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Abstract. In complex two-plane Grassmannians G2(Cm+2) = SU2+m/S(U2·Um), it is known that a real hyper-
surface satisfying the condition (L̂(k)

ξ Rξ)Y = (LξRξ)Y is locally congruent to an open part of a tube around a
totally geodesic G2(Cm+1) in G2(Cm+2). In this paper, as an abient space, we consider a complex hyperbolic
two-plane Grassmannian SU2,m/S(U2·Um) and give a complete classification of Hopf real hypersurfaces in
SU2,m/S(U2·Um) with the above condition.

1. Introduction

For a real hypersurface with parallel symmetric tensor, many differential geometers studied in complex
projective spaces or in quaternionic projective spaces([6, 11, 12]), which are Hermitian symmetric spaces of
rank 1. By means of Hopf hypersurfaces, Kimura([7]) asserted that there do not exist any real hypersurfaces
with parallel Ricci tensor, that is ∇S = 0, where S denotes the Ricci tensor of a Hopf hypersurface M in
complex projective spaces.

From a different point of view, it is interesting to consider a Hermitian symmetric space of rank 2 with
certain conditions. For instance, there are some results of parallel structure Jacobi operator(for more detail,
see [4, 5]). A complex two-plane Grassmannian G2(Cm+2) is a typical example of a symmetric space of
compact type.

When we think about the Reeb vector field ξ in the expression of the curvature tensor R for a real
hypersurface M in G2(Cm+2), the structure Jacobi operator Rξ can be defined as

Rξ(X) = R(X, ξ)ξ,

for any tangent vector field X on M.
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Instead of the Levi-Civita connection for real hypersurfaces in Kähler manifolds, let us consider another
new connection named generalized Tanaka-Webster connection (in short, say the GTW connection) ∇̂(k) for
a non-zero real number k ([8]). This connection ∇̂(k) can be regarded as a natural extension of Tanno’s
generalized Tanaka-Webster connection ∇̂ for contact metric manifolds. In fact, Tanno([17]) introduced the
generalized Tanaka-Webster connection ∇̂ for contact Riemannian manifolds using the canonical connection
on a nondegenerate, integrable CR manifold.

On the other hand, the original Tanaka-Webster connection([16, 18]) is given as a unique affine connection
on a non-degenerate, pseudo-Hermitian CR manifold associated with the almost contact structure. In
particular, if a real hypersurface in a Kähler manifold satisfies ϕA + Aϕ = 2kϕ (k , 0), then the GTW
connection ∇̂(k) coincides with the Tanaka-Webster connection.

Related to GTW connection, according to Jeong, Pak and Suh([2, 3]), the GTW Lie derivative was defined
by

L̂
(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X,

where ∇̂(k)
X Y = ∇XY + 1(ϕAX,Y)ξ − η(Y)ϕAX − kη(X)ϕY, k ∈ R \ {0}.

As a previous result, using the GTW Lie derivative and the Lie derivative, we want to consider a
condition that the GTW Reeb Lie derivative of the structure Jacobi operator coincides with the Reeb Lie derivative,
that is,

(L̂(k)
ξ Rξ)Y = (LξRξ)Y,

for any tangent vector field Y on a real hypersurface of G2(Cm+2). Using the above condition, Pak, Kim and
Suh([10]) proved following :

Theorem 1.1. Let M be a connected orientable Hopf hypersurface in a complex two-plane Grassmannian G2(Cm+2),
m ≥ 3. If the GTW Reeb Lie derivative of the structure Jacobi operator coincides with the Reeb Lie derivative and
the Reeb curvature is non-vanishing constant along the Reeb vector field, then M is an open part of a tube around a
totally geodesic G2(Cm+1) in G2(Cm+2).

As an ambient space, the complex hyperbolic two-plane Grassmannian consists of all complex two-
dimensional linear subspaces in Cm+2

1 . This is a Riemannian symmetric space of noncompact. Especially,
it is a irreducible Riemannian manifold which has both a Kähler structure J and a quaternionic Kähler
structure J. Then, naturally we could consider two geometric conditions for a hypersurface M in a
complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um), namely, that the 1-dimensional distribution
[ξ] = Span{ξ} and the 3-dimensional distribution Q⊥ = Span{ξ1, ξ2, ξ3} are both invariant under the shape
operator A of M([1]).

