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Abstract. In the present research article, we construct a new family of summation-integral type hybrid
operators in terms of shape parameter @ € [0,1]. Further, basic estimates, rate of convergence and the
order of approximation with the aid of Korovkin theorem and modulus of smoothness are investigated.
Moreover, numer4ical simulation and graphical approximations are studied. For these sequences of positive
linear operators, we study the local approximation results using Peetre’s K-functional, Lipschitz class and

modulus of smoothness of second order. Next, we obtain the approximation results in weighted space.
Lastly, A-statistical-approximation results are presented.

1. Introduction

The theory of linear positive operators deals with question that arise in the approximate representation
of an arbitrary function by the simplest analytical expedients possible. Operator theory is a growing and
fascinating field of research of approximation theory for the last two decades with the advent of computer.
Several Mathematicians, e.g., Acar et al. ([1], [2]), Moihuddine et al. [3], Ana et al. [4], Icoz et al. ([5]),
[6]), Kajla et al. ([7], [8]) constructed new sequences of linear positive operators to investigate the rapidity
of convergence and order of approximation in diffrent functional spaces in terms of several generating

functions. In the recent past, for g € [0,1],m € N and a € [-1, 1], Chen et al. [10], and Nadeem et al. ([24],
[25], [? 1), constructed a sequnce of new linear positive operators as:

m 4

Tuagi) = Lo ()t weiom, m

i=

where p(“) =1-y, p(l"‘l) =yand

= [a-au(" 2 ra-an-? ) rava-of7)|

Yyl A -y (m>2). 2)
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The operators defined in (1) are named as a—Berstein operators of order m.

Remark 1.1. One can not that for o = 1, the relation (1) is reduced to classical Bernstein operators [11].

These operators are restricted for the space of continuous functions only. To approximate the wider
class than the class of continuous function, i.e., space of Lebesgue integrable functions, Mohiuddine et
al. [12] constructed Kantorovich-type of a-Bernstein operators and Stancu-type a-Bernstein-Kantorovich
operators. Cai et al. [13] introduced a generalization of classical Bernstein operators based on shape
parameter « € [0, 1]. These operators are termed as a—Bernstein operators of degree m and defined as:

T =Y o(L)pw,  wen), ©

i=0
where pffl‘,)l.(u) is defined by (2).

Remark 1.2. Note that, p(, . in therelation (3) is called a—Berstein polynomials of order m and the binomial coefficients

p!
(P) _laomm s 0<a<p
q 0 otherwise.

Later on, Aral and Erbay [15] introduced the parametric form of Baskakov-Durrmeyer operators as:

Lia(g;2) Z P (), @
where f € Cp[0,00),m > 1,z € [0, ) and for a € [0, 1]
N : z5! az (m+s— m+s—3
Pns@) = (1 + z)m+s-1 {1 + z( s ) —(1-a)d+ Z)( -2 )
+ (1- a)z(m +SS B 1)} 5)

with ('”_’23) = (’”_’12) = 0. The sequences (4) are resstricted for the space of continuous functions only.
Motivated by the above developement, we construct a sequence of hybrid operators to approximate in a
wider class, i.e., space of Lebesgue integrable functions as follows:

s+/\+1 00

* . s+A ,—mt
A3al0:2) Z O e il MO ©®)
where Pﬁ,, +(2) is given by (5) and the gamma function as:
Tn= f 2" ledz, Tz=(@E-1DIz-1)=(z-1).
0

In the subsequent sections, we investigate basic Lemmas, rate of convergence, order of approximation locally
and globally in terms of modulus of smoothness, Peetre’s K-functional, second modulus of smoothness, Lip-
schitz space maximal function and weighted modulus of smoothness. Lastly, A-Statistical approximation
result is studied.

Remark 1.3. One can note that, for « = A = 0, the operators constructed by us in (6) reduced to the classical
Baskakov-Durrmeyer operators [14].
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2. Basic Estimates and approximation

Lemma 2.1. [15] For m € IN, the a—Baskakov operator has the following identities:

Lm,a(lr' z)
Lna(t;2) = z+ E(oz - 1)z,

4 3
Lyo(t32) = zz+a72+—(m+4a 4).

