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Abstract. In the present paper, we deal with the weighted solid Cauchy transform Cµs (from inside the
unit disc into the complement of its closure) acting on the weighted true poly-Bergman spaces in the unit
disc introduced and studied by Ramazanov and Vasilevski. Mainly, we are concerned with the concrete
description of its range and its null space. We also give the closed expression of their reproducing kernels.
To this end, we begin by studying the basic properties ofCµs such as boundedness for appropriate probability
measures. The main tool is an explicit expression of its action on the so-called disc polynomials which form
an orthogonal basis of the considered weighted true poly-Bergman spaces.

1. Introduction and statement of main results

LetΩ be a bounded domain in the complex plane. Denote by bΩ its boundary and byΩ
c

the complement
of its closure, Ω

c
:= C \Ω. Associated with a given measure µ in Ω, we define the weighted solid Cauchy

transform to be the integral operator

C
µ
s f (z) :=

1
π

∫
Ω

f (ξ)
z − ξ

dµ(ξ), z ∈ Ω
c
, (1)

which can be seen as a specific adjoint of the classical weighted Cauchy transform on bΩ [4, p. 89]. The
importance of this operator (and their variants) lies in the fact that its kernel function is the fundamental
solution of the ∂ operator. Moreover, it is closely connected to the Green’s function for Dirichlet Laplacian
in Ωwhich is used to the inverse moment problem, see e.g. [4, 11, 24].

The study of local and global properties of Cµs including the description of its range, when acting
on the different standard spaces of analytic functions has been raised and investigated by many authors
[5, 23, 28, 29]. This problem has been solved by Napalkov and Yulmukhametov [28] for the Bergman space
A2(Ω) of analytic functions for Jordan domains, and later by Merenkov [25, 26] for a large class of domains
including integrable Jordan domains and those bounded by a Jordan curve bΩ with area(bΩ) = 0. It is
shown in [25] that the restriction of Cµs to A2(Ω) is an injective continuous operator from A2(Ω) into the

2020 Mathematics Subject Classification. Primary 45E05, 30E20; Secondary 46E22, 33C45.
Keywords. Disc polynomials; Weighted true Poly-Bergman spaces; Reproducing kernel; Weighted solid Cauchy transform.
Received: 8 March 2021; Accepted: 18 April 2022
Communicated by Miodrag Mateljević
Email addresses: rachid.elharti@uhp.ac.ma (R. El Harti), elkachkouri.abdelatif@gmail.com (A. Elkachkouri ),

allal.ghanmi@fsr.um5.ac.ma (A. Ghanmi)



R. El Harti et al. / Filomat 37:3 (2023), 775–788 776

special Bergman-Sobolev space B2
1(Ω

c
), defined as the space of holomorphic functions in Ω

c
vanishing at

infinity and whose derivatives belong to A2(Ω
c
),

B2
1(Ω

c
) = { f holomorphic in Ω

c
, f
′

∈ A(Ω
c
), f (∞) = 0}.

Such characterization remains valid for Ω being a quasidisc. It has been used in [18] to investigate the
action of the Laplace transform on Bergman spaces.

The present paper treats a similar problem and is concerned with the action of the solid Cauchy
transform on specific subspaces of polyanalytic functions of order n (n-analytic). Such functions are a natural
generalization of the holomorphic functions, and have found interesting applications in mathematical
physics, signal processing, time–frequency analysis and wavelet theory [1, 3, 14, 15, 17, 21, 27, 34]. More
precisely, they are solutions of the generalized Cauchy–Riemann equation on the unit discD,

∂n
z f =

∂n f
∂zn = 0, ∂z =

∂

∂z
=

1
2

(
∂
∂x
+ i

∂
∂y

)
.

Mainly, we deal with the concrete description of the basic properties of the weighted solid Cauchy transform
C
ωα
s , ωα(|ξ|2) := (1 − |ξ|2)α, acting on the so-called weighted true poly-Bergman spaces A2,γ

n (D) in the unit
discΩ = D, which are a specific generalization of the classical weighted Bergman space to the polyanalytic
setting. To this end, we start by providing sufficient conditions on the given measures for Cωs to be a
bounded operator for the corresponding Hilbert spaces of square integrable functions. Moreover, we
show thatA2,γ

n (D) form an orthogonal sequence of reproducing kernel Hilbert subspaces in the underlying
Hilbert space L2,γ(D) := L2

(
D, (1 − |z|2)γdxdy

)
. An orthogonal basis ofA2,γ

n (D) is proved to be given by the
so-called disc polynomials defined by

R
γ
m,n(z, z̄) =

zmzn

|z|2(m∧n)
P(γ,|m−n|)

m∧n (2|z|2 − 1) (2)

for varying m = 0, 1, 2, · · · , where m ∧ n = min(m,n) and P(α,β)
m (x) denotes the real Jacobi polynomials

normalized so that P(α,β)
m (1) = 1.

