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Abstract. This paper develops the notion of relative demicompact elements of an algebra with respect to
a Banach subalgebra as a generalization of relative demicompact linear operators acting on Banach spaces.
Drawing on this novel notion, we build a new class of Fredholm perturbation regarding a given Banach
subalgebra B which contains its inessential ideal kB and the set of left Fredholm perturbations suggested in
[6]. The developed class of Fredholm perturbation exhibits that is a two-sided closed ideal of B that is key
in the characterization of the weyl spectrum of elements affiliated with B.

1. Introduction

The concept of relative demicompactness was introduced and delineated by B. Krichen [17] in 2014 as
a generalization of the demicompactness introduced by W. V. Petryshyn [19]. By using this concept, B.
Krichen developed some insightful results on Fredholm perturbations and spectral theories. He defines
in [17] the relative demicompactness as follows: Let X be a Banach space, and ϕ : D(ϕ) ⊂ X −→ X,
φ0 : D(φ0) ⊂ X −→ X be densely defined linear operators with D(ϕ) ⊂ D(φ0). ϕ is said to be φ0-
demicompact (or relative demicompact with respect to φ0), if every bounded sequence (xn)n inD(ϕ), such
that φ0xn − ϕxn converges in X, has a convergent subsequence. We denote this class of φ0-demicompact
linear operators acting on a Banach space X by DCφ0 (X). When φ0 = IX (IX denotes the identity operator
of X), ϕ is simply said to be demicompact andDC(X) stands for the class of demicompact linear operators
acting on X. In Fredholm theory, W. V. Petryshyn and W. Y. Akashi (see [1, 20]) employed the classes
of demicompact and 1-set contraction linear operators (more generally condensing operators) to reach
some interesting results on Fredholm perturbations. For more details on classes of perturbations involving
the demicompactness (or relative demicompactness) concept, the reader may refer to the papers [7, 8, 14].
Provided that the class of Fredholm operators are stable by compact perturbations, the authors of [1, 20] used
condensing operators instead of compacts operators to study perturbation of Fredholm operators. By using
the concept of an inverse modulo compact operator for a given Fredholm operator, these authors established
more perturbation results (see [1, Theorem 2.2]). Further, Considerable efforts have been pointed out by
[7, 8, 17] who refined some stability results involving demicompact (or relatively demicompact) operators.
In particular, these authors deployed the obtained results to study various essential spectra. Of note,
throughout the paper, A stand for a complex unital algebra and (A,+, .) its associated ring, where the two
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operations (+) and (·) stand for the addition and multiplication respectively. We consider (B, ∥ · ∥B) as a
Banach subalgebra of A that encompasses the unit. KB stands for the closed inessential ideal of B that is, for
every a ∈ KB, the spectrum of a is a finite set or a sequence converging to 0. FB is considered as a two-sided
ideal of B satisfying FB ≤ KB and the quotient algebra FB/KB is a radical algebra. Throughout, we denote by
L(X) the Banach algebra of all bounded linear operators acting on X, where X is a Banach space, andK (X)
stands for the two-sided ideal of compact operators of L(X).
The next sets will be deployed in the sequel.

The set of elements in A such that their inverses are in B is denoted and defined as follows:

InvB(A) = {a ∈ A : a−1
∈ B}.

For a ∈ A and s0 ∈ A \ {0}, resB, s0 (a), σB, s0 (a), and rσB, s0
(a) denote, respectively, the resolvent, the spectrum

and the spectral radius sets of the element a relative to B with respect to s0 which are defined, respectively,
by:

resB, s0 (a) = {λ ∈ C : (λs0 − a) ∈ InvB(A)},

σB, s0 (a) = C\resB, s0 (a),

and
rσB, s0

(a) = sup{|λ| : λ ∈ σB, s0 (a)}.

If s0 = 1, we recover the usual sets resB(a), σB(a) and rσB (a) defined in [2].

Definition 1.1. An element a ∈ A is said to be s0-affiliated with B (or relatively affiliated with B with respect
to s0) if there exists λ ∈ C such that (λs0 − a) ∈ InvB(A).
If s0 = 1, a is simply said to be affiliated with B (i.e., (λ − a) ∈ InvB(A)).

Definition 1.2. (i) An element a in A is said to be a Fredholm element relative to KB, if there exist b, b′ ∈ B
and j, j′ ∈ KB such that ab = 1 − j and b′a = 1 − j′ . We denote this set by ΦB.
An element a ∈ A is said to be in Φ0

B, if there exists f ∈ FB such that a + f ∈ InvB(A). Obviously, we have
InvB(A) ⊂ Φ0

B ⊂ ΦB.
(ii) An element a in A is said to be a left (resp. a right) Fredholm element relative to KB, if there exist b ∈ B
and j ∈ KB such that ba = 1 − j (resp. ab = 1 − j ). The set of left (resp. right) Fredholm elements relative to
the subalgebra B is denoted by Φl

B (resp. Φr
B). Observe that ΦB = Φ

r
B ∩Φ

l
B.

A. Ben Ali and N. Moalla defined (see [6, Definition 2.1]) the following sets of Fredholm perturbation:
(i) An element p ∈ B is said to be a Fredholm perturbation, if p+ a ∈ ΦB for all a ∈ ΦB. This set is denoted

by Pr(ΦB).
(ii) An element p ∈ B is said to be a left Fredholm perturbation (resp. right Fredholm perturbation)

if p + a ∈ Φl
B for all a ∈ Φl

B (resp. p + a ∈ Φr
B for all a ∈ Φr

B). We denote those sets by Pr(Φl
B) and Pr(Φr

B)
respectively.