Using above geometric conditions, Berndt and Suh([1]) gave a classification theorem as follows :

Theorem 1.2. Let M be a connected hypersurface in SU2,m/S(U2·Um), m ≥ 2. Then the maximal complex subbundle
C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape operator of M if and
only if M is congruent to an open part of one of the following hypersurfaces :

(A) a tube around a totally geodesic SU2,m−1/S(U2Um−1) in SU2,m/S(U2Um) ;
(B) a tube around a totally geodesicHHn in SU2,2n/S(U2U2n), m = 2n ;
(C) a horosphere in SU2,m/S(U2Um) whose center at infinity is singular ;
or the following exceptional case holds :
(D) The normal bundle νM of M consists of singular tangent vectors of type JX ⊥ JX. Moreover, M has at

least four distinct principal curvatures, three of which are given by

α =
√

2 , γ = 0 , λ =
1
√

2



E. Pak, G. J. Kim / Filomat 37:3 (2023), 915–924 917

with corresponding principal curvature spaces

Tα = TM ⊖ (C ∩ Q) , Tγ = J(TM ⊖ Q) , Tλ ⊂ C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then we have Tµ ⊂ C ∩ Q ∩ JQ, JTµ ⊂ Tλ and
JTµ ⊂ Tλ.

Now in this paper let us consider a real hypersurface M in SU2,m/S(U2·Um) with (L̂(k)
ξ Rξ)Y = (LξRξ)Y for

any vector field Y on M, that is, the GTW Reeb Lie derivative of the structure Jacobi operator coincides with
the Reeb Lie derivative. Then by virtue of Theorem 1.2, we can assert the following :

Theorem 1.3. Let M be a Hopf hypersurface in a complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um) ,
m ≥ 3. If the GTW Reeb Lie derivative of the structure Jacobi operator coincides with the Reeb Lie derivative and the
Reeb curvature is non-vanishing constant along the Reeb vector field, then M is locally congruent to an open part of a
tube around some totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or a horosphere whose center at infinity
with JX∈JX is singular.

In section 2, we will give some basic formulas which will be widely used in SU2,m/S(U2 ·Um) given by
[15]. Related to the structure Jacobi operator in section 3, we will introduce basic equations and prove the
two key lemmas which will be used in the proof of our Theorem 1.3.

By virtue of these two lemmas in section 3, we can consider two cases, that is, the Reeb vector field ξ
either belongs to Q or Q⊥. We will treat each case in sections 4 and 5 respectively, which give a complete
proof of our Theorem 1.3.

2. Basic Equations

Let M be a real hypersurface in SU2,m/S(U2·Um), that is, a submanifold in SU2,m/S(U2 ·Um) with real
codimension one. The induced Riemannian metric on M will also be denoted by 1, and ∇ denotes the
Levi Civita covariant derivative of (M, 1). We denote by C and Q the maximal complex and quaternionic
subbundle of the tangent bundle TM of M, respectively. Now let us put

JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N

for any tangent vector field X of a real hypersurface M in SU2,m/S(U2·Um), where ϕX denotes the tangential
component of JX and N a unit normal vector field of M in SU2,m/S(U2·Um).

From the Kähler structure J of SU2,m/S(U2·Um) there exists an almost contact metric structure (ϕ, ξ, η, 1)
induced on M in such a way that

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, and η(X) = 1(X, ξ)

for any vector field X on M and ξ = −JN.
If M is orientable, then the vector field ξ is globally defined and said to be the induced Reeb vector field

on M. Furthermore, let J1, J2, J3 be a canonical local basis of J. Then each Jν induces a local almost contact
metric structure (ϕν, ξν, ην, 1), ν = 1, 2, 3, on M. Locally, C is the orthogonal complement in TM of the real
span of ξ, and Q the orthogonal complement in TM of the real span of {ξ1, ξ2, ξ3}.