Our next main task is the determination of the null space as well as the range of the restriction of Cωαs

to the true weighted poly-Bergman spaces A2,γ
n (D). We show that its image is a finite dimensional vector

space contained in the one spanned by zn−m+1, m = 0, 1, 2, · · · ,n. Its precise dimension depends on the
quantization of γ − α and the order of the polyanalyticity. More precisely, making use of the explicit action
of Cωαs on the disc polynomials Rγm,n we establish the following.

Theorem 1.1. Let γ > −1 and α > (γ − 1)/2. Then Cωαs (A2,γ
n (D)) is a finite dimensional vector space of dimension

N = dim(Cωαs (A2,γ
n (D))) = min(n, α − γ) + 1 when γ − α ∈ Z−0 and N = n + 1 otherwise.

Moreover, we obtain the following

Corollary 1.2. Under the conditions of Theorem 1.1, the null space of the restriction of Cc
ωα toA2,γ

n (D) is spanned
by the disc polynomials Rγm,n with m ≥ min(n, α − γ) + 1.

Corollary 1.3. The spaces Cωαs (A2,γ
n (D))n form an increasing sequence of spaces.

This work is outlined as follows. Section 2 is devoted to discuss the boundedness of the weighted
solid Cauchy transform Cµs for specific weight functions. In Section 3, we present a brief review for the
disc polynomials Rγm,n. The basic properties of the true weighted poly-Bergman spaceA2,γ

n (D), defined by
Ramazanov and by Vasilevski, are presented and complemented in Section 4. In Section 5, we consider the
explicit action of Cωαs on A2,γ

n (D) in order to characterize its range as well as its null space. The proofs of
Theorem 1.1 and their corollaries are also presented in this section.
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2. Boundedness of Cµs

In this section, we consider the weight functions A and B on (0, 1) and (1,+∞), respectively, that we
extend as usual to measures on the unit disc D and its complement D

c
by considering A(|z|2)dλ(z) and

B(|z|2)dλ(z), respectively. Here dλ(z) = dxdy for z = x + iy with x, y ∈ R being the standard Lebesgue
measure. We denote by

L2(D,A) := L2(D,A(|z|2)dλ)

and
L2(D

c
,B) := L2(D

c
,B(|z|2)dλ)

the corresponding Hilbert spaces of all square integrable complex-valued functions with respect to the
prescribed measures. We denote by ⟨·, ·⟩A and ⟨·, ·⟩B the associated scalar products and by ∥·∥A and ∥·∥B the
induced norms, respectively.

Now, let ω be a weight function on the segment (0, 1) with finite moment

γωn :=
∫ 1

0
tnω(t)dt ≤ γω0 , n = 0, 1, 2, · · · . (3)

The associated weighted solid Cauchy transform is given through

[
C
ω
s ( f )

]
(z) =

1
π

∫
D

f (ξ)
z − ξ

ω(|ξ|2)dλ(ξ), z ∈ D
c
. (4)

In the sequel, we consider the action of Cωs on L2(D,A) with possible values in L2(D
c
,B), and provide

sufficient conditions on ω, A and B for Cωs to be a bounded operator from L2(D,A) into L2(D
c
,B). Namely,

we assume that

Vω2/A :=
∫ 1

0

ω2(t)
A(t)

dt < +∞ (5)

and

WB :=
∫ 1

0

B(1/t2)
t(1 − t)2 dt < +∞, (6)

which are sufficient conditions for the boundedness of the solid Cauchy transform. Concrete examples will
be considered in Remark 2.2 below.

Proposition 2.1. Under (5) and (6), the transform Cωs is a well defined bounded operator from L2(D,A) into the
Hilbert space L2(D

c
,B).