1,

Lemma 2.2. Let the operators A3, ,(.;.) defined by (6) and ei(z) = z',i € {0,1,2} bethe test function, we have the
following identities:

A:n,a(eo; Z) = 1,
Anale;z) = z+ —(a 1)z + /\T"'l,
da-4+(Q2 1
A alez) = zz(l Loz 3) +z(2/\ +3 a4+ A2+ 3)(a ))
, — - !
A2 431 +2
+ - 5 7

m2

wherem € M and o € [-1,1].

Proof. In view of Lemma (2.2) and for the operator given by (6), we have, for ¢y = 1

s+A+1 00 1 ;
e dt
I's+A+ 1) f

mt T(s+A+1)
s+A+1)  metitl

A:n,a (60; Z) =

i

For e; = t, we have

el s+A+1 00 A ,
* . _ s+A ,—m
Am,a(ellz) - ZO‘ F(S A+ 1) f t e tdt
ks pstA+1 00 . ,
— PLY tS+ +1 _—m dt
Z:;a ms(?) s+)\+1)f ¢
B i mtMH T(s+ A +2)
= C(s+A+1) ms+i+2
- 1 (s+A+1)
= ——— T 1
g‘ DpTerazn CHAFD
B i S LA

5=0

= z+%(a—1)z+/\—+1.
m m
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For e, = #2
0 mstA1 00
A* . — Pa S+A —mt 2
m,a(eZ/ Z) ;)‘ '”’S(Z)—l"(s T+ 1) j; e dt
s Sl 00
— Pa ts+/\+2 —mt
L ns(2 )F(s+/\+1)f et
_ i m T(s+ A +3)
& r(s FA+1)  meties
B i M s+ A+2)(s+ A+ D)(Ts+A+1)
o T(s+A+1) s+
- (s+A+2)(s+A+3)
= ) Ph® -
s=0
B i +(2A+3)s+ (A2 +31+2)
- 2
s=0 m
B i L @A+ A2 431 +2
- 2 2
pary m m
4o — 3)22 4o —4 2@ -1
A (e2) = 2 o= 3z zm+ 20( )+2A+3(z+ (a )Z)
! m m m m
AZ+31 42
+ —_—
mZ
_ 22(1 . 4a—3)+z(2/\+3 Lda—ds (2)\2+3)(a— 1))
m
AZ+31 42
+ —
m2
O

Lemma 2.3. Let the central moments nj(z) = (t - z)l, for j € {0,1,2}. Then, for the operator A, () given by (6),
we have the following equalities :

Ana(o;z) = 1,
20-1z A+1

A1) o

AL a(msz) = 0(%)(22 +z+ 1).

Proof. In the light of linearity property and Lemma (2.2) with the use of the operators A}, ,(.;.), we prove
the desired Lemma (2.3). O

Definition 2.4. Let f € C[0, o0). Then, modulus of continuity for a uniformly continuous function f is defined as

w(f;6) = sup [f(t1) — f(t2)l, t1,t € [0, 00).

[t1—t2]<0
For a uniformly continuous function f in C[0, co) and 6 > 0, we get

G

2
) - sl < (1+ 2 Y0, ?)
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Theorem 2.5. Suppose that Q, = {(p > 0,29

5 stands for convergent when z — oo } Then, for any
¢ € C[0, ) (N Qy, the operators A3, ,(.;.) given by (6) converges to function ¢ uniformly.

Proof. Taking into account the property (vi) of Theorem 4.1.4 [16], it is enough to show that

A a(ej;2) > ej(2), if j=10,1,2.

In view of Lemma 2.2, it is obvious that A*

ma(€j;z) — ej(z) for j = 0,1,2 when m — oco. Which gives the
prove of Theorem 2.5. [J

Theorem 2.6. (See [17]) Let L : C([a, b]) — B(la, b]) be a linear and positive operator and let @, be the function
defined by

(Px(t) = |t - xl/ (x/ t) € [al b] X [Cl, b]
If f € Cp(la, b]) for any x € [a,b] and any 6 > 0, the operator L verifies:

ILAE) = fl - < IfNILeo)(x) — 11 + {(Leo)(x) + 671/ (Leo) () (LepR) ()} (6)-

Theorem 2.7. For any g € Cg[0, o), the sequence of operators A;, ,(.;.) defined by (6) verify the inequality
lAna(g:2) = g(2)| < 20(g;0),

where 6 = \/fm and Cg[0, c0) stands for space of all continuous and bounded functions on the interval [0, co).