(iii) An element p ∈ B is said to be a Weyl perturbation, if p + a ∈ Φ0
B for all a ∈ Φ0

B. This set is denoted
by Pr(Φ0

B).
Many results relate to the ideal structure resonate with the outstanding closed ideals originating from
operator theory and a number of applied studies. Of note, however, DC(X) couldn’t be an ideal. Yet,
several classes that are not ideals were developed so that to warrant stability results in Fredholm and
perturbation theory. In particular, A. Ben Ali and N. Moalla suggested in [6] an extension of Fredholm
and perturbation theory in a Banach subalgebra B of a given algebra A. These authors have demonstrated
that the sets of Fredholm perturbation Pr(Φl

B), Pr(Φr
B), Pr(ΦB) and Pr(Φ0

B) are two-sided closed ideals of
B. In addition, they deployed the aforesaid ideals to portray the stability of some essential spectra of an
element a ∈ A. So, in this paper, we stretch out these pre-established constructions to a more general setting
which is the relative demicompactness concept on a Banach subalgebra of a given algebra. Our suggestions
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depict a discerning generalization of the classical Fredholm theory. In Section 3, we will suggest a new
larger class of all relative demicompact perturbations regarding to a Banach subalgebra B which is denoted
by Pr

(
DCs0 (B)

)
. Among the main contributions of this paper is to show that Pr

(
DCs0 (B)

)
is a two-sided

closed ideal of B containing KB, the Fredholm spectrum Pr(ΦB) and the left Fredholm spectrum Pr(Φl
B) of an

element a ∈ A as investigated in in [6] while ensuring a refinement of their stability results. Also, a number
of our results is prompted by this set Pr

(
DCs0 (B)

)
that is key in the characterization of the weyl spectrum

of elements affiliated with B. Moreover, we resettle some findings and remarks recapitulating the current
knowledge in the literature (see, for examples [2, 4, 6, 7] and the references therein). As an analogous
example with the Fredholm perturbation theory, it was shown (see [6, Remark 2.2]) that if X is a Banach
space and if we take A = B = L(X), then Pr(ΦB) = F b(X), Pr(Φl

B) = F b
+(X) and Pr(Φr

B) = F b
−

(X), whereF b(X),
F

b
+(X) and F b

−
(X) are two-sided closed ideals ofL(X) (see for instance [18]). The Weyl spectrum WσB(a) and

the left Fredholm spectrum FσB(a) of such element a ∈ A are defined in section 4, respectively, by:

WσB(a) =
⋂
k∈KB

σB(a + k),

FσB(a) = {λ ∈ C : (λ − a) < ΦB}.

Several studies examined the essential spectra of an element a ∈ A (e.g., [2, 4, 6, 14]). It was shown in [6,
Theorem 3.4], that if for some ν ∈ resB(a) ∩ resB(a′ ), (ν − a)−1

− (ν − a′ )−1
∈ Pr(Φl

B), then Fσl
B(a) = Fσl

B(a′ ). In
our paper, this finding is generalized to the larger class Pr

(
DCs0 (B)

)
showing, by Theorem 4.4 in Section

4, consistency if we replace Pr(Φl
B) by Pr

(
DCs0 (B)

)
. So, we use Theorem 4.4 to refine (see Corollary 4.5)

the stability result of the left Fredholm spectrum Fσl
B(·) as presented in [6, Corollary 3.1]. Perturbation

results involving the Gustafson essential spectrum in Fredholm and perturbation theory in a Banach space
are presented in [7]. Notably, Theorem 4.2 and Theorem 4.7 are considered as an extension of Theorem 7
and Theorem 9 in [7], respectively, to the Fredholm and perturbation theories in Banach subalgebra. These
outcomes provided some perturbation findings and some connections between the left Fredholm spectrum
of the sum of two elements in B and the left Fredholm spectrum of each of these elements. They enable a
refinement of the stability result of the left Fredholm spectrum Fσl

B(·). Finally, in [6, Theorem 3.5], it was
shown that if an element t ∈ A is affiliated with B, then the Fredholm spectrum of t as denoted and defined
in [2] by WσB(t) =

⋂
k∈KB

σB(t + k) Can be written in the following form:

WσB(t) =
⋂
a∈ΩB

σB(t + a),

where ΩB = {a = tk + j; k, j ∈ KB}. We give, by Theorem 4.7, a fine description of the Weyl spectrum WσB(·)
showing that [6, Theorem 3.5] remains true if we replace the set ΩB by a larger set SB =

{
a = tk + j; k, j ∈

Pr
(
DC(B)

)}
which is a two-sided ideal of B containing ΩB.

We organize the paper as follows: Section 2 will present some key definitions and results that will be
deployed in the paper. Then, in Section 3, we will show that the set Pr

(
DCs0 (B)

)
is a two-sided closed

ideal of B containing Pr
(
Φl

B

)
which is relevant to set some properties relating to essential spectra. Finally,

in Section 4, we present some perturbation findings of the left Fredholm spectrum and the Weyl spectrum
involving the set Pr

(
DCs0 (B)

)
.

2. Preliminary results

Here, we present our main concepts, notations, and preliminary findings that are deployed in the paper.
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Definition 2.1. [2, Definition 3] Let t ∈ A. An element a ∈ A is called t-bounded if a = tb + c or a = bt + c,
where b, c ∈ B.

Definition 2.2. Let t ∈ A.
(i) if there exist al ∈ B (resp. ar ∈ B) and j ∈ KB such that alt = 1 − j (resp. tar = 1 − j), then al (resp. ar) is

called a left (resp. a right) Fredholm inverse modulo KB.
(ii) An element which is both a left and a right Fredholm inverse of t modulo KB is said a two-sided

Fredholm inverse of t modulo KB.

Remark 2.1. (i) An element t belongs to Φl
B, Φr

B and ΦB if it includes a left, a right and two-sided Fredholm
inverse of t modulo KB, respectively.
(ii) The set Φ0

B can be seen as the set of all elements b ∈ ΦB which have index function identically equal to
zero (see for instance [5]).

Now, some properties presenting a generalization of some established findings in the Banach algebra for
bounded linear operators will be recalled.

Proposition 2.3. [2, Proposition 9] Let t ∈ A. The following statements are equivalent:
(1) t ∈ ΦB.
(2) There exist b, c ∈ B and f , 1 ∈ FB such that tb = 1 − f and ct = 1 − 1.
(3) There exist b ∈ B and p, q ∈ FB such that tb = 1 − p and bt = 1 − q.

