q (r = 1, 2, 3, . . .),

1 (r = 0).

We stricly refer to [17, 28] for basic terminologies in q-calculus.

1.1. Sequence space

A linear subspace of w, the set of all real-valued sequences, is called a sequence space. Few examples
of classical sequence spaces are ℓk (k-absolutely summable sequences, 1 ≤ k < ∞), ℓ∞ (bounded sequences),
c0 (null sequences), c (convergent sequences), etc. Further the spaces of all bounded, null and convergent
series are denoted by bs, cs0 and cs, respectively. Also, ψ denotes the space of all finite sequences. A Banach
sequence space having continuous coordinates is called a BK space. The spaces c0 and c are BK spaces
endowed with the supremum norm ∥x∥∞ = sup

r∈N0

|xr|, whereN0 is the set of natural numbers including zero.

It is well known that the matrix mappings between between BK-spaces are continuous. Because of this
celebrated property, the theory of matrix mappings has an important place in the study of sequence spaces.
Let λ and µ be two sequence spaces and A = (ars) be an infinite matrix of real entries. Further let Ar denote

the rth row of the matrix A. The sequence Ax = {(Ax)r} =

{
∞∑

s=0
arsxs

}
is called A-transform of the sequence

x = (xs), provided that the series
∞∑

s=0
arsxs converges for each r ∈ N0. Further, if Ax ∈ µ for every sequence

x ∈ λ, then the matrix A is said to define a matrix mapping from λ to µ. The notation (λ, µ) represents the
family of all matrices that map from λ to µ. Furthermore, the matrix A = (ars) is called a triangle if arr , 0
and ars = 0 for r < s.

The matrix domain λA of the matrix A in the space λ is defined by

λA = {x ∈ w : Ax ∈ λ}. (1)

The set λA itself is a sequence space. This property plays a significant role in constructing new sequence
spaces. Additionally, if A is a triangle and λ is a BK-space then the sequence space λA is also a BK-space
equipped with the norm ∥x∥λA

= ∥Ax∥λ . Several authors applied this celebrated theory in the past to
construct new Banach (or BK) sequence spaces using some special triangles. For relevant literature, we
refer the papers [11, 13, 19, 20, 23, 26, 31–33, 35].

The construction of sequence spaces using q-analog C(q) of Cesàro matrix has been studied recently by
Demiriz and Şahin [12], where C(q) = (cq

rs) [1] is defined by

cq
rs =

 qs

(r+1)[q] (0 ≤ s ≤ r),

0 (s > r).

The authors studied the domains X0(q) = (c0)C(q) and Xc(q) = (c)C(q).More recently Yaying et al. [33] studied
Banach spaces Xq

k = (ℓk)C(q) and Xq
∞ = (ℓ∞)C(q), and studied associated operator ideals. Besides, Yaying et al.

[34] studied (p, q)-Euler matrix and its domain in the spaces ℓk and ℓ∞. For studies in q-Hausdorffmatrices,
we refer [1, 2, 7, 27].

If Bλ is the unit sphere in a normed space λ, for a BK-space λ ⊃ ψ and ς = (ςs) ∈ w, utilize the notation

∥ς∥∗λ = sup
u∈Bλ

∣∣∣∣∣∣∣∑s

ςsus

∣∣∣∣∣∣∣
which implies ς ∈ λβ.
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Lemma 1.1. [21, Lemma 6] ℓβ∞ = cβ = cβ0 = ℓ1 and ∥ς∥∗λ = ∥ς∥ℓ1 for λ ∈ {ℓ∞, c, c0}.

The collection of all bounded (continuous) linear operators from λ to µ is denoted by B(λ, µ).

Lemma 1.2. [22, Theorem 1.23 (a)] Let λ and µ be BK-spaces. Then, for every A ∈ (λ, µ), there exists a linear
operator LA ∈ B(λ, µ) such that LA(x) = Ax for all x ∈ λ.