Proof. Let f ∈ L2(D,A). Using Cauchy Schwarz inequality we get

∣∣∣Cωs ( f )(z)
∣∣∣ ≤ 1

π

(∫
D

ω2(|w|2)
|w − z|2A(|w|2)

dλ(w)
)1/2 ∥∥∥ f

∥∥∥
A.

Keeping in mind and the fact that |w − z|−2
≤ (|z| − 1)−2 for varying w ∈ D and z ∈ D

c
, the use of the polar

coordinates w = reiθ, the fact
∫ 2π

0 ei(n−m)θdθ = 2πδm,n and the change of variable t = r2 yield

∣∣∣Cωs ( f )(z)
∣∣∣ ≤ 1

π

(∫ 1

0

∫ 2π

0

ω2(r2)
(|z| − 1)2A(r2)

rdrdθ
)1/2 ∥∥∥ f

∥∥∥
A

≤
1

π(|z| − 1)

(
π

∫ 1

0

ω2(t)
A(t)

dt
)1/2 ∥∥∥ f

∥∥∥
A =

√
Vω2/A

√
π(|z| − 1)

∥∥∥ f
∥∥∥

A, (7)



R. El Harti et al. / Filomat 37:3 (2023), 775–788 778

which is finite by means of (5). Therefore, it follows

∥∥∥Cωs ( f )
∥∥∥2

B ≤ 2Vω2/A

(∫
∞

1

B(r2)
(r − 1)2 rdr

) ∥∥∥ f
∥∥∥2

A

≤ 2Vω2/A

(∫ 1

0

B(1/t2)
t(1 − t)2 dt

) ∥∥∥ f
∥∥∥2

A = 2Vω2/AWB

∥∥∥ f
∥∥∥2

A.

Under the assumptions (5) and (6), this proves the boundedness of the solid Cauchy transform Cωs viewed
as operator from L2(D,A) into L2(D

c
,B).

Remark 2.2. A precise estimate for the norm operator of the solid weighted Cauchy transform Cωs can be given for
explicit weight functions satisfying assumptions (5) and (6). For example when considering A(t) = ω(t) = ωγ(t) =
(1− t)γ and B(t) = Ba,b(t) := t−a(t− 1)−b with γ > −1 > b > −a, the evaluation of the integrals giving Vω2/A and WB
yields the following estimate

∥∥∥Cωs ∥∥∥2
≤

21−bΓ(2a + 2b)Γ(−b − 1)
π(γ + 1)Γ(2a + b − 1)

. (8)

Remark 2.3. For A(t) = ωγ(t) andω(t) = ωα(t) the corresponding quantity Vω2
α/ωγ

is finite if and only if γ < 1+2α.

The concrete description of the basic properties of Cωs makes appeal to basis’ property of Rγm,n in the
underlying space.

3. Disc polynomials

The disc polynomials Rγm,n(z, z̄), γ > −1, we deal with are those defined through (2). For the hypergeo-
metric representation in terms of the Gauss-hypergeometric function 2F1 one can refer to e.g. [35, p. 137],
[7, p. 535], or also [2, 8]. The explicit expression reads [2, 7, 22]

R
γ
m,n(z, z̄) = m!n!

m∧n∑
j=0

(−1) j(1 − zz) j

j!(γ + 1) j

zm− j

(m − j)!
zn− j

(n − j)!
(9)

for varying m,n = 0, 1, 2, · · · . Here, (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1) for k = 1, 2, · · · denotes the
Pochhammer symbol. Clearly, they are polynomials of the two conjugate complex variables z = x + iy ∈ D
and z = x − iy, x, y ∈ R, of degree m and n, respectively. The proposed definition agrees with the ones
suggested by Koornwinder [22], Dunkl [7] and Wünsche [35]. The limit case of γ = −1 leads to the so-called
scattering polynomials that have emerged in the context of wave propagation in layered media [13], while
for γ = 0, they turn out to be related to the radial Zernike polynomials Rνk(x), introduced by Zernike [37] in
his framework on optical problems involving telescopes and microscopes, and playing an important role
in expressing the wavefront data in optical tests and in the study of diffraction problems [38]. More exactly,
we have

R
0
m,n(z, z̄) = (m + n)!ei(n−m) arg zRn−m

m+n(
√

zz), m ≤ n.