Lemma 2.4. [6, Lemma 2.1] i) Let t ∈ Φl
B (resp. t ∈ Φr

B ), then there exists an η > 0 such that for all t′ ∈ B,
with ∥t′∥B < ηwe have t + t′ ∈ Φl

B (resp. t + t′ ∈ Φr
B).

ii) Assume that t ∈ ΦB, then there is an η > 0 such that for all t′ ∈ B satisfying ∥t′∥B < η one has t + t′ ∈ ΦB.
(iii) Assume that t ∈ Φ0

B, then there is an η > 0 such that for all t′ ∈ B satisfying ∥t′∥B < η one has t + t′ ∈ Φ0
B.

Lemma 2.5. [6, Lemma 2.2] (i) If t ∈ ΦB and t′ ∈ Φl
B (resp. t′ ∈ Φr

B), then tt′ ∈ Φl
B (resp. t′ t ∈ Φr

B).
(ii) If t ∈ ΦB ∩ B and t′ ∈ Φl

B (resp. Φr
B), then t′ t ∈ Φl

B (resp. tt′ ∈ Φr
B).

(iii) If t, t′ ∈ ΦB, then tt′ ∈ ΦB.
(iv) If t, t′ ∈ Φ0

B, then tt′ ∈ Φ0
B.

Proposition 2.6. (1) If t ∈ Φl
B and t′ ∈ Φl

B, then tt′ ∈ Φl
B.

(2) If t ∈ Φr
B and t′ ∈ Φr

B, then tt′ ∈ Φr
B.

(3) t ∈ Φl
B ⇔ −t ∈ Φl

B ⇔ tn
∈ Φl

B for all n ∈N.
(4) t ∈ Φr

B ⇔ −t ∈ Φr
B ⇔ tn

∈ Φr
B for all n ∈N.

(5) If tt′ ∈ Φl
B (resp. tt′ ∈ Φr

B), then t′ ∈ Φl
B (resp. t ∈ Φr

B).

Proof. Let prove (1) and (3), then properties (2) and (4) can be done in the same way .
(1) Let t, t′ ∈ Φl

B. Then there exist p, q ∈ B and j, k ∈ KB such that pt = 1 − j and qt′ = 1 − k. It follows that

qptt′ = q(1 − j)t′

= 1 − k − qjt′ .
Thus, we have btt′ = 1 −m, where b = qp ∈ B and m = k + qjt′ ∈ KB, this proves that tt′ ∈ Φl

B.

(3) Obviously, t ∈ Φl
B ⇔ −t ∈ Φl

B. Now, we show that t ∈ Φl
B ⇔ tn

∈ Φl
B for all n ∈ N. Let t ∈ Φl

B. By
induction, it comes from (i) that tn

∈ Φl
B. Conversely, if tn

∈ Φl
B, then there exists p ∈ B and k ∈ KB such that

ptn = 1 − k. Thus, bt = 1 − k, where b = ptn−1
∈ B and k ∈ KB which proves that t ∈ Φl

B.
(5) This property is easily checked by using definition. Q.E.D.
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Remark 2.2. Results of Proposition 2.6 are a generalization of some depicted findings (see [7, Theorem 1]).

The concept of relative demicompactness (or demicompactness in particular) on a Banach algebra will now
be presented. This class is key in refining several established properties investigated in the theory of linear
operators acting on a Banach spaces (see [7]).

Definition 2.7. Let s0 ∈ A. An element t ∈ A is said to be s0-demicompact (or relative demicompact with
respect to s0), if there exist p ∈ B and k ∈ KB such that p(s0 − t) = 1 − k. We denote by DCs0 (B), the class of
s0-demicompact elements of A with respect to B.
When s0 = 1, t is simply said to be demicompact and by DC(B), we denote the class of demicompact
elements of A with respect to B.

Example 2.8. (i) Let t, s0 ∈ A. Obviously, if s0 − t has a left Fredholm inverse modulo KB, then t is s0-
demicompact. This example is often viewed as a generalization of [8, Proposition 2.3].
(ii) If s0 ∈ KB, then each t ∈ InvB(A) is s0-demicompact. Indeed, we have InvB(A) ⊂ Φl

B, then if t ∈ InvB(A)
there exist b ∈ B and j ∈ KB such that bt = 1 − j. Therefore, b′ (s0 − t) = 1 − m wherever b′ = −b ∈ B and
m = bs0 + j ∈ KB which proves that t is s0-demicompact.
(iii) If s0 ∈ InvB(A) and t ∈ A such that s−1

0 t ∈ KB or nilpotent, i.e., there exists n ∈N \ {0} such that (s−1
0 t)n = 0,

then t is s0-demicompact.
(iv) Let X be a real Banach space, and set A = B = L(X) and take KB = K (X). One can easily shake that
K (X) ⊂ DC

(
L(X)

)
. Then, compact operators play a motivating role once study perturbations of Fredholm

operators.

By referring to the usual definition of an element relative demicompact with respect to s0, we can check the
following properties.

Proposition 2.9. Let s0, t ∈ A. Then the following assertions hold.
(i) If s0 ∈ InvB(A), then KB ⊂ DCs0 (B).
(ii) t ∈ DCs0 (B) if, and only if, s0 − t ∈ Φl

B.
(iii)DCs0 (B) + KB ⊂ DCs0 (B).
(iv) Let t ∈ B ∩ InvB(A). Then, t ∈ DCs0 (B) if, and only if, s0t−1

∈ DC(B).