Furthermore, let {J1, J2, J3} be a canonical local basis of J. Then the quaternionic Kähler structure Jν of
SU2,m/S(U2·Um), together with the condition

Jν Jν+1 = Jν+2 = −Jν+1 Jν

in section 1, induces an almost contact metric 3-structure (ϕν, ξν, ην, 1) on M as follows :

ϕ2
νX = −X + ην(X)ξν, ϕνξν = 0, ην(ξν) = 1
ϕν+1ξν = −ξν+2, ϕνξν+1 = ξν+2,

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν,
ϕν+1ϕνX = −ϕν+2X + ην(X)ξν+1
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for any vector field X tangent to M. The tangential and normal component of the commuting identity
JJνX = Jν JX give

ϕϕνX − ϕνϕX = ην(X)ξ − η(X)ξν and ην(ϕX) = η(ϕνX). (1)

The last equation implies ϕνξ = ϕξν. The tangential and normal component of Jν Jν+1X = Jν+2X = −Jν+1 JνX
give

ϕνϕν+1X − ην+1(X)ξν = ϕν+2X = −ϕν+1ϕνX + ην(X)ξν+1

and

ην(ϕν+1X) = ην+2(X) = −ην+1(ϕνX).

Putting X = ξν and X = ξν+1 into the first one of these two equations yields ϕν+2ξν = ξν+1 and ϕν+2ξν+1 =
−ξν, respectively. Using the Gauss and Weingarten formulas, the tangential and normal component of the
Kähler condition (∇̄X J)Y = 0 give (∇Xϕ)Y = η(Y)AX− 1(AX,Y)ξ and (∇Xη)Y = 1(ϕAX,Y). The last equation
implies ∇Xξ = ϕAX. By the expression of the curvature tensor (see [1]), we have the equation of Gauss([15])
as follows :

R(X,Y)Z = −
1
2

[
1(Y,Z)X − 1(X,Z)Y + 1(ϕY,Z)ϕX − 1(ϕX,Z)ϕY − 21(ϕX,Y)ϕZ

+

3∑
ν=1

{
1(ϕνY,Z)ϕνX − 1(ϕνX,Z)ϕνY − 21(ϕνX,Y)ϕνZ

}
+

3∑
ν=1

{
1(ϕνϕY,Z)ϕνϕX − 1(ϕνϕX,Z)ϕνϕY

}
−

3∑
ν=1

{
η(Y)ην(Z)ϕνϕX − η(X)ην(Z)ϕνϕY

}
−

3∑
ν=1

{
η(X)1(ϕνϕY,Z) − η(Y)1(ϕνϕX,Z)

}
ξν

]
+ 1(AY,Z)AX − 1(AX,Z)AY

for any vector fields X,Y, and Z on M. From now on, unless otherwise stated, we will use these basic
equations as stated above frequently without mention it.

3. Key Lemmas

In this section, together with some conditions, we give some important lemmas which will be used in
the proof of our Theorem 1.3.

First, using the structure Jacobi operator given in the introduction, structure Jacobi operator is given by

RξX = −
1
2

[
X − η(X)ξ −

3∑
ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν + 31(ϕνX, ξ)ϕνξ + ην(ξ)ϕνϕX

}]
+ αAX − α2η(X)ξ,

(2)

for any tangent field X on M.
In [2], they defined the GTW Lie derivative as follows:

L̂
(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X,

where ∇̂(k)
X Y = ∇XY + F(k)

X Y, F(k)
X Y = 1(ϕAX,Y)ξ − η(Y)ϕAX − kη(X)ϕY. The operator F(k)

X Y said to be the
generalized Tanaka-Webster operator (in short, GTW operator). Putting X = ξ and Y = ξ, the GTW operator is
written as

F(k)
ξ Y = −kϕY and F(k)

X ξ = −ϕAX, respectively. (3)
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For an (1-1) type tensor Rξ, this condition (L̂(k)
X Rξ)Y = (LXRξ)Y is equivalent to

F(k)
X (RξY) − F(k)

RξY
X − RξF

(k)
X Y + RξF

(k)
Y X = 0. (4)

Putting X = ξ in (4), we get

−kϕRξY + ϕARξY + kRξϕY − RξϕAY = 0. (5)

Since Rξ is a symmetric tensor field, taking the transpose part of (5), we have

kRξϕY − RξAϕY − kϕRξY + AϕRξY = 0. (6)

Subtracting (6) from (5), we obtain

(ϕA − Aϕ)RξY = Rξ(ϕA − Aϕ)Y. (7)

Therefore, this condition that the GTW Reeb Lie derivative of the structure Jacobi operator coincides with
the Reeb Lie derivative has a geometric meaning such that the operator (ϕA − Aϕ) commutes with the
structure Jacobi operator Rξ.