Lemma 1.3. [22] Let λ ⊃ ψ be a BK-space and µ ∈ {c0, c, ℓ∞}. If A ∈ (λ, µ), then

∥LA∥ = ∥A∥(λ,µ) = sup
r∈N0

∥Ar∥
∗

λ < ∞.

The Hausdorff measure of noncompactness of a bounded set Q in a metric space λ is denoted by χ(Q)
and it is defined as

χ(Q) = inf{ε > 0 : Q ⊂ ∪r
i=1B(xi, δi), xi ∈ λ, δi < ε, r ∈N},

where B(xi, δi) is the open ball. For more details about the Hausdorffmeasure of noncompactness, one can
consult [22] and references therein.

Theorem 1.4. Let Pk : c0 → c0 be the operator defined by Pk(x) = (x0, x1, x2, ..., xk, 0, 0, ...) for all x = (xs) ∈ c0 and
each k ∈N0. Then, for any bounded set Q in c0, we have

χ(Q) = lim
k→∞

(
sup
x∈Q
∥(I − Pk)(x)∥c0

)
,

where I is the identity operator on c0.

A linear operator L from a Banach space λ into another Banach space µ is called a compact operator
if the domain of L is all of λ and for every bounded sequence x = (xr) in λ, the sequence (L(xr)) has a
convergent subsequence in µ. The necessary and sufficient condition for an operator to be compact is that
the Hausdorffmeasure of noncompactness of L is zero defined as ∥L∥χ = χ(L(Bλ)) = 0.

In the theory of sequence spaces, the Hausdorff measure of noncompactness of a linear operator plays
a role to characterize the compactness of an operator between BK spaces. For the relevant literature, see
[5, 6, 16, 18, 25].

The catalan matrix C = (crs) [15] is defined by

crs =

 c̃s c̃r−s
c̃r+1

(0 ≤ s ≤ r),
0 (s > r),

where c̃ = (c̃s) is the sequence of Catalan numbers defined by

c̃s =
1

s + 1

(
2s
s

)
. (2)

The above definition is equivalent to the recurrence relation

c̃r+1 =

r∑
s=0

c̃sc̃r−s, c̃0 = 1. (3)

Recently, the domains c(C) and c0(C) of the matrix C in the spaces c and c0, respectively are studied by
İlkhan [15]. Alp [3] studied the sequence spaces ℓ(C, k) = (ℓ(k))C, where ℓ(k) denotes the Maddox’s space
and k = (ks) is the bounded sequence of strictly positive real numbers.
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Several q-analogs of Catalan sequence can be found in the literature. Let 0 < q < 1.Define the sequences
[9]

c̃s(q) =
1

[s + 1]q

(
2s
s

)
q
, (4)

c̄r+1(q) =
r∑

s=0

qsc̄s(q)c̄r−s(q), c̄0(q) = 1. (5)

It is clear that (4) and (5) are the natural q-analogs of (2) and (3), respectively. However, unlike the ordinary
case, the sequences defined by (2) and (3) are not equivalent (see [9]). For some more interesting studies in
q-Catalan sequences, we strictly refer to [8–10, 14].

Inspired by the above studies, we construct BK sequence spaces c(C(q)) and c0(C(q)) defined by the
q-analog C(q) of the matrix C. We exhibit some topological properties and determine the bases for the
spaces c(C(q)) and c0(C(q)). In Section 3, we compute α-, β- and γ-duals of the spaces c(C(q)) and c0(C(q)).
In Section 4, we characterize some matrix mappings from the spaces c(C(q)) and c0(C(q)) to any one of the
spaces ℓ∞, c, c0, and ℓ1. In the final section, compact operators are characterized on the spaces c0(C(q)).

2. The sequence spaces c(C(q)) and c0(C(q))

We proceed by introducing q-Catalan matrix C(q) = cq
rs defined by

cq
rs =

qs c̄s(q)c̄r−s(q)
c̄r+1(q) , s ≤ r,

0, s > r.