Remark 2.3. (i) An element t ∈ KB cannot be necessarily s0-demicompact when s0 is not invertible, then KB
is strictly included in DCs0 (B). However, DCs0 (B) cannot be an ideal of B in general. Indeed, let X be a
Banach space, take B = L(X) and let T ∈ L(X). Obviously, if Tn is demicompact for all n ∈N \ {0}, thereby T
is demicompact. The converse could not be valid for instance when X is not reflexive and T ∈ DC(X)∩L(X)
which satisfies T2 = IX, then T2 is not demicompact. Therefore, in general, DC

(
L(X)

)
is not an ideal of

L(X).
(ii) Properties of Proposition 2.9 stand valid and we find the analogousness outcomes in Fredholm theory
if we substitute the subalgebra B by L(X), KB byK (X) and Φl

B by Φ+(X), where Φ+(X) stands for the upper
semi-Fredholm operators set from X into X. For instance, it was shown in [8, Theorem 2.6] that if T is a
closed linear operator, then T is s0-demicompact if, and only if, s0 − T ∈ Φ+(X). The assertion (ii) seems to
be the analogous of this theorem relative to a Banach subalgebra B. Although such resemblance, it is not
possible to identify the set Φl

L(X) := {T ∈ L(X) : IX − TlT ∈ K (X) for some Tl ∈ L(X)} with Φ+(X), so we
have just Φl

L(X) ⊊ Φ+(X) (see [12, page. 15]).

Lemma 2.10. Let s0, t ∈ A. If t ∈ DCs0 (B), then there exists τ > 0 such that for all t′ ∈ B, with ∥t′∥B < τ we
have t + t′ ∈ DCs0 (B).

Proof. We have t ∈ DCs0 (B), then there exist p ∈ B and k ∈ KB such that for all t′ ∈ B, we can write

p[s0 − (t + t
′

)] = 1 − k − pt
′

.
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For τ = ∥p∥−1
B , we get ∥pt′∥B < 1 and so, 1 − pt′ ∈ InvB(A). Therefore,

(1 − pt
′

)−1p[s0 − (t + t
′

)] = 1 − (1 − pt
′

)−1k.

Hence, b[s0 − (t + t′ )] = 1 − j, where b = (1 − pt′ )−1p ∈ B and j = (1 − pt′ )−1k ∈ KB. This proves that
t + t′ ∈ DCs0 (B). Q.E.D.

Remark 2.4. From Lemma 2.10, we can easily check thatDCs0 (B) is an open set of B.

Proposition 2.11. 1) Assume that A is commutative. Let n ∈ N \ {0} and t, s0 ∈ A. Then the following
assertions hold.
(i) If s0tn

∈ DCs0 (B), then s0t ∈ DCs0 (B).
(ii) s0t2

∈ DCs0 (B) if, and only if, s0t ∈ DCs0 (B) and −s0t ∈ DCs0 (B).
2) Let t, s0 ∈ A (A not necessarily commutative). Then we have:
(i) s0 − t ∈ DCs0 (B) if, and only if, s0 − tn

∈ DCs0 (B), for all n ∈N \ {0}.

(ii) If t, s0 ∈ B and lim
n→0

(
∥(1 + t − s0)n

∥B

) 1
n
= 0, then there exists n0 ∈N such that tn

∈ DCs0 (B) for all n ≥ n0.

Proof. 1) (i) If s0tn
∈ DC(B), there exist p ∈ B and k ∈ KB such that ps0(1 − tn) = 1 − k.

Then,

ps0

( n−1∑
i=0

ti
)(

1 − t
)
= 1 − k.

Therefore, b(s0 − s0t) = 1 − k, where b = p
( n−1∑

i=0

ti
)
∈ B and k ∈ KB. This shows that s0t ∈ DCs0 (B).

(ii) Using assertion (i) of 1) and according to s0t2
∈ DCs0(B) we get s0t ∈ DCs0 (B). In the other hand, since

s0t2
∈ DCs0(B), there exist b ∈ B and j ∈ KB such that b′ (s0 + s0t) = 1− j, where b′ = b(1− t). This proves that

−s0t ∈ DC(B).
Conversely, if s0t ∈ DCs0 (B) and −s0t ∈ DCs0 (B) there exist b, b′ ∈ B and j, j′ ∈ KB such that{

b(s0 − s0t) = 1 − j
b′ (s0 + s0t) = 1 − j′ .

Then,
b(s0 − s0t)b

′

(s0 − s0t2) = (1 − j)(1 − j
′

)(1 − t).

From which, we infer that
c(s0 − s0t2) = 1 −m,

where c = b(s0 − s0t)b′ ∈ B and m = j + b[ j′ + j(1 − j′ )](1 − t) ∈ KB. This proves that s0t2
∈ DCs0(B).

2) (i) Using Proposition 2.6, we get s0 − t ∈ DC(B)⇔ t ∈ Φl
B ⇔ tn

∈ Φl
B ⇔ s0 − tn

∈ DC(B).

(ii) By dint of lim
n→0

(
∥(1+ t− s0)n

∥B

) 1
n
= 0, there exists m ∈N such that for all n ≥ m we get ∥(1+ t− s0)n

∥B < 1,

thus (s0 − t) ∈ InvB(A) ⊂ Φl
B. Hence, t ∈ DCs0 (B). Q.E.D.

Remark 2.5. The property (ii) of 2) could be perceived of as a generalization of the examined results in
spectral, Fredholm and relative demicompactness theories, exactly, if X is a Banach space, A = B = L(X)
and T ∈ L(X). Recall (see [16]) that TS0 = S0 − T ∈ L(X) is said to be quasi-nilpotent if spr TS0 = 0, where
spr TS0 denotes the spectral radius of TS0 defined by:

spr TS0 = lim
n→0

(
∥Tn

S0
∥X

) 1
n .
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If TS0 is quasi-nilpotent (lim
n→0

(
∥Tn

S0
∥X

) 1
n
= 0), then there exists n0 ∈ N such that ∥(S0 − T)n

∥X < 1. Therefore,

I + t − S0 is invertible which is equivalent to S0 − T ∈ Φ+(X). Hence, by using [8, Theorem 2.6], we deduce
that T is S0-demicompact.

3. Relative demicompactness perturbation in a Banach subalgebra

Here, we bring in the set of relative demicompact perturbations of B denoted by Pr
(
DCs0 (B)

)
and we

show that is a two-sided closed ideal of B containing Pr(Φl
B). The purpose is to achieve some perturbation

results in Section 4.