Putting Y = ξ in (4) and using (3), it is replaced by

Rξ(ϕAX) − kRξ(ϕX) = 0. (8)

By taking the symmetric part on (8), we get

−AϕRξX + kϕRξX = 0.

By using these equations, we can give two lemmas as follows:

Lemma 3.1. Let M be a Hopf hypersurface M in SU2,m/S(U2·Um). If the GTW Reeb Lie derivative of the structure
Jacobi operator coincides with the Reeb Lie derivative of this operator and the principal curvature α is constant along
the direction of the Reeb vector field ξ, then the Reeb vector field ξ belongs to the distributionQ or the distributionQ⊥

Proof. Suppose ξ = η(X0)X0 + η1(ξ1)ξ1, for some unit vector fields X0 ∈ Q and ξ1 ∈ Q
⊥.

If α = 0, then ξ ∈ Q or ξ ∈ Q⊥, which is proved by the equation([13]) gradα = (ξα)ξ − 2
∑3
ν=1 ην(ξ)ϕξν.

Now let us consider the other case α , 0.
Putting X = ξ1 into (2) and using Aξ1 = αξ1, we have

Rξ(ξ1) = α2ξ1 − α
2η(ξ1)ξ. (9)

Replacing X = ϕξ1 into (2), (2) becomes

Rξ(ϕξ1) = (α2
− 4η2(X0))ϕ1ξ. (10)

Putting X = ξ into (4) and using (3), (2.6) is written as

−kϕRξY + ϕARξY + kRξ(ϕY) − Rξ(ϕAY) = 0.

Substituting of Y = ξ1 in the above equation and using (9), (10), it becomes

4(α − k)η2(X0)ϕ1ξ = 0. (11)

Taking the inner product of (11) with ϕ1ξ, we get

4(α − k)η4(X0) = 0. (12)

This equation induces that k = α or η4(X0) = 0. Therefore, it completes the proof of our Lemma.
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In next section, we will give a complete proof of our Theorem 1.3. In order to do this, first we consider the
case that ξ ∈ Q⊥. Without loss of generosity, we may put ξ = ξ1.

Lemma 3.2. Let M be a Hopf hypersurface in SU2,m/S(U2·Um) with non-vanishing Reeb curvature. If the GTW
Reeb Lie derivative of the structure Jacobi operator coincides with the Reeb Lie derivative of this operator and the Reeb
vector field ξ is belong to the distribution Q⊥, then the shape operator A commutes with the structure tensor ϕ.

Proof. Putting ξ = ξ1 in (2), we get

RξX = −
1
2

X +
1
2
η(X)ξ +

1
2
ϕ1ϕX + αAX − α2η(X)ξ − η2(X)ξ2 − η3(X)ξ3. (13)

Let us replace X with AX in (13), it is written as

RξAX = −
1
2

AX +
1
2
αη(X)ξ +

1
2
ϕ1ϕAX + αA2X − α3η(X)ξ − η2(AX)ξ2 − η3(AX)ξ3. (14)

And applying the shape operator A on (13), it follows

ARξX = −
1
2

AX +
1
2
αη(X)ξ +

1
2

Aϕ1ϕX + αA2X − α3η(X)ξ − η2(X)Aξ2 − η3(X)Aξ3. (15)

On the other hand, applying the structure tensor field ϕ to the equation (1.8) in [9], we get

AX = αη(X)ξ + 2η2(AX)ξ2 + 2η3(AX)ξ3 − ϕϕ1AX. (16)

Taking the symmetric part of (16), we obtain

AX = αη(X)ξ + 2η2(X)Aξ2 + 2η3(X)Aξ3 − Aϕ1ϕX. (17)

Putting ν = 1 in the equation (1), it becomes

ϕϕ1X = ϕ1ϕX. (18)

Subtracting (15) from (14), together with (16) and (17), we have

RξAX = ARξX. (19)

From (19) and putting Y = X, (2.6) is written as

A(Rξϕ − ϕRξ)X = (Rξϕ − ϕRξ)AX. (20)