It is clear that the q-Catalan matrix C(q) reduces to the Catalan matrix C (cf. [15]), when q tends to 1−.
Now we define the q-Catalan sequence spaces c(C(q)) and c0(C(q)) by

c(C(q)) =

x = (xs) ∈ w : lim
r→∞

r∑
s=0

qs c̄s(q)c̄r−s(q)
c̄r+1(q)

xs exists

 ,
c0(C(q)) =

x = (xs) ∈ w : lim
r→∞

r∑
s=0

qs c̄s(q)c̄r−s(q)
c̄r+1(q)

xs = 0

 .
We emphasize that the spaces c(C(q)) and c0(C(q)) reduce to the Catalan sequence spaces c(C) and c0(C),
respectively, when q → 1− as studied by İlkhan [15]. With the notation of (1), the above sequence spaces
may by redefined by

c(C(q)) = (c)C(q) and c0(C(q)) = (c0)C(q). (6)

The sequence y = (yr) is called C(q)-transform of the sequence x = (xs). That is

yr = (C(q)x)r =

r∑
s=0

qs c̄s(q)c̄r−s(q)
c̄r+1(q)

xs, (7)

for each r ∈N0. Define A0(q) = 1 and

Ar(q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c̄1(q) c̄0(q) 0 0 0 . . . 0
c̄2(q) c̄1(q) c̄0(q) 0 0 . . . 0
c̄3(q) c̄2(q) c̄1(q) c̄0(q) 0 . . . 0
...

...
...

...
...

. . .
...

c̄r(q) c̄r−1(q) c̄r−2(q) c̄r−3(q) c̄r−4(q) . . . c̄1(q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Then, on using (7), we write

xs =

s∑
v=0

(−1)s−v As−v(q)
qs

c̄s+1(q)(
c̄0(q)

)s−v+1 c̄s(q)
yv, (8)

for each s ∈N0. In the rest of the paper, the sequences x and y are related by (7) or equaivalently by (8).

Theorem 2.1. c(C(q)) and c0(C(q)) are BK-spaces endowed with the same norm defined by

∥x∥c(C(q)) = ∥x∥c0(C(q)) = sup
r∈N0

∣∣∣∣∣∣∣
r∑

s=0

qs c̄s(q)c̄r−s(q)
c̄r+1(q)

xs

∣∣∣∣∣∣∣ .
Proof. The proof is a routine verification and hence details omitted.

Theorem 2.2. c(C(q)) � c and c0(C(q)) � c0.

Proof. Let λ ∈ {c, c0}. Then, the mapping π : λ(C(q)) → λ defined by πx = C(q)x for all x ∈ λ(C(q)) is
invertible which implies that π is a norm preserving linear bijection. Hence λ(C(q)) � λ.

To end this section, we construct bases for the spaces c(C(q)) and c0(C(q)). We recall that the domain λA
of the triangle A in the space λ has a basis if and only if λ has a basis. This statement together with Theorem
2.2 gives us the following result:

Theorem 2.3. For every fixed s ∈N0, define the sequence h(s)(q) = (h(s)
r (q)) of the elements of the space c0(C(q)) by

h(s)
r (q) =

(−1)s−v As−v(q)
qs

c̄s+1(q)

(c̄0(q))s−v+1
c̄s(q)

(s ≤ r),

0 (s > r).

Then

(a) the set
{
h(0)(q), h(1)(q), h(2)(q), . . .

}
forms the basis for the space c0(C(q)) and every x ∈ c0(C(q)) has a unique

representation x =
∞∑

s=0
ysh(s)(q).

(b) the set
{
e, h(0)(q), h(1)(q), h(2)(q), . . .

}
forms the basis for the space c(C(q)) and every x ∈ c(C(q)) can be uniquely

expressed in the form x = ze +
∞∑

s=0
(ys − z)h(s)(q), where z = lim

s→∞
ys = lim

s→∞
(C(q)x)s.