Definition 3.1. Let s0 ∈ A. An element p ∈ B is called s0-demicompact perturbation if p + t ∈ DCs0 (B) for
all t ∈ DCs0 (B). We denote by Pr

(
DCs0 (B)

)
the set of s0-demicompact perturbations of B. When s0 = 1, t

is simply said to be a demicompact perturbation and by Pr
(
DC(B)

)
, we denote the class of demicompact

perturbations of B.

Remark 3.1. By referring to Proposition 2.9, we can easily show that:

(i) FB ⊂ KB ⊂ Pr
(
DCs0 (B)

)
.

(ii) KB + Pr
(
DCs0 (B)

)
⊂ DCs0 (B).

Example 3.2. (i) Suppose that FB is a left ideal of A and let t ∈ A. An element a ∈ A (see [2, Section 4]) is
said to be t-inessential if a is written as the form a = t j + j′ , where j, j′ ∈ KB (when FB is a right ideal of
A, t-inessential elements have the form jt + j′ ). Then from Remark 3.1, all t-inessential elements of A are
s0-demicompact perturbations of B. In addition, by [2, Note 14], if a ∈ A is t-inessential then a and −a are
s0-demicompact perturbations of B.

(ii) Let X be a Hilbert space, and assume that {Xi}, i ≥ 1, could be a sequence of closed subspaces of X such

that Xi ⊥ X j once i , j, by possessing the condition X = ⊕
∞∑

I=1

Xi. Consider A the algebra of all sequences T =

{Ti}i≥1, wherever {Ti} ∈ L(Xi), for i ≥ 1. Set B =
{
T = {Ti}i≥1 ∈ A : the sequence of norms {∥Ti∥} is bounded

}
.

If we take ∥TB∥ = sup
{
∥Ti∥ : i ≥ 1

}
, then, (B, ∥ · ∥B) is a C∗-algebra (see [2]). Consider the two following sets:

KB =
{
{Ti}i≥1 ∈ B: every Ti belongs toK (Xi), and lim

i→0
∥Ti∥ = 0

}
,

FB =
{
{Ti}i≥1 ∈ A: each Ti has finite-dimensional range, and Ti = 0 nearly at the most a finite number of

indices i
}
.

During this case, FB could be a two-sided ideal of A, and since the closure of FB within the B-norm is KB,
FB/KB becomes a radical algebra. Hence, all operators {Ti}i≥1 of FB or also KB belong to Pr

(
DCs0 (B)

)
.

Proposition 3.3. Let t ∈ A.

(1) If t ∈ ΦB ∩ B and p ∈ Pr
(
DCs0 (B)

)
, then

(i) tp ∈ Pr
(
DCs0 (B)

)
.

(ii) pt ∈ Pr
(
DCs0 (B)

)
.

(2) If t ∈ Φ0
B ∩ B and p ∈ Pr

(
DCs0 (B)

)
, then

(i) tp ∈ DCs0 (B) ∩ Pr
(
DCs0 (B)

)
.

(ii) pt ∈ DCs0 (B) ∩ Pr
(
DCs0 (B)

)
.

(3)
(
Pr
(
DCs0 (B)

)
,+
)

is a subgroup of (B,+).
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Proof. (1) (i) Let t′ ∈ DCs0 (B). We have to show that t′ + tp ∈ DCs0 (B). By using both Proposition 2.3 and
the fact that t ∈ ΦB ∩ B, we deduce the existence of b ∈ B and k, j ∈ FB such that tb = 1 − k and bt = 1 − j. In
addition, since t′ ∈ DCs0 (B) there exist b′ ∈ B and j′ ∈ KB such that b′ (s0 − t′ ) = 1 − j′ .
Furthermore, we can see that

b
′

tb(s0 − t
′

) = b
′

(1 − k)(s0 − t
′

)
= b

′

(s0 − t
′

) − b
′

k(s0 − t
′

)
= 1 − j

′

− b
′

k(s0 − t
′

)
= 1 −m,

where b′ t ∈ B and m ∈ KB. Hence, b(s0 − t′ ) ∈ Φl
B and so, s0 − b(s0 − t′ ) ∈ DCs0 (B).

Moreover, p ∈ Pr
(
DCs0 (B)

)
, then p+ s0 − b(1− t′ ) ∈ DCs0 (B) and it follows that [−p+ b(s0 − t′ )] ∈ Φl

B. By dint
of Proposition 2.6, we have t[−p + b(s0 − t′ )] ∈ Φl

B, so

s0 + tp − tb(1 − t
′

) = tp + t
′

+ k(s0 − t
′

) ∈ DCs0 (B).

This implies that t′ + tp ∈ DCs0 (B), so tp ∈ Pr
(
DC(B)

)
.

(ii) To prove that pt ∈ Pr
(
DCs0 (B)

)
, we can write (s0 − t′ )b ∈ Φl

B. Indeed:

tb
′

(s0 − t
′

)b = t(1 − j
′

)b
= tb − t j

′

b
= 1 − k − t j

′

b
= 1 −m

′

,

where tb′ ∈ B and m′

∈ KB. Therefore, (s0 − t′ )b ∈ Φl
B, so s0 − (s0 − t′ )b ∈ DCs0 (B). Moreover, p ∈ Pr

(
DCs0 (B)

)
,

then p+ s0 − (s0 − t′ )b ∈ DCs0 (B) which implies that [−p+ (s0 − t′ )b] ∈ Φl
B. Thus, by using Proposition 2.6, we

infer that [−p + (s0 − t′ )b]t ∈ Φl
B, so

s0 + pt − (s0 − t
′

)bt = pt + t
′

+ (s0 − t
′

) j ∈ DCs0 (B).

In addition, −(1 − t′ ) j ∈ KB ⊂ Pr
(
DC(B)

)
implies that t′ + pt ∈ DCs0 (B). Hence, pt ∈ Pr

(
DCs0 (B)

)
.