The orthogonality property with respect to the weighted (probability) measure

dµγ(z) = (1 − |z|2)γdxdy, z = x + iy ∈ D, (10)

reads∫
D

R
γ
m,n(z, z)Rγj,k(z, z)dµγ(z) = dγm,nδm, jδn,k, (11)
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and follows by a straightforward computation from its analog for the Jacobi polynomials. The involved
constant dγm,n is explicitly given by

dγm,n =
πm!n!

(γ + 1 +m + n)(γ + 1)m(γ + 1)n
. (12)

For ulterior use, mainly for proving the convergence of the relevant series, we recall the following estimate
|R
γ
m,n(z, z̄)| ≤ 1. It holds true for every nonnegative integers m and n, real γ > −1 and z ∈ D (see e.g. [7, 19]).

The proof of our main results relies essentially in the fact that Rγm,n(z, z̄) form an orthogonal basis of
the Hilbert space L2,γ(D) as quoted in [7, 19, 35]. Here, for γ > −1, L2,γ(D) denotes the Hilbert space of
complex-valued functions in the unit disc D = {z ∈ C, |z| < 1} endowed with the norm induced from the
scalar product 〈

f , 1
〉
γ :=

∫
D

f (z)1(z)(1 − |z|2)γdxdy, z = x + iy ∈ D.

Proposition 3.1 ([7, 19, 35]). The disc polynomialsRγm,n(z, z̄) form a complete orthogonal system in the Hilbert space
L2,γ(D).

From the explicit expression of Rγm,n in (9), it is clear that they are a good class of polyanalytic functions
of finite order in the unit disc. In fact, n-analyticity (polyanalytic of order n) is characterized by those
functions of the form

f (z, z) =
n−1∑
j=0

z jφ j(z),

with φ j being holomorphic functions inD. This is equivalent to be uniquely expressed as [6]

f (z, z) = P(z, z) +
n−1∑
j=0

(1 − |z|2) jψ j(z),

where P(z, z) is a polynomial of degree n− 1 in z and degree at most n− 1 in z, and ψ j are holomorphic inD.
In the next section, we will explore the crucial role played by these polynomials in describing the

so-called weighted true poly-Bergman spaces.

4. Weighted true poly-Bergman spaces

A weighted poly-Bergman space in D is defined as a specific generalization of the weighted Bergman
space to the polyanalytic setting [3]. The extension of the classical Bergman spaceA2(D) := L2 (

D, dxdy
)
∩

Hol(D) to the context of polyanalytic functions was proposed by Koshelev [20], who proved that the set
H

2
n (D) of (n + 1)-analytic complex-valued functions inD belonging to L2 (

D, dxdy
)

is a reproducing kernel
Hilbert space for which the functions

em,p(z) :=

√
m + p + 1
√
π(m + p)!

∂m+p

∂zp∂zm

(
(|z|2 − 1)m+p

)
, (13)

for varying p = 0, 1, 2, · · · ,n and m = 0, 1, 2, · · · , form a complete orthonormal polynomial system. Subse-
quently, the so-called true poly-Bergman spaces are the particular subspaces

A
2
n(D) =

{
f : f (z) = ∂n

z ((1 − zz)nF(z)) ,F ∈ A(D), f ∈ H2
n (D)

}
,

considered by Ramazanov in [30]. They give rise to the piecewise decomposition

H
2
n (D) = A2

0(D) ⊕A2
1(D) ⊕ . . . ⊕A2

n(D),
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so that A2
0(D) = A2(D) = H2

0 . The involved operator Dn f := ∂n
z ((1 − |z|2)nu(z)) defines a bounded and

boundedly invertible operator fromA2(D) ontoA2
n(D) (see e.g. [30, Theorem 1]). For more details on these

spaces, one can refer to [20, 30, 32, 33].
The weighted versionA2,γ(D) of the Bergman space is defined as the closed subspace of the holomorphic

functions belonging to the Hilbert space L2,γ(D) := L2
(
D, dµγ

)
. It is a reproducing kernel Hilbert space with

kernel given by

Kγ(z,w) =
γ + 1

π (1 − zw)γ+2 . (14)

Its orthogonal in L2,γ(D) makes appeal to the n-th weighted poly-Bergman space H2,γ
n (D) in [9, 16, 31, 33]

defined as the space of complex-valued functions f = D −→ C that are square integrable on D with
respect to a given radial weight function ωγ(|ζ|2) and satisfying the generalized Cauchy–Riemann equation
∂n+1

z f = 0. Thus,

H2,γ
n (D) := ker(∂n+1

z ) ∩ L2,γ(D).