3. α−, β−, γ−duals

In the current section, we determine α-, β-, γ-duals of the spaces c(C(q)) and c0(C(q)). Since the computa-
tion of duals is similar for both the spaces, we shall omit the proof for the space c(C(q)). Before proceeding,
we recall the definitions of α-, β-, γ-duals.

Definition 3.1. The α−, β− and γ−duals of a subset λ ⊂ w are defined by

λα = {ς = (ςs) ∈ w : ςx = (ςsxs) ∈ ℓ1 for all x ∈ λ},

λβ = {ς = (ςs) ∈ w : ςx = (ςsxs) ∈ cs for all x ∈ λ} and
λγ = {ς = (ςs) ∈ w : ςx = (ςsxs) ∈ bs for all x ∈ λ},

respectively.

In the rest of the paper, N will denote the family of all finite subsets ofN0. First we note down certain
lemmas due to Stielglitz and Tietz [29] that are necessary for obtaining the duals:
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Lemma 3.2. A = (ars) ∈ (c0, ℓ1) if and only if

sup
R∈N

 ∞∑
s=0

∣∣∣∣∣∣∣∑r∈R

ars

∣∣∣∣∣∣∣
 < ∞. (9)

Lemma 3.3. A = (ars) ∈ (c0, c) if and only if

sup
r∈N0

r∑
s=0

|ars| < ∞, (10)

lim
r→∞

ars = αs for each s ∈N0. (11)

Lemma 3.4. A = (ars) ∈ (c0, ℓ∞) if and only if (10) holds.

Theorem 3.5. The set d1(q) defined by

d1(q) =

ς = (ςs) ∈ w : sup
R∈N

∞∑
s=0

∣∣∣∣∣∣∣∑r∈R

(−1)r−s Ar−s(q)
qr

c̄r+1(q)(
c̄0(q)

)r−s+1 c̄r(q)
ςr

∣∣∣∣∣∣∣ < ∞


is the α-dual of the spaces c(C(q)) and c0(C(q)).

Proof. Consider the following equality

ςrxr =

r∑
s=0

(−1)r−s Ar−s(q)
qr

c̄r+1(q)(
c̄0(q)

)r−s+1 c̄r(q)
ςrys

= (G(q)y)r (12)

for all r ∈ N0, where the sequence y = (ys) is the C(q)-transform of the sequence x = (xs) and the matrix
G(q) = (1q

rs) is defined by

1
q
rs =

(−1)r−s Ar−s(q)
qr

c̄r+1(q)

(c̄0(q))r−s+1
c̄r(q)

ςr (0 ≤ s ≤ r),

0 (s > r).

We realize on using Eq. (12) that ςx = (ςrxr) ∈ ℓ1 whenever x ∈ c0(C(q)) if and only if G(q)y ∈ ℓ1 whenever
y ∈ c0. Thus we deduce that ς = (ςr) is a sequence in α-dual of c0(C(q)) if and only the matrix C(q) belongs
to the class (c0, ℓ1). Thus we conclude from Lemma 3.2 that

[
c0(C(q))

]α = d1(q). This completes the proof.

Theorem 3.6. Define the sets d2(q), d3(q) and d4(q) by

d2(q) =

ς = (ςr) ∈ w :
∞∑

r=s

(−1)r−s Ar−s(q)
qr

c̄r+1(q)(
c̄0(q)

)r−s+1 c̄r(q)
ςr exists for each s ∈N0

 ,
d3(q) =

ς = (ςr) ∈ w : sup
r∈N0

r∑
s=0

∣∣∣∣∣∣∣
r∑

v=s

(−1)v−s Av−s(q)
qv

c̄v+1(q)(
c̄0(q)

)v−s+1 c̄v(q)
ςv

∣∣∣∣∣∣∣ < ∞
 ,

d4(q) =

ς = (ςr) ∈ w : lim
r→∞

r∑
s=0

r∑
v=s

(−1)r−s Av−s(q)
qv

c̄v+1(q)(
c̄0(q)

)v−s+1 c̄v(q)
ςv exists

 .