Proof. In the light of Lemma 2.2, Lemma 2.3 and Theorem 2.6, it is easy to obtain

A0(7:2) = g2 < {1+ 671 [ As o (123 2)}@" (g 6)-

On taking 6 = 4/A;, ,(112;2), we arrive at the required result. [J

3. Local and Global Approximation Results

Let Cg[0, o) be the space of real valued continuous and bounded functions equipped with the norm
IlIfll = sup |f(x)|. For any f € Cg[0, 00) and 6 > 0, Peetre’s K-functional is defined as

0<x<oo
Ky(g,0) = inf{lIf = hll + oll”|l : h € C3[0, o0)}, 8)

where Cé[O, o) = {h € Cp[0, 0) : ', "’ € Cg[0,0)}. From DeVore and Lorentz [[18], p.177, Theorem 2.4],
there exists an absolute constant C > 0 in such a way

Ka(f;6) < Can(f; V).

In order to get the proof of Theorem 3.2, we define the auxiliary operator ;l\m,a (g;2) as

- . A+1
Ama)(g;2) = Ay o(9:2) + 9(2) — (z + —(a -1z + 7)

Lemma 3.1. For g € C3[0,00),z>0andi,A >0, a €[0,1], one get
Ana(3:2) = 9@ < &gl

where

S A+l
ém_Am,a((t Z) ,Z,Z) ( (a 1) + — )
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Proof. From the auxiliary operator (9), we get that
Ana(e;2) =1, Ana((2);2) = 0and |Ana(g:2)l < 3llgll.

From Taylor series Expansion, for any g € Cé[O, o), we have
t
90 =9@) + =27+ [ €= p)g"(p)p.
On operating ;fm,a( f;z) in (11), we obtain

A\m,a(g; Z) - !](Z) = g/(Z)A\m,a(t -z Z) + A\m,a

z

From the equalities (9) and (10), we have

t
X f (t - )" (P)dpiz
z

A\m,a(g; Z) - g(Z)

t
A f (t - )" (0)dp;z

2 A+1
z+ 2 (a-1)z+ 2=

2 A+1 '
- f (z + a(a -1z + T p)g (p)dp.

z

A

t
|A\m,a(g; Z) - !7(2)| = A;z,a [f(t - P)g/,(P)dP, Z\J

2 A+l
z+ 5 (a=1)z+ 5=

Since

t

f (t - )" (p)p

z

<(t-271g" 1.

Then,
z+ 2 (a-1)z+ 221

o2 A+1 .
‘ [ 22 )y (p)dp‘

IA

t
f (t = p)g” (p)dp; Z].

2 A+1
+ f (z + a(a -1z + % - p)g”(p)dp‘.

2 A+1V 0,
(Z@-nz+ Z=) g0

940

(10)

(11)

(12)

(13)

(14)
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Combining the equalities (12), (13) and (14), we see that

2
a2 =901 < {Fuat=552)+ (2= ze L2 i)

Eullg”ll,
which completes the proof. [

Theorem 3.2. For any g € C30, o), there exists a positive number C satisfying the inequality
| Ana(@;2) - 92) 1< Ca3(g; VE,) + (g Ana(;2),

where &, is given by Lemma 3.1.

Proof. Leth € C%[O, o) and g € Cg[0, o). Then, using the definition of Zm,a(.; .), we get
145,0(7:2) = 9@ < 1Analg = 2)| + (g = (@] +ID],2) = h(z)l

g(z+%(a—1)z+ A+1)—g(z)

+ R—
m

In view of Lemma 3.1 and the relations (10), one has

45,0(@:2) = 9@] < 4llg =il + |4, (h;2) ~ h(z)]
2 A+1
+ g(z+a(a—1)z+ - )—g(z)
< 4llg = hl + En@IN I+ (g Ay (m152)).