It should be mentioned here that for γ = 0 andω0 = 1, the spacesA2,0
n (D) reduces further to the conventional

unweighted poly-Bergman spacesA2
n(D).

The disc polynomials discussed in Section 3 are crucial in providing concrete description of H2,γ
n (D).

The next result is a minor variant of the one obtained by Ramazanov in [31], and shows in addition that the
introduced spaces can equivalently be defined by mean of the disc polynomials Rγm,n.

Theorem 4.1. The weighted poly-Bergman spaces H2,γ
n (D) are closed subspaces of L2,γ(D). Moreover, they coincide

with those spanned by the disc polynomials Rγm,k for varying m = 0, 1, 2, · · · and k = 0, 1, · · · ,n.

Proof. We begin by proving that each weighted poly-Bergman space H2,γ
n (D) is a closed subspace of L2,γ(D)

and spanned by the disc polynomials Rγm,k for varying m = 0, 1, 2, · · · and k = 0, 1, · · · ,n. To this end, notice
first that any f ∈ L2,γ(D) can be expanded as

f (z) =
∞∑

m=0

∞∑
j=0

am, jR
γ
m, j(z, z) (15)

for some complex-valued constants am,n satisfying the growth condition∥∥∥ f
∥∥∥2

γ
=

∞∑
m=0

∞∑
j=0

dγm, j|am, j|
2 < +∞.

The series in (15) is absolutely and uniformly convergent on compact sets of D. Therefore, by straightfor-
ward computation, we arrive at

∂k+1
z f (z) = n!

∞∑
m=0

∞∑
ℓ=0

(α +m + 1)ℓ
ℓ!(γ +m + k + 2)ℓ

am,ℓ+k+1R
γ+k+1
m,ℓ (z, z).

This follows since [2, 22, 35]

∂k
zR

γ
m, j = ε j−k

n!(γ +m + 1)k(γ + 1)m+ j−k

( j − k)!(γ + 1)m+ j
R
γ+k
m, j−k,

where for every integer ℓ we have set

εℓ =

{
1 if ℓ ≥ 0,
0 if ℓ < 0. (16)
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Subsequently, the constants am,ℓ+k+1 are closely connected to the Fourier coefficients of ∂k+1
z f ∈ L2,γ+k+1(D)

(see e.g. [19]). More precisely, we have

am,ℓ+k+1 =
ℓ!(γ +m + k + 2)ℓ

n!(α +m + 1)ℓd
γ+k+1
m,l

〈
∂k+1

z f ,Rγ+k+1
m,ℓ

〉
γ+k+1

.

Thus, f ∈ H2,γ
n (D) is equivalent to am,ℓ+k+1 = 0 for any nonnegative integers m, ℓ. This infers

f (z) =
∞∑

m=0

n∑
j=0

am, jR
γ
m, j(z, z) (17)

in L2,γ(D) and hence

H2,γ
n (D) = Span{Rγm, j,m = 0, 1, · · · , j = 0, 1, · · · ,n}

L2,γ(D)
,

which is clearly a closed subspace of L2,γ(D). This completes the proof.

The next result concerns the so-called the n-th true weighted poly-Bergman space defined in [31] and
realizable as

A
2,γ
n (D) = H2,γ

n (D) ⊖H2,γ
n−1(D) (18)

for n ≥ 1 with A2,γ
0 (D) = A2,γ(D). It also gives the explicit closed expression of its reproducing kernel

Kγ
n(z,w) in terms of the Gauss hypergeometric function

2F1

(
a, b
c

∣∣∣∣∣x) = ∞∑
j=0

(a) j(b) j

(c) j

x j

j!
.

Theorem 4.2. The following assertions hold trues.

(i) For a fixed nonnegative integer n, the family of functionsRγm,n, for varying m = 0, 1, 2, · · · , forms an orthogonal
basis ofA2,γ

n (D).
(ii) The spaces A2,γ

n (D) form an orthogonal sequence of reproducing kernel Hilbert spaces in L2,γ(D). Moreover,
we have

L2,γ(D) =
∞⊕

n=0

A
2,γ
n (D) and H2,γ

n (D) =
n⊕

k=0

A
2,γ
k (D).