Then
[
c0(C(q))

]β = d2(q) ∩ d3(q) and
[
c(C(q))

]β = d2(q) ∩ d3(q) ∩ d4(q).
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Proof. Consider the following equality

r∑
s=0

ςsxs =

r∑
s=0

 s∑
v=0

(−1)s−v As−v(q)
qs

c̄s+1(q)(
c̄0(q)

)s−v+1 c̄s(q)
yv

 ςs

=

r∑
s=0

 r∑
v=s

(−1)v−s Av−s(q)
qv

c̄v+1(q)(
c̄0(q)

)v−s+1 c̄r(q)
ςv

 ys

= (H(q)y)r (13)

for each r ∈ N0, where the sequence y = (ys) is the C(q)-transform of the sequence x = (xs) and the matrix
H(q) = (hq

rs) is defined by

hq
rs =


∑r

v=s(−1)v−s Av−s(q)
qv

c̄v+1(q)

(c̄0(q))v−s+1
c̄r(q)

ςv (0 ≤ s ≤ r),

0 (s > r),

for all r, s ∈ N0. Thus on using Eq. (13), we realize that ςx = (ςrxr) ∈ cs whenever x = (xr) ∈ c0(C(q)) if and
only if H(q)y ∈ c whenever y = (ys) ∈ c0. This yields that ς = (ςr) is a sequence in β-dual of c0(C(q)) if and
only the matrix H(q) belongs to the class (c0, c). This in turn implies on using Lemma 3.3 that

sup
r∈N0

r∑
s=0

∣∣∣hq
rs

∣∣∣ < ∞ and lim
r→∞

hq
rs exists for each s ∈N0.

Thus c0(C(q)) = d2(q) ∩ d3(q). This completes the proof.

Theorem 3.7. The γ-dual of the spaces c(C(q)) and c0(C(q)) is d3(q).

Proof. The proof is similar to the previous theorem except that Lemma 3.4 is employed instead of Lemma
3.3.

4. Matrix mappings

In the present section, we determine necessary and sufficient conditions for a matrix to define mapping
from the spaces c(C(q)) and c0(C(q)) to anyone of the spaces ℓ∞, c, c0, and ℓ1. The following theorem is
fundamental in our investigation.

Theorem 4.1. Let µ be any arbitrary subset of w. Then A = (ars) ∈ (c0(C(q)), µ) (or respectively (c(C(q)), µ)) if and
only if B(r) = (b(r)

ms) ∈ (c0, c) (or respectively (c, c)) for each r ∈ N0, and B = (brs) ∈ (c0, µ) (or respectively (c, µ))
where

b(r)
ms =


0 (s > m),
m∑

v=s
(−1)v−s Av−s(q)

qv
c̄v+1(q)

(c̄0(q))v−s+1
c̄v(q)

arv (0 ≤ s ≤ m),

and

brs =

∞∑
v=s

(−1)v−s Av−s(q)
qv

c̄v+1(q)(
c̄0(q)

)v−s+1 c̄v(q)
brv for all r, s ∈N0. (14)

Proof. The details of the proof are omitted since it is similar to the proof of Theorem 4.1 of [20].
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Before proceeding further, we list certain conditions:

lim
m→∞

b(r)
ms exists for each r, s ∈N0; (15)

sup
m∈N0

∞∑
s=0

∣∣∣b(r)
ms

∣∣∣ < ∞ for each r ∈N0; (16)

lim
m→∞

∞∑
s=0

b(r)
ms exists for each r ∈N0; (17)

lim
r→∞

r∑
s=0

|brs| = βs for each s ∈N0. (18)

Now, using the results presented in the Stielglitz and Tietz [29] together with Theorem 4.1, we obtain the
following results:

Corollary 4.2. The following statements hold:

1. A ∈ (c0(C(q)), ℓ∞) if and only if (15) and (16) hold, and (10) also holds with brs instead of ars.
2. A ∈ (c0(C(q)), c) if and only if (15) and (16) hold, and (10) and (11) also hold with brs instead of ars.
3. A ∈ (c0(C(q)), c0) if and only if (15) and (16) hold, and (10) and (11) with αs = 0 hold with brs instead of ars.
4. A ∈ (c0(C(q)), ℓ1) if and only if (15) and (16) hold, and (9) also holds with brs instead of ars.

Corollary 4.3. The following statements hold:

1. A ∈ (c(C(q)), ℓ∞) if and only if (15), (16) and (17) hold, and (10) also holds with brs instead of ars.
2. A ∈ (c(C(q)), c) if and only if (15), (16), (17) and (18) hold, and (10) and (11) also hold with brs instead of ars.
3. A ∈ (c(C(q)), c) if and only if (15), (16), (17) and (18) with βs = 0 hold, and (10) and (11) also hold with brs

instead of ars.
4. A ∈ (c(C(q)), ℓ1) if and only if (15), (16) and (17) hold, and (9) also holds with brs instead of ars.

We recall a basic lemma due to Başar and Altay [4] that will help in characterizing certain classes of matrix
mappings from the spaces c0(C(q)) and c(C(q)) to any arbitrary space µ.

Lemma 4.4. [4] Letλ andµ be any two sequence spaces, A be an infinite matrix and B be a triangle. Then, A ∈ (λ, µB)
if and only if BA ∈ (λ, µ).

Now, by combining Lemma 4.4 with Corollaries 4.2 and 4.3, we define following classes of matrix mappings:

Corollary 4.5. Let A = (ars) be an infinite matrix and define the matrix C̄(q) = (c̄q
rs) by

c̄q
rs =

r∑
m=0

qm

[r + 1]q
ams, (0 < q < 1) for all r, s ∈N.

Then, the necessary and sufficient conditions that A is in any one of the classes (c0(C(q)),Xq
0), (c0(C(q)),Xq

c ),
(c(C(q)),Xq

0) and (c(C(q)),Xq
c ) is determined from the respective ones in Corollaries 4.2 and 4.3, by replacing the

elements of the matrix A by those of matrix C̄(q), where Xq
0 and Xq

c are q-Cesàro sequence spaces defined by Demiriz
and Şahin [12].

Corollary 4.6. Let A = (ars) be an infinite matrix and define the matrix E = (ers) by

ers =

r∑
m=0

ams, (r, s ∈N0) .

Then, the necessary and sufficient conditions that A is in any one of the classes (c0(C(q)), bs), (c0(C(q)), cs),
(c0(C(q)), cs0), (c(C(q)), bs), (c(C(q)), cs) and (c(C(q)), cs0) is determined from the respective ones in Corollaries
4.2 and 4.3, by replacing the elements of the matrix A by those of the matrix E.
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Corollary 4.7. Let A = (ars) be an infinite matrix and define the matrix F = ( frs) by

frs =

r∑
m=0

f 2
m

fr fr+1
ams, (r, s ∈N0)

where ( fr) are sequence of Fibonacci numbers. Then, the necessary and sufficient conditions that A is in any one of the
classes (c0(C(q)), ℓ∞(F )), (c0(C(q)), c(F )), (c0(C(q)), c0(F )), (c(C(q)), ℓ∞(F )), (c(C(q)), c(F )) and (c(C(q)), c0(F )),
is determined from the respective ones in Corollaries 4.2 and 4.3, by replacing the elements of the matrix A by those
of matrix F , where ℓ∞(F ), c(F ) and c0(F ) are Fibonacci sequence spaces defined by Kara and Başarır [19].