Using the definition K-functional, we obtain

A (9:2) — 9(2)] < Ca3(g; Vem@) + @' (; Ay (12)).
This gives the proof of Theorem 3.2. [J

941

For any fixed two real positive numbers s; and s,, the Lipschitz-class of functions defined in [19] by:

|t -z

Lip}(B) = {g € Csl0,00) : |g(t) - g(2)| < C - 1z,t€ (0,0)),

(t + 81z + $022)2

with the positive constant Cand 0 < § < 1.

Theorem 3.3. Let the function g € Lip,;™(p), then, it follows that

B
A:n,a(rh; Z) :
$1Z + Spz2

A 032) - 9(2)] < c(
where z > 0.

Proof. For p =1, we have
Ana(:2) =@ < A9 = 9(2)12)
CA, o (& . z) )

(t + 512 + 5,22)2 ’

IA

(15)
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Since i+ 5 Zl+52 = < 3 +152 =, for every z € (0, ), we get that
. M . 1
A00(7:2) = 9@ < —————— (A, ((t - 2)%2))2

(512 + $022)2

Al ; :
< C( m,a(nz Z)) )

812 + 5pz2

942

Thus the Theorem 3.3 holds good when § = 1. Next, on choosing 0 < f < 1) and applying Holder’s

inequality for p; = l% and p; = ﬁ, we have

[NTa=N

5,03 = 9@ < (Anallg®) - 9@)152)7)

6

. It — z|? ’

M|A _—; .
( m’“((t + 512 + 5272) z

for every z € (0, ), we get

IN

1

. 1
Since t+812+522 $12+8p22

i
Ao (It = ZIZ;Z))2

|Am,ut(g;z) —g(Z)| < C( $12 +5222

Thus, we get the prove of Theorem 3.3. [J

To obtain the local type approximation results in " order the Lipschitz-maximal function given by

Lenze [20] such that:
lg(t) — g(2)|

— z€[0,00)and 0 <7 < 1.
t2,t€(0,00) It —z|

ar(g; Z) =

Theorem 3.4. Let z € [0, 00) and g € Cp[0, ). Then, for any r € (0, 1], we have

Ana@2) = 9@ < @ 2)(A,a (1t - 252))
Proof. Since we know that

lAa(g:2) = 9@ < A, .(l9(H) = g(2)];2)-
Therefore, from equality (16),we yield

1A45,0(7:2) — 92| < @ (g;2)A;, (It =25 2).

Using the Holder’s inequality with p; = 2 and p, = 5%, we have

Ana@2) = 9@ < @g:2)(A5,0(lt - 2% 2),
which gives the desired result. [

From [21], we recall some notation to prove the global approximation results.

For the weight function 1 + x2and 0 < x < oo, we have
B14x2[0,00) = {f(x) : [f(x)] < Mf(1 + x?), My is constant depending on f}.

C14x2[0, 00) C By4,2[0, 0) space of continuous functions endowed with the norm ||f|;4,2 = sup

f)

1+x2

C’{+x2 [0’ Oo) = {f € Cryp : )}1_1;1010

=k, where k is a constant}.

(16)

Il

1+x2 and

x€[0,00)
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Moreover, the modulus of smoothness for any function ¢ on closed interval [0, u], u > 0 and be defined by:

wy($,0) = sup sup [P(f) — P(2)l- (17)

|t=2|<6 z,te[0,u]

Theorem 3.5. Let W}, +1(¢p; 6) be the modulus of smoothness defined on [0, u+1] C [0, 00). Then forall ¢ € Cy,,2[0, )

1A43,0(0:2) = @ lctou < 6Mp(L+ 12)0(1) + 20,1 (¢; VOm(),
where 6, (u) = A3, o (25 W)-

Proof. Forallz € [0, u] and t € [0, o0), one has

t—z|\ .
p(t) = @) < 6My(1 + p?)(t — 2)* + (1 + 'T')ww(cp; ).
On applying the operators A;, ,, we see that
. N 2 A:n,a(“ - Zl; Z) "
Aia(32) = 9] < 6My(1+ 2 (= 252) + 1+ 0= o (30):