By inserting X = ϕX in (13), we have

RξϕX = −
1
2
ϕX +

1
2
ϕ1ϕ

2X + αAϕX − η2(ϕX)ξ2 − η3(ϕX)ξ3. (21)

When we apply the structure tensor field ϕ to (13), we get

ϕRξX = −
1
2
ϕX +

1
2
ϕϕ1ϕX + αϕAX + η2(X)ξ3 − η3(X)ξ2. (22)

Subtracting (22) from (21), we obtain

(Rξϕ − ϕRξ)X = α(Aϕ − ϕA)X. (23)

From this, using the equation (23), the equivalent condition of (20) is this one as

αA(Aϕ − ϕA)X = α(Aϕ − ϕA)AX. (24)
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By our assumption α , 0, the above equation can be replaced by

A(Aϕ − ϕA)X = (Aϕ − ϕA)AX. (25)

Note that two tensors Aϕ − ϕA and A are symmetric each other, where the structure tensor ϕ is skew-
symmetric. Because of (25), using the method of simultaneously diagonalization, there is a common basis
{ei | i = 1, ..., 4m − 1} for these tensors such that

Aei = λiei (26)

and

(Aϕ − ϕA)ei = γiei. (27)

Consequently, using (26), (27) becomes

γiei = Aϕei − ϕAei = Aϕei − λiϕei. (28)

Taking the inner product with ei, we get γi = 0.
Since the eigenvalue γi vanishes for all i, from (27) we conclude that

Aϕ − ϕA = 0. (29)

Therefore, we proved this lemma.

4. The case: ξ ∈ Q⊥

Let us consider a Hopf hypersurface M in SU2,m/S(U2·Um) with (L̂(k)
ξ Rξ)Y = (LξRξ)Y.

By Lemma 3.1 in the section 3, we can conclude that the Reeb vector field ξ in M belongs either to the
distribution Q or Q⊥.
Now, we check the first case ξ ∈ Q⊥ in our consideration.

Theorem 1.2 and Lemma 3.2 assert that if ξ ∈ Q⊥, then M is locally congruent to the model space of TA

orHA. We have to check if the model spaces of TA andHA satisfy the condition (L̂(k)
ξ Rξ)Y = (LξRξ)Y or not

respectively.

Proposition 4.1. Let M be a connected real hypersurface in a complex hyperbolic two-plane Grassamnnian SU2,m/
S(U2Um), m ≥ 3. Assume that the maximal complex subbundle C of TM and the maximal quaternionic subbundle Q
of TM are both invariant under the shape operator of M. If JN ∈ JN, then one of the following statements holds :

(TA) M has exactly four distinct constant principal curvatures

α = 2 coth(2r), β = coth(r), λ1 = tanh(r), λ2 = 0,

and the corresponding principal curvature spaces are

Tα = TM ⊖ C, Tβ = C ⊖ Q, Tλ1 = E−1, Tλ2 = E+1.

The principal curvature spaces Tλ1 and Tλ2 are complex (with respect to J) and totally complex (with respect to
J).

(HA) M has exactly three distinct constant principal curvatures

α = 2, β = 1, λ = 0

with corresponding principal curvature spaces

Tα = TM ⊖ C, Tβ = (C ⊖ Q) ⊕ E−1, Tλ = E+1.

Here, E+1 and E−1 are the eigenbundles of ϕϕ1|Q with respect to the eigenvaleus +1 and −1, respectively.
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First, we check the TA-case by using information of Proposition 4.1. Putting X = ξ in (4), we get the
equivalent condition of (L̂(k)

ξ Rξ)Y = (LξRξ)Y as follows :

−kϕRξY + ϕARξY + kRξϕY − RξϕAY = 0. (30)

On the other hand, since ξ in Q⊥, putting ξ = ξ1 into (2), we get

RξX = −
1
2

X +
1
2
η(X)ξ +

1
2
ϕ1ϕX − η2(X)ξ2 − η3(X)ξ3 + αAX − α2η(X)ξ. (31)

Putting X = ϕX into (31), we get

RξϕX = −
1
2
ϕX − η2(ϕX)ξ2 − η3(ϕX)ξ3 −

1
2
ϕ1X +

1
2
η(X)ϕ1ξ + αAϕX. (32)

So we calculate the structure Jacobi operator for all eigenspaces in TA :

RξX =


0, if X ∈ Tα
(αβ − 1)ξν, if X = ξν ∈ Tβ
αλ1X − X, if X ∈ Tλ1

αλ2X, if X ∈ Tλ2 .