(iii) The reproducing kernel ofA2,γ
n (D) is given by

Kγ
n(z,w) =

(γ + n + 1)
πn!(γ + 1)n

(
1 − |z|2

)−γ (
1 − |w|2

)−γ
(19)

× ∂n
z∂

n
w

{(
1 − |z|2

)γ+n (
1 − |w|2

)γ+n
2F1

(
γ + n + 2, γ + 1
γ + n + 1

∣∣∣∣∣zw
)}
.

Proof. As an immediate consequence of the discussion in the proof of Theorem 4.1, we claim that the
orthogonal Hilbertian decompositions

L2,γ(D) =
∞⊕

n=0

A
2,γ
n (D) and H2,γ

n (D) =
n⊕

k=0

A
2,γ
k (D)

hold trues. In fact, we need only to prove that the functions Rγm,n, m = 0, 1, 2, · · · , constitute an orthogonal
basis ofA2,γ

n (D) = H2,γ
n (D) ⊖H2,γ

n−1(D). Indeed, by considering

B
2,γ
n (D) := Span

{
R
γ
m,n, m = 0, 1, 2, · · ·

}L2,γ(D)
,
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it is clear that they form an orthogonal sequence of Hilbert spaces in L2,γ(D). The orthogonality follows
from the orthogonality property for the disc polynomials. Moreover, we

H2,γ
n (D) =

n⊕
k=0

B
2,γ
k (D)

follows due to Theorem 1.1 and the fact thatB2,γ
n (D) ⊂ A2,γ

n (D). The latter one can be handled by induction.
Hence B2,γ

n (D) = A2,γ
n (D). The fact that A2,γ

n (D) is a reproducing kernel Hilbert space follows mainly
using Riesz’ representation theorem for the linear mapping f 7−→ f (z0), for fixed z0, being continuous.
Subsequently, there exists an element Kγ

n,z0
= Kγ

n(·, z0) ∈ A2,γ
n (D) such that f (z) =

〈
f ,Kγ

n,z0

〉
γ

for every

f ∈ A2,γ
n (D). Indeed, by expanding any f ∈ A2,γ

n (D) as f (z) =
∞∑

m=0

amR
γ
m,n(z, z) and next making use of the

Cauchy Schwarz inequality, keeping in mind the fact that |Rγm,n(z, z)| ≤ 1, we get

| f (z)| ≤
∞∑

m=0

|am| ≤ c

 ∞∑
m=0

dγm,n|am|
2


1/2

= c
∥∥∥ f

∥∥∥
γ
,

where the square of the involved nonnegative real number c is given by

c2 :=
∞∑

m=0

1
dγm,n

=
(γ + n + 1)(γ + 1)n

πn! 2F1

(
γ + n + 2, γ + 1
γ + n + 1

∣∣∣∣∣1) .
This completes our check of (i) and (ii).

To prove (iii), we recall that from the general theory of reproducing kernels for separable Hilbert spaces
we know that the reproducing kernel function Kγ

n is uniquely determined by

Kγ
n(z,w) =

+∞∑
m=0

ψγ,nm (z)ψγ,nm (w)

for any complete orthonormal basisψγ,nm ofA2,γ
n (D). Thus, the closed formula for Kγ

n(z,w) involves successive

derivatives of a special function 2F1. In fact, by means of Rγm,n(w,w) = Rγm,n(w,w) as well as the observation
that the disc polynomials can be realized as

R
γ
m,n(z, z) =

(−1)m

(γ + 1)m
(1 − |z|2)−γ∂n

z

(
zm(1 − |z|2)γ+n

)
, (20)

we get

Kγ
n(z,w) =

+∞∑
m=0

R
γ
m,n(z, z)Rγm,n(w,w)

dγm,n

=
(1 − |z|2)−γ(1 − |w|2)−γ

[(γ + 1)n]2 ∂n
z∂

n
w

{
(1 − |z|2)γ+n(1 − |w|2)γ+nNγ

n(z,w)
}

with

Nγ
n(z,w) :=

+∞∑
m=0

zmwm

dγm,n
=

(γ + 1)n

πn!

+∞∑
m=0

(γ +m + n + 1)(γ + 1)m
zmwm

m!

=
(γ + n + 1)(γ + 1)n

πn! 2F1

(
γ + n + 2, γ + 1
γ + n + 1

∣∣∣∣∣zw
)
.
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The last equality follows making use of the fact that

(γ +m + n + 1) =
(γ + n + 1)m(γ + 1)n

(γ + 1)m
,

keeping in mind the definition of the hypergeometric function 2F1. This completes the check of the closed
expression in (19).