(2) (i) Let t′ ∈ DCs0 (B), we prove that t′ + tp ∈ DCs0 (B). If t ∈ Φ0
B, then there exist a ∈ FB and b ∈ InvB(A)

such that t = a + b. Knowing that b ∈ ΦB ∩ B, it follows that bp ∈ Pr
(
DCs0 (B)

)
and using ap ∈ KB we

deduce, by using Remark 3.1, that tp = ap + bp ∈ DCs0 (B). Moreover, we have bp ∈ Pr
(
DCs0 (B)

)
leads to

t′ + tp = t′ + ap + bp ∈ DCs0 (B), it follows that tp ∈ Pr
(
DCs0 (B)

)
. Thus, tp ∈ DCs0 (B) ∩ Pr

(
DCs0 (B)

)
.

(ii) Let t ∈ Φ0
B ∩ B. We can write that pt = pa + pb, where pa ∈ KB and pb ∈ Pr

(
DCs0 (B)

)
. Proceeding as in (i),

we obtain pt ∈ Pr
(
DCs0 (B)

)
∩DCs0 (B).

(3) Obviously, 0 ∈ Pr
(
DCs0

(B)
)
. Let p, p′ ∈ Pr

(
DCs0

(B)
)

and let t ∈ DCs0
(B). By referring to assertion (1),

we deduce that −p ∈ Pr
(
DCs0

(B)
)
. Furthermore, p + p′ + t ∈ DCs0

(B) because p′ + t ∈ DCs0
(B). Hence,

p + p′ ∈ Pr
(
DCs0

(B)
)
. So, p − p′ ∈ Pr

(
DCs0

(B)
)
, which achieves the proof. Q.E.D.

Corollary 3.4. Pr
(
DCs0 (B)

)
is a two-sided closed ideal of B.

Proof. It’s ample to show that tp ∈ Pr
(
DCs0 (B)

)
for all p ∈ Pr

(
DCs0 (B)

)
and t ∈ B. Let t′ ∈ ΦB ∩ B. By

referring to Lemmas 2.4 and 2.5, we can write t = (t − µt′ ) + µt′ , wherever (t − µt′ ) and µt′ belong to
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ΦB ∩ B. It follows, by using Proposition 3.3, that tp = (t − µt′ )p + µt′p ∈ Pr
(
DCs0 (B)

)
. Similarly, show that

pt ∈ Pr
(
DCs0 (B)

)
. Hence, Pr

(
DCs0 (B)

)
is a two-sided ideal of B. It remains to show that Pr

(
DCs0 (B)

)
is a

closed subset of B. Let t ∈ DCs0 (B) and set (an)n∈N any sequence in Pr
(
DCs0 (B)

)
with ∥an − a∥B → 0. By

virtue of Lemma 2.10, there exists λ > 0 such that for every t′ ∈ B with ∥t′∥B < λ, we have t + t′ ∈ DCs0 (B).
Moreover, there exists m ∈N such that ∥a− am∥B < λ, thus t+ a− am ∈ DC(B). By means of ak ∈ Pr

(
DCs0 (B)

)
,

it follows that t + a ∈ DCs0 (B). Hence, a ∈ Pr
(
DCs0 (B)

)
which achieve the proof. Q.E.D.

Corollary 3.5. FB ⊂ KB ⊂ Pr
(
ΦB

)
⊂ Pr
(
Φl

B

)
⊂ Pr
(
DCs0 (B)

)
.

Proof. In [6, Remark 2.3] the authors showed that Pr
(
ΦB

)
⊂ Pr

(
Φl

B

)
, then it solely remains to show that

Pr
(
Φl

B

)
⊂ Pr
(
DCs0 (B)

)
. To do so, let p ∈ Pr

(
Φl

B

)
and let t ∈ DCs0 (B). Obviously, we have −p + s0 − t ∈ Φl

B this

implies that p + t ∈ DCs0 (B). Hence, p ∈ Pr
(
DCs0 (B)

)
. Q.E.D.

Remark 3.2. In [10], it was shown that F b(X) is a two-sided ideal of L(X), where F b(X) is the upper semi-
Fredholm perturbations set in L(X). If we set A = B = L(X), then Pr(ΦB) = F b(X) (see [6]), this implies
that Pr

(
DCs0 (L(X))

)
include all upper semi-Fredholm perturbations inL(X). Despite, it is worth indicating

that the structure ideal of L(X) is very complex to investigate. Several results used and described on ideal
structure run the prominent closed ideals stemming from operator or Fredholm theories and a few applied
works such as Fredholm perturbations, weakly compact or compact operators and other fields.

4. Some perturbation and stability results

Let B be a Banach subalgebra of a given algebra A. Here, the purpose is to show some perturbation and
essential spectra results for an element t ∈ B by including the demicompactness concept on A with respect
to B and to examine their stability. Foremost, we remind some essential spectra definitions and outcomes.

Definition 4.1. For t ∈ A and s0 ∈ A \ {0}, define the following s0-essential spectra:
ΦB, s0 (t) = {λ ∈ C : (λs0 − t) ∈ ΦB},
Φl

B, s0
(t) = {λ ∈ C : (λs0 − t) ∈ Φl

B},
Φr

B, s0
(t) = {λ ∈ C : (λs0 − t) ∈ Φr

B},
FσB, s0 (t) = {λ ∈ C : (λs0 − t) < ΦB} := C \ΦB, s0 (t),
Fσl

B, s0
(t) = {λ ∈ C : (λs0 − t) < Φl

B} := C \Φl
B, s0

(t),
Fσr

B, s0
(t) = {λ ∈ C : (λs0 − t) < Φr

B} := C \Φr
B, s0

(t),

WσB(t) =
⋂
k∈KB

σB(t + k).