Thus, for z € [0, 1], if we apply the Lemma (2.2), we get

6}17
Aina(32) = (] < 6Mo(1 + 12)0u(0) + [1 + —“5(”)] W (970,

Taking 6 = 6,,(1), we reaches the proof of desired result. [

Theorem 3.6. Suppose the operators Ay, ,(.;.) acting from Cli+z2 [0, o) to By,,2[0, 00) satisfying the conditions
lim |47, (e) = 242 =0, i=0,1,2,

then, for each CY_,[0, co)
Tim [14},,,(9) = ¢l = 0.

Proof. For the results of Theorem 3.6, we have to show that

lim [|4}, () — 242 =0, i =0,1,2.
m—oo

By using the Lemma 2.2, it is enough to show

|A,a(e0;2) — 1

A% (eo) — 2° = su =0fori=0.
I 0(c0) =Mz = sup =R
Fori=1,
Z(@—1)z+ 2L
A (e1) — 2! = sup 2————"_
“ m,a( 1) I|1+zZ ze[(),I:o) 1+ 22
2 z A+1
= —(a-1) sup .
m 2ef0,00) 1+ z2 M ey 1+ z2
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Which gives us [|A}, ,(e1) — 242 = 0as m — oo. If we take i =2,

2( 4a-3 21043 , 4a—4+(2A+3)(a-1) A2+3)0+2
P(i2)eo(Bp s mRGReR) |
IIA;, (e2) — 22 =  su + sup ——
P T+z p 2 P 2
z€[0,00) 1+z z€[0,00) 1+z
40 -3 z2

sup ——
M o) 1+ z2

(2/\+3+4a—4+(2/\+3)(a—1)) z
m m? 2e0,00) 1 + 22
A+1)(A+2) 1

m? ZS[‘&OO) 1422

Which shows that ||A}, ,(e2) — 2|42 = 0asm — co. O

Here, we want to prove the theorem to obtain the approximation of locally integrable functions belongs
to C’;ﬂz [0, 00). For such types of result is investigated by Gadjiev [21].

Theorem 3.7. Suppose ¢ € Cli+z2 [0, 00). Then, for any 6 > 0, it satisfies that

i e Aina(®2)1 = 6@
o gony (L4220

0.

Proof. Let zj be the fixed positive real number then, one has

Ana( @2 = 0@ _ 1450 (@ 2)| = 9(2) 1A5,0(;2)l = D(2)

2€[0,00) (1 + ZZ)1+6 - 2<20 (1 + ZZ)1+6 ilzlzlog (1 + ZZ)1+6
< AL (@;2)] = d@)llcroz)
bl sup Dne L BAL O]
2z (1+22)1H0 22z (1422140
= I + 1 + I3 (say). (18)

Since |p(z)| < |lll1422(1 + 2%), therefore, we take
lp(2)]
I = —_—
3 igj (1 +z2)1+0

llpllz2(1 +2%) < N1l

ZZZI(? (1 + 22)1+6 - (1 + 22)6'

IA

For an arbitrary real number € > 0, in view of Theorem 2.5 there exists m; € N satisfying

1 €
L < — 1422+ —— ) forallm >m,
2 < g +Z2)9||q>||1+zz( R ¢||1+ZZ) orall my > m
lplhs €
m + 5, for all my > m.
This implies that

llpll422
19l

€
L+13<2 —.
2T e 20 T3
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”(P”sz

(1+22)9

For any large number of zy, we have <é¢.
2¢
L+13< 5 for all my > m. (19)
In the light of Theorem 3.6, and for any m; > m, one has

€
I = 1A43,(9:2) = liciozg) < 5 for all ma > m. (20)

Let m3 = max(my, my) and by combining the equality (18), (19) and (20), then we easily get
1A, (P 2)] = (2)
<e

up
o) (1 +22)1H0

Thus, the proof Theorem 3.7 is completed. [

4. A-Statistical approximation

The approximation theorems for a statistical convergence in operators theory introduced in [23]. We
recall from [22] and suppose the non-negative infinite suitability matrix defined by A = (uys). Let the
sequence z = (z;) and the A-transform of z be Az : ((Az),,) are such that

(o8]

(Az)y, = Z UpsZs,

s=1

provided the infinite series converges for each m. The suitability matrix A be regular for lim(Az),, = M as
limz = M. The sequence z = (z,,) be a A-statistical convergent to M, i.e., st4 —lim z = M, if for each positive
real €, we have lim,, Y., _ptse Ums = 0.