5. Compact operators on the spaces c0(C(q))

Let ς = (ςs) ∈ ω and define a sequence υ = (υs) as

υs =

∞∑
v=s

(−1)v−s Av−s(q)
qv

c̄v+1(q)
(c̄0(q))v−s+1c̄v(q)

ςv

for all s ∈N0.

Lemma 5.1. Let ς = (ςs) ∈
[
c0(C(q))

]β. Then υ = (υs) ∈ ℓ1 and∑
s

ςsxs =
∑

s

υsys (19)

for all x = (xs) ∈ c0(C(q)).

Lemma 5.2. ∥ς∥∗c0(C(q)) =
∑
s
|υs| < ∞ for all ς = (ςs) ∈

[
c0(C(q))

]β.
Proof. Choose ς = (ςs) ∈

[
c0(C(q))

]β. Then, by Lemma 5.1, we have υ = (υs) ∈ ℓ1 and (19) holds. Since
∥x∥c0(C(q)) = ∥y∥c0 holds, we obtain that x ∈ Bc0(C(q)) if and only if y ∈ Bc0 . Hence, we deduce that ∥ς∥∗c0(C(q)) =

sup
x∈Bc0(C(q))

|
∑
s
ςsxs| = sup

y∈Bc0

|
∑
s
υsys| = ∥υ∥∗c0

. From Lemma 1.1, it follows that ∥ς∥∗c0(C(q)) = ∥υ∥
∗
c0
= ∥υ∥ℓ1 =

∑
s
|υs|.

Throughout this section, we use the matrix Ã = (ãrs) defined by an infinite matrix A = (ars) via

ãrs =

∞∑
v=s

(−1)v−s Av−s(q)
qv

c̄v+1(q)
(c̄0(q))v−s+1c̄v(q)

arv

for all r, s ∈N0 under the assumption that the series is convergent.

Lemma 5.3. Let λ ∈ ω and A = (ars) be an infinite matrix. If A ∈ (c0(C(q)), λ), then Ã ∈ (c0, λ) and Ax = Ãy for
all x ∈ c0(C(q)).

Proof. It follows from Lemma 5.1.

Lemma 5.4. ∥LA∥ = ∥A∥(c0(C(q)),µ) = supr∈N0
(
∑

s |ãrs|) < ∞ holds for A ∈ (c0(C(q)), µ), where µ ∈ {c0, c, ℓ∞}.

Lemma 5.5. [24, Theorem 3.7] Let λ ⊃ ψ be a BK-space. Then, the following statements hold.

(a) A ∈ (λ, ℓ∞), then 0 ≤ ∥LA∥χ ≤ lim supr ∥Ar∥
∗

λ.
(b) A ∈ (λ, c0), then ∥LA∥χ = lim supr ∥Ar∥

∗

λ.

(c) If λ has AK or λ = ℓ∞ and A ∈ (λ, c), then
1
2

lim supr ∥Ar−a∥∗λ ≤ ∥LA∥χ ≤ lim supr ∥Ar−a∥∗λ,where a = (as)
and as = lim

r
ars for each s ∈N0.
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Lemma 5.6. [24, Theorem 3.11] Let λ ⊃ ψ be a BK-space. If A ∈ (λ, ℓ1), then

lim
p

sup
N∈Np

∥∥∥∥∥∥∥∑r∈N

Ar

∥∥∥∥∥∥∥
∗

λ

 ≤ ∥LA∥χ ≤ 4 lim
p

sup
N∈Np

∥∥∥∥∥∥∥∑r∈N

Ar

∥∥∥∥∥∥∥
∗

λ


and LA is compact if and only if lim

p

sup
N∈Np

∥
∑

r∈N
Ar∥

∗

λ

 = 0, where Np is the sub-collection of N consisting of subsets

ofN with elements that are greater than p.

Theorem 5.7.

(1) If A ∈ (c0(C(q)), ℓ∞), then 0 ≤ ∥LA∥χ ≤ lim supr
∑

s |ãrs| holds.