Remark 4.3. We haveA2,γ
n (D) = Span

{
R
γ
m,n, m = 0, 1, 2, · · ·

}L2,γ(D)
and the sequential characterization is given by

A
2,γ
n (D) =

 +∞∑
m=0

αmR
γ
m,n(ξ, ξ),

∞∑
m=0

m!
(γ + 1 +m + n)(γ + 1)m

|αn|
2 < +∞

 . (21)

Remark 4.4. The spacesA2,0
n (D), forγ = 0, are exactly the true poly-Bergman spaces in [30, 33], and the polynomials

R
0
p,m reduce further to the em,p in (13). In this case, we recover the closed expression obtained in [20, Theorem 2] and

[30, Theorem 3] for the reproducing kernel of H2,γ
n (D) andA2,γ

n (D), respectively.

Remark 4.5. For n = 0 we recover the closed expression of the classical weighted Bergman space since

2F1

(
γ + 2, γ + 1
γ + 1

∣∣∣∣∣zw
)
= (1 − zw)−γ−2.

Remark 4.6. The orthogonal projection from L2,γ(D) ontoA2,γ
n (D) is given by the integral operator

P
γ
n( f )(ζ) =

∫
D

f (z)Kγ
n(z, ζ)dµγ(z),

while the one of L2,γ(D) onto H2,γ
n (D) is given by

P̃
γ
n( f )(ζ) =

∫
D

f (z)

 n∑
k=1

Kγ
n(z, ζ)

 dµγ(z).

5. The range and null space of Cωαs

In order to explore the basic properties of the weighted solid Cauchy transform

C
ω
s f (z) :=

1
π

∫
D

f (ξ)
z − ξ

ω(|ξ|2)dxdy, z ∈ D
c
, (22)

with respect to the specific weight functionω = ωα, ωα(|ξ|2) := (1−|ξ|2)α, and provide a concrete description
of the null space as well as the range of its restriction to the true weighted poly-Bergman spaces, we give the
explicit action ofCωαs on the disc polynomialsRγm,n and we specify the weight function A(t) = ωγ(t) = (1− t)γ.
To this end, we begin by giving its action on the generic functions

eℓjk(ξ, ξ) = ξ jξ
k
(1 − |ξ|2)ℓ

for nonnegative integers j, k, ℓ.
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Lemma 5.1. We have
[
C
ω
s (eℓk+m,k)

]
(z) = 0 for m > 0,[

C
ω
s (eℓk,k+m)

]
(z) = γωk,s

1
zm+1 for m ≥ 0,

(23)

where γωk,s stands for

γωk,s =

∫ 1

0
tk(1 − t)sω(t)dt. (24)

Proof. Notice first that for any z ∈ D
c

and ξ ∈ D we have ξ/z ∈ D. Then, by expanding the kernel function
as power series in ξ, we obtain

[
C
ω
s (es

jk)
]

(z) =
1
π

+∞∑
l=0

1
zl+1

∫
D

ξ j+l(ξ)k(1 − |ξ|2)sω
(
|ξ|2

)
dλ(ξ)

=

+∞∑
l=0

1
zl+1

(∫ 1

0
tk(1 − t)sω(t)dt

)
δ j+l,k

= εk− j

γωk,s
zk− j+1

, (25)

which is equivalent to (23). The two last equations follow using the polar coordinates ξ = reiθ and the change
of variable r2 = t keeping in mind the definition of γωk,s and εℓ given through (24) and (16), respectively.

Accordingly, it is clear from Lemma 5.1 that the holomorphic functions es
jk belong to ker(Cωs ) for any s

and any j > k. Moreover, we assert the following.

Proposition 5.2. The function Cωs (es
jk) belongs to L2(D

c
,B) and its square norm is given by

∥∥∥∥Cωs (es
jk)

∥∥∥∥2

B
= πεk− j(γωk,s)

2
∫ 1

0

B(1/u)
uk− j+1

du.

Moreover, the system
(
C
ω
s (es

jk)
)

j,s
is orthogonal in L2(D

c
,B) for every fixed k.