Note that if s0 = 1, we recover the usual definitions of the Fredholm spectrums of t defined in [2, 6] by:
FσB(t) = {λ ∈ C : (λ − t) < ΦB} := C \ΦB(t),
Fσl

B(t) = {λ ∈ C : (λ − t) < Φl
B} := C \Φl

B(t),
Fσr

B(t) = {λ ∈ C : (λ − t) < Φr
B} := C \Φr

B(t).
The sets FσB, s0 (t), Fσl

B, s0
(t) and Fσr

B, s0
(t) are called the Fredholm spectrum, the left Fredholm spectrum and

the right Fredholm spectrum of t relative to s0, respectively.
In addition, for t ∈ A, s0 ∈ A \ {0} define the following sets:

Il
t(A) := {tl ∈ A : tl is a left Fredholm inverse of t};

Γl, s0, t := {a ∈ A : ∀λ ∈ Φl
B, s0

(t), ∃ tλl ∈ Il
λs0−t(A), (atλl) ∈ DC(B)}.
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Theorem 4.2. Let t, t′ ∈ A and s0 ∈ A \ {0}. If for every λ ∈ Φl
B, s0

(t) there exists tλl ∈ Il
λs0−t(A) such that t′ tλl is

demicompact, then
Fσl

B, s0
(t + t′ ) ⊆ Fσl

B, s0
(t).

Proof. Let λ ∈ C \ {0}, and tλl ∈ Il
λs0−t(A), then there exists k ∈ KB such that

tλl(λs0 − t) = 1 − k.

Therefore, we can write

λs0 − t − t
′

= (1 − t
′

tλl)(λs0 − t) − t
′

k. (1)

Suppose that λ < Fσl
B, s0

(t), then (λs0 − t) ∈ Φl
B and since t′ tλl is demicompact, it follows from Proposition

2.11 that 1− t′ tλl ∈ Φ
l
B. Consequently, by using Proposition 2.6, we get (1− t′ tλl )(λs0 − t) ∈ Φl

B. Furthermore,
knowing that t′k ∈ KB ⊂ Pr

(
Φl

B

)
, we deduce from Eq (1) that λs0 − t − t′ ∈ Φl

B. Hence, λ < Fσl
B, s0

(t + t′ ) and
this proves that Fσl

B, s0
(t + t′ ) ⊆ Fσl

B, s0
(t). Q.E.D.

Remark 4.1. Theorem 4.2 could be seen as a generalization of [17, Theorem 3.1] whereby σe1,S (·): the
Gustafson S-essential spectrum relative to Fredholm theory in a Banach space is expanded by Fσl

B, s0
(·): the

left Fredholm spectrum relative to Fredholm theory in a Banach subalgebra B of A.

The object of our study here is to present some perturbation results of the s0-essential spectrum of elements
of the A involving the relative demicompactness concept.

Theorem 4.3. Let A be a Banach alegbra, let t1, t2 ∈ A, and s0 ∈ InvB(A). Assume that resB, s0 (t1)∩resB, s0 (t2) ,
∅. If for some λ ∈ resB, s0 (t1) ∩ resB, s0 (t2), we have (λs0 − t1)−1

− (λs0 − t2)−1
∈ Γl, s−1

0 , −(λs0−t1)−1 , then

Fσl
B, s0

(t1) ⊆ Fσl
B, s0

(t2).

Proof. Let λ ∈ resB, s0 (t1)∩ resB, s0 (t2). Assume, without loss of generality, that λ = 0 (i.e., (−t1)−1
− (−t2)−1

∈

Γl, s−1
0 , t−1

1
). For every µ , 0 and k ∈ {1, 2}, we can write

µs0 − tk = −µs0(µ−1s−1
0 − t−1

k )tk.

Under the assumption 0 ∈ resB, s0 (tk), we infer, by both Proposition 2.6 and Lemma 2.5, that

µ ∈ Φl
B, s0

(tk) if, and only if, µ−1
∈ Φl

B, s−1
0

(t−1
k ).

Basing on (−t1)−1
− (−t2)−1

∈ Γl, s−1
0 , t−1

1
and by using Theorem 4.2, we infer thatΦl

B, s−1
0

(t2) ⊂ Φl
B, s−1

0
(t1). Hence,

Fσl
B, s0

(t1) ⊆ Fσl
B, s0

(t2). Q.E.D.

Theorem 4.4. Let t, t′ , s0 ∈ A. Assume that resB(t) ∩ resB(t′ ) , ∅ and for some µ ∈ resB(t) ∩ resB(t′ ), we have
(µ − t)−1

− (µ − t′ )−1
∈ Pr
(
DCs0 (B)

)
, then

Fσl
B(t) = Fσl

B(t′ ).

Proof. Let λ < Fσl
B(t). Then, (λ − t) ∈ Φl

B, it follows, by referring to [6, Theorem 3.2], that for µ , λ we
have s0 −

(
(µ − λ)−1

− (µ − t)−1
)
∈ DCs0 (B). According to (µ − t)−1

− (µ − t′ )−1
∈ Pr
(
DCs0 (B)

)
, we deduce that

s0 −
(
(µ − λ)−1

− (µ − t′ )−1
)
∈ DCs0 (B). Hence,

(
(µ − λ)−1

− (µ − t′ )−1
)
∈ Φl

B. Again, by using [6, Theorem
3.2], we infer that (λ − t′ ) ∈ Φl

B which implies that Fσl
B(t′ ) ⊂ Fσl

B(t). Following the same reasoning as in this
proof, the opposite inclusion is evidenced. Consequently, Fσl

B(t) = Fσl
B(t′ ). Q.E.D.
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Corollary 4.5. Let t, s0 ∈ A and h = tb + c be a t-bounded element of A, where b, c ∈ Pr
(
DCs0 (B)

)
. Suppose

that rσB

(
(λ − t)−1)h

)
< 1 for some λ ∈ resB(t), then:

Fσl
B(t + h) = Fσl

B(t).

Proof. Set t′ = t+h and (λ−t′ )ℓ = s, where ℓ, s ∈ B. Thus, (λ−t−h)ℓ = s, it follows that (λ−t)
(
1−(λ−t)−1h

)
ℓ = s,

this implies
(
1−(λ−t)−1h

)
ℓ = (λ−t)−1s. According to rσB

(
(λ−t)−1)h

)
< 1, we obtain ℓ =

∑
n≥0

(
(λ−t)−1h

)n
(λ−t)−1s.