Theorem 4.1. Let A = (uy;) be the non-negative reqular suitability matrix. Then, for z > 0 and ¢ € C’;HM [0, o)
it satisfying that

sta —lim||A;, (P;2) = Glliy2r =0, forall and A > 0.
p ,

Proof. For A = 0t is easy to get that

sta — lim [|4}, 4 (e52) — el 2 = 0, fori €{0,1,2). (21)
m
From Lemma 2.2, we see that
z |2 1 (A+1
1A, o (e1;2) = 2l 422 Zz{tlag 112 m(a ) zS[lg,l:o T+l m
= E(oz —1) su z Avl u
T om zE[O,loDo) 1+ 22 m ZE[OE) 1422

Now, for a given positive €, if we let the following sets

M;y: = {n A}, (e152) — 2l 2 e},
2 €
My: = {ﬂ:a(a—l)ZE},
Ms: = {n:)H_lZE}.
m 2
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This implies that My C M; |J M> which shows that Yooy, @ims < Ysent, @thms + Ysenmt, Ums- Hence, we have

sta —lim |lAj, 4(e1;2) = zllhsz2 = 0. (22)

For i = 2 in the view of Lemma 2.2, we get

1 4a -3
-2t = gp L)
Apalesiz) = Pl = sup (=
. Z(2A+3 La-4y (2/\2+3)(a—1))+ (/\+1)(2)\+2)‘
m m m
_ 4a-3 up z +2A+3 up z?
m z€[0,00) 1+22 m z€[0,00) 1+ 22
4da—-4+Q2A+3)(a—-1) z
- m?2 > 1+22
z€[0,00)
A+1D(A+2) su 1
m? 200y 1+ z2"
Also for the positive given € > 0, we suppose the sets
T1: = {n: A, a(€2;2) -22|| > e},
40 -3 _ €
T,: = : > =5,
2 {n m 4}
T3: = {n:ZA+3 ZE},
m 4
4da -4+ (A + -1
Ty: = {n: a ( 23)(0{ )ZE},
m 4
A+1DA+2) €
Ts: = > —
> {n m2 4
This implies that Ty € T> |J T3 U T4 U Ts. By which, we get
Zums < Zums+Zutns+Zums+Zums-
seTy seT, s€T3 s€Ty s€Ts
As m — oo, we have
sta = im |4}, (e2;2) = 2%|l1452 = 0. (23)

This gives the desired proof of Theorem 4.1. [

Example 4.2. Consider the function g(t) = 2 — > + 8t — 10 and for the set of following parameters a = 0.9 and
A = 1.5. The convergence of the a-Baskakov-Gamma operators A;, ,(g;z) corresponding to the mentioned function
g(t) is improving as increasing the values of n = 10,20, 30. The figure 1 shows the convergence of the operators and
the error approximation E,, ,(g;z) is appeared in the figure 2 of the operator corresponding the function g(t) for same
values of n = 10,20, 30.
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Here, the error approximation table 1 is given below, which is supported our analytical and numerical
results.

t

Ely (72

E3, ,(7:2)

Ey (7:2)

0.3
0.6
0.9
1.2
1.5
1.8
21
24
2.7
3

1.9664880000
2.2679490000
2.8974059999
3.8960070000
5.3049000000
7.1652329999
9.5181539999
12.404811000
15.866352000
19.943925000

0.9533007500
1.0630366250
1.3322615000
1.7809823749
2.4292062500
3.2969401250
4.4041910000
5.7709658750
7.4172717500
9.3631156249

0.6302030822
0.6941154444
1.0645921831
1.1511241111
1.5706444444
2.1351247780
2.8577771111
3.7518134444
4.8304457777
6.1068861111

Table 1: Error Approximation Table
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