(33)

and

RξϕX =


0, if X ∈ Tα
−(αβ − 1)ξ3, if X = ξ2 ∈ Tβ
(αβ − 1)ξ2, if X = ξ3 ∈ Tβ
−ϕX + αλ1ϕX, if X ∈ Tλ1

αλ2
2ϕX, if X ∈ Tλ2 .

(34)

Using (30) and (31), we get the following result :

−kϕ(RξY) + ϕA(RξY) + RξkϕY − RξϕAY =


0, if X ∈ Tα
0, if X ∈ Tβ
0, if X ∈ Tλ
0, if X ∈ Tµ.

(35)

Similarly, when we consider theHA-case, the model space ofHA also satisfies the condition (L̂(k)
ξ Rξ)Y =

(LξRξ)Y. Therefore, we can assert that if ξ inQ⊥, then M is locally congruent to an open part of a tube around
some totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or a horosphere whose center at infinity with
JX∈JX is singular. □

5. The case: ξ ∈ Q

If the Reeb vector field ξ ∈ Q, due to [14], we can assert that M is locally congruent to the model space
of TB orHB or E. It remains whether TB orHB or E satisfies this condition (L̂(k)

X Rξ)Y = (LXRξ)Y. Also, by
using information of these spaces in Proposition 5.1, we can check this problem.

Proposition 5.1. Let M be a connected hypersurface in SU2,m/S(U2Um), m ≥ 3. Assume that the maximal complex
subbundle C of TM and the maximal quaternionic subbundle Q of TM are both invariant under the shape operator of
M. If JN ⊥ JN, then one of the following statements holds :
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(TB) M has five (four for r =
√

2tanh−1(1/
√

3) in which case α = λ2) distinct constant principal curvatures

α =
√

2 tanh(
√

2r), β =
√

2 coth(
√

2r), γ = 0,

λ1 =
1
√

2
tanh(

1
√

2
r), λ2 =

1
√

2
coth(

1
√

2
r),

and the corresponding principal curvature spaces are

Tα = TM ⊖ C, Tβ = TM ⊖ Q, Tγ = J(TM ⊖ Q) = JTβ.

The principal curvature spaces Tλ1 and Tλ2 are invariant under J and are mapped onto each other by J. In
particular, the quaternionic dimension of SU2,m/S(U2Um) must be even.

(HB) M has exactly three distinct constant principal curvatures

α = β =
√

2, γ = 0, λ =
1
√

2

with corresponding principal curvature spaces

Tα = TM ⊖ (C ∩ Q), Tγ = J(TM ⊖ Q), Tλ = C ∩ Q ∩ JQ.

(E) M has at least four distinct principal curvatures, three of which are given by

α = β =
√

2, γ = 0, λ =
1
√

2

with corresponding principal curvature spaces

Tα = TM ⊖ (C ∩ Q), Tγ = J(TM ⊖ Q), Tλ ⊂ C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then JTµ ⊂ Tλ and JTµ ⊂ Tλ. Thus, the
corresponding multiplicities are

m(α) = 4, m(γ) = 3, m(λ), m(µ).

We suppose that these spaces TB, HB and E satisfy (L̂(k)
ξ Rξ)Y = (LξRξ)Y. Then, as an equivalent

condition, these spaces must satisfy

−kϕ(RξY) + ϕA(RξY) + RξkϕY − RξϕAY = 0. (36)

Since ξ is belong to Q, the structure Jacobi operator in SU2,m/S(U2·Um) can be replaced as follows :

RξX = −
1
2

[
X − η(X)ξ −

3∑
ν=1

{
31(ϕνX, ξ)ϕνξ

}]
+ αAX − α2η(X)ξ. (37)

Applying Y = ϕ1ξ into (36) and using (37), we get

−k(
3
2
− αβ)ξ1 = 0. (38)

But eigenvalues of each case in Proposition 5.1 do not satisfy above equation, which gives a contradiction.
So we can assert that a real hypersurface cannot be a space of TB,HB and E.

Summing up these assertions, we have given a complete proof of our Theorem 1.3 in the introduction.
□
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