(2) If A ∈ (c0(C(q)), c), then 1
2 lim supr

∑
s |ãrs − ãs| ≤ ∥LA∥χ ≤ lim supr

∑
s |ãrs − ãs| holds.

(3) If A ∈ (c0(C(q)), c0), then ∥LA∥χ = lim supr
∑

s |ãrs| holds.

(4) If A ∈ (c0(C(q)), ℓ1), then limp ∥A∥
(p)
(c0(C(q)),ℓ1) ≤ ∥LA∥χ ≤ 4 limp ∥A∥

(p)
(c0(C(q)),ℓ1) holds, where

∥A∥(p)
(c0(C(q)),ℓ1) = sup

N∈Np

∑
s

|

∑
r∈N

ãrs|

 (p ∈N0).

Proof. (1) Let A ∈ (c0(C(q)), ℓ∞). Since the series
∞∑

s=1
arsxs converges for each r ∈N0, we have Ar ∈

[
c0(C(q))

]β.
From Lemma 5.2, we write ∥Ar∥

∗

c0(C(q)) = ∥Ãr∥
∗
c0
= ∥Ãr∥ℓ1 =

(∑
s
|ãrs|

)
for each r ∈ N0. By using Lemma 5.5 (a),

we conclude that 0 ≤ ∥LA∥χ ≤ lim supr (
∑

s |ãrs|) .
(2) Let A ∈ (c0(C(q)), c). By Lemma 5.3, we have Ã ∈ (c0, c). Hence, from Lemma 5.5 (c), we write

1
2

lim sup
r
∥Ãr − ã∥∗c0

≤ ∥LA∥χ ≤ lim sup
r
∥Ãr − ã∥∗c0

,

where ã = (ãs) and ãs = limr ãrs for each s ∈N0. Moreover, Lemma 1.1 implies that ∥Ãr − ã∥∗c0
= ∥Ãr − ã∥ℓ1 =(∑

s
|ãrs − ãs|

)
for each r ∈N0. This completes the proof.

(3) Let A ∈ (c0(C(q)), c0). Since we have ∥Ar∥
∗

c0(C(q)) = ∥Ãr∥
∗
c0
= ∥Ãr∥ℓ1 =

(∑
s
|ãrs|

)
for each r ∈ N0, we conclude

from Lemma 5.5 (b) that ∥LA∥χ = lim supr (
∑

s |ãrs|) .
(4) Let A ∈ (c0(C(q)), ℓ1). By Lemma 5.3, we have Ã ∈ (c0, ℓ1). It follows from Lemma 5.6 that

lim
p

sup
N∈Np

∥∥∥∥∥∥∥∑r∈N

Ãr

∥∥∥∥∥∥∥
∗

c0

 ≤ ∥LA∥χ ≤ 4 lim
p

sup
N∈Np

∥∥∥∥∥∥∥∑r∈N

Ãr

∥∥∥∥∥∥∥
∗

c0

 .
Moreover, Lemma 1.1 implies that ∥

∑
r∈N

Ãr∥
∗
c0
= ∥

∑
r∈N

Ãr∥ℓ1 =

(∑
s
|
∑

r∈N
ãrs|

)
which completes the proof.

As a consequence of this theorem, we have the following corollary.

Corollary 5.8.

(1) LA is compact for A ∈ (c0(C(q)), ℓ∞) if limr
∑

s |ãrs| = 0.
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(2) LA is compact for A ∈ (c0(C(q)), c) if and only if limr
∑

s |ãrs − ãs| = 0.

(3) LA is compact for A ∈ (c0(C(q)), c0) if and only if limr
∑

s |ãrs| = 0.

(4) LA is compact for A ∈ (c0(C(q)), ℓ1) if and only if limp ∥A∥
(p)
(c0(C(q)),ℓ1) = 0,where ∥A∥(p)

(c0(C(q)),ℓ1) = sup
N∈Np

(∑
s
|
∑

r∈N
ãrs|

)
.
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