Moreover, from (λ − t) ∈ InvB(A), we infer that (λ − t)−1h ∈ B, then we deduce, by using [4, Proposition 7],
that (λ − t′ ) ∈ InvB(A) and (λ − t′ )−1 =

∑
n≥0

(
(λ − t)−1h

)n
(λ − t)−1. Consequently,

(λ − t
′

)−1
− (λ − t)−1 =

∑
n≥1

(
(λ − t)−1h

)n
(λ − t)−1

= (λ − t)−1h [1 +
∑
n≥2

(
(λ − t)−1h]n−1

)
(λ − t)−1.

By virtue of Pr
(
DCs0 (B)

)
is a two-sided ideal of B, we deduce that h, (λ − t)−1h ∈ Pr

(
DCs0 (B)

)
, then

(λ − t′ )−1
− (λ − t)−1

∈ Pr
(
DCs0 (B)

)
. Hence, Theorem 4.4 easily achieves the proof. Q.E.D.

Let λ ∈ C. If tλl is a left Fredholm inverse of λ − t modulo KB, then there exists k ∈ KB such that

tλl (λ − t) = 1 − k.

Therefore, we can write

λ − t − t
′

= (1 − t
′

tλl )(λ − t) − t
′

k. (2)

In the same way, if there exists tλr a right Fredholm inverse of λ − t modulo KB, we can write

λ − t − t
′

= (λ − t)(1 − tλr t
′

) − k
′

t
′

, (3)

where k′ ∈ KB.

Theorem 4.6. Let t, t′ , s0 ∈ A. Assume that the following assertions hold:
(i) For every λ ∈ Φl

B(t+ t′ ) \ {0}, there exists Fλl (resp. Fλr) a left (resp. a right) Fredholm inverse of (λ− t− t′ )
modulo KB such that −λ−1tt′Fλl (resp. −λ−1Fλrtt′) is demicompact.
(ii) For every λ ∈ Φl

B(t+ t′ )\ {0}, there exists Gλl (resp. Gλr) a left (resp. a right) Fredholm inverse of (λ− t− t′ )
modulo KB such that −λ−1t′ tGλl (resp. −λ−1Gλrt

′ t) is demicompact.
Then we have (

Fσl
B(t) ∪ Fσl

B(t′ )
)
\ {0} ⊆ Fσl

B(t + t′ ) \ {0}.

Proof. Set α ∈ C \ {0}. Assume that k ∈ KB such that Fαl(α − t − t′ ) = 1 − k, then we can write

(α − t)(α − t
′

) = α(α − t − t
′

) + tt′

= α(α − t − t
′

) + tt′Fαl(α − t − t
′

) + tt′k,

which implies that

(α − t)(α − t
′

) = α(1 + α−1tt′Fαl)(α − t − t
′

) + tt
′

k. (4)

Similarly,, we have

(α − t
′

)(α − t) = α(1 + α−1t
′

tFαl)(α − t − t
′

) + t
′

tk. (5)
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Now assume that k′ ∈ KB such that (α − t − t′ )Fαr = 1 − k′ , then we can write

(α − t)(α − t
′

) = α(α − t − t
′

)(1 + α−1Fαrtt′) + k
′

tt′, (6)

and

(α − t
′

)(α − t) = α(α − t − t
′

)(1 + α−1Fαrt
′

t) + k
′

t
′

t. (7)

Furthermore, if α ∈ Φl
B, (t+t′ )

\{0}, we deduce from the assumptions of this theorem that 1+α−1tt′Fαl ∈ Φ
l
B and

1+α−1t′ tGαl ∈ Φ
l
B. Then, it follows, by using both Proposition 2.6, Eq. (4) and Eq. (5), that (α− t)(α− t′ ) ∈ Φl

B
and (α − t′ )(α − t) ∈ Φl

B, which implies that t ∈ [Φl
B(t) ∩ Φl

B(t′ )] \ {0}. For the rest of the other cases, arguing
as in this proof using the same arguments by replacing Eq. (4) by Eq. (6) and Eq. (5) by Eq. (7). Q.E.D. Le

spectre essentiel de Weyl d’un ment t ∈ A affili B not WσB(t) est dfinit par WσB(t) =
⋂
k∈KB

σB(t + k).

Theorem 4.7. Let t ∈ A. If t is affiliated with B, then WσB(t) =
⋂
a∈ΩB

σB(t + a),

where ΩB =
{
a = tk + j; k, j ∈ Pr

(
DCs0 (B)

)}
.

Proof. LetM =
⋂
a∈ΩB

σB(t + a). Clearly, we have KB ⊂ Pr
(
DCs0 (B)

)
⊂ ΩB, thusM ⊂ WσB(t). Reciprocally,

assume that a = tk + j ∈ ΩB such that (λ − t − a) ∈ InvB(A) ⊂ Φ0
B. Then, by referring to [2, Theorem 16], we

deduce that (λ − t) ∈ Φ0
B and so [2, Theorem 12] leads to λ < WσB(t), which achieves the reverse inclusion.

Q.E.D.

Remark 4.2. (i) Obviously, we can prove that ΩB is a two-sided ideal of B.

(ii) IfD ⊂ B such that Pr
(
DCs0 (B)

)
⊆ D ⊆ ΩB, we deduce that

WσB(t) =
⋂
a∈D

σB(t + a).

Question: It would be interesting to study the stability of the Gustafson spectrum coming from an
ambiguity of the continuity of the index i in Φl

B(t), where t ∈ A. Here, JJ. Grobler, in [13] suggests a
worthwhile approach to establish the abstract index theory of Fredholm elements in the algebra. He proves
that the continuity of the index i in Φ(A, I), where I is a proper ideal of A and Φ(A, I) being the set of all
Fredholm elements relative to I. Nonetheless, when it comes to study the stability of other essential spectra,
there is a need to identify the additional or sufficient conditions so that to ensure the continuity of the index
i in Φl

B(t).
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