Proof. For the proof we compute
〈
C
ω
s (es

jk),Cωs (er
mn)ωα

〉
B

for arbitrary m,n, j, k. Indeed, by (25) we get

〈
C
ω
s (es

jk),Cωs (er
mn)

〉
B
= εk− jεn−mγ

ω
k,sγ

ω
n,r

∫
D

c

1

zk− j+1zn−m+1 B(|z|2)dλ(z)

= πεk− jγ
ω
k,sγ

ω
n,rδk− j,n−m

∫ +∞

1

1
tk− j+1

B(t)dt

= πεk− jγ
ω
k,sγ

ω
n,rδk− j,n−m

∫ 1

0
uk− j−1B(1/u)du. (26)

This proves that Cωs (es
jk) ∈ L2(D

c
,B). The orthogonality of the system

(
C
ω
s (es

jk)
)

j,s
in L2(D

c
,B) (for fixed k)

follows as particular case by taking n = k. The explicit expression of the norm is exactly (26) with m = j and
n = k.
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Remark 5.3. In view of (26) it is clear that the family
(
C
ω
s (es

jk)
)

j,k,s
is not orthogonal.

Using Lemma 5.1, we give the explicit action of Cωαs on the disc polynomials.

Proposition 5.4. Let γ > −1. For every nonnegative integers m,n, there exists some constant cγ,ωm,n depending on γ,
ω, m and n such that

C
ω
s (Rγm,n)(z) = cγ,ωm,n

zm

zn+1 .

For the weight function ω(t) = ωα(t) = (1 − t)α, the involved constant is given explicitly by

cγ,ωαm,n = εn−m
(γ − α)mn!

(α + 1)n+1(γ + 1)m
.

Proof. By setting

aγ, jm,n =
(−1) jm!n!

(γ + 1) j j!(m − j)!(n − j)!
,

we can rewrite the disc polynomials (9) by means of the generic elements e j
n− j,m− j as

R
γ
m,n(z, z̄) =

m∧n∑
j=0

aγ, jm,ne j
m− j,n− j(z, z̄).

Accordingly, the linearity of the weighted Cauchy transform and Lemma 5.1 show that

C
ω
s (Rγm,n)(ξ) = εn−m

 m∑
j=0

aγ, jm,nγ
ω
n− j, j

 1
zn−m+1 = cγ,ωm,n

zm

zn+1 .

For the explicit computation of the involved finite sum, that we denote by Sγ,αm,n, it should be noticed
that the quantity γωαn− j, j reduces further to a beta function when restricting ourself to the weight function
ω(t) := ωα(t) = (1 − t)α. More exactly, we have

γωαn− j, j =

∫ 1

0
tn− j(1 − t)α+ jdt =

(n − j)!(α + 1) j

(α + 1)n+1
.

Therefore, it turns out to be the value of a Gauss hypergeometric function at 1. Indeed, we have

Sγ,αm,n =
n!

(α + 1)n+1

m∑
j=0

(−m) j(α + 1) j

j!(γ + 1) j
=

n!
(α + 1)n+1

2F1

(
−m, α + 1
γ + 1

∣∣∣∣∣1) .
Now, the use of the well-known Chu–Vandermonde identity,

2F1

(
−m, b

c

∣∣∣∣∣1) = (c − b)m

(c)m
,

yields the explicit expression of the constant cγ,ωm,n for ω(t) = ωα(t). Indeed,

cγ,ωαm,n = εn−m
(γ − α)mn!

(α + 1)n+1(γ + 1)m
.
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Some immediate consequences readily follow.

Corollary 5.5. The following assertions hold trues.

1) The range of Cωαs restricted to A2,γ
n (D) is a finite dimensional vector space whose dimension does not exceed

n + 1.

2) Rγm,n ∈ ker(Cωαs ) for any m > n.

3) We haveCωαs (Rγm,n) = const.Cs(es
n,m) for fixed n and varying m = 0, 1, 2, · · · . Moreover, they form an orthogonal

system of holomorphic functions in L2(D
c
,B).

4) For α = γ, the involved constant is exactly zero for any m > 0, while for m = 0 the action reduces to

C
ωα
s (Rγ0,n)(ξ) =

n!
(γ + 1)n+1

1
zn+1 .

With the background presented in this section we can prove our main result (Theorem 1.1) and therefore
its corollaries.

Proof of Theorem 1.1:
Notice first that since we are placed in the case of ω = ωα, we have to assume that α > (γ− 1)/2 > −1 (by

Remark 2.3) to guarantee the boundedness of Cωαs , the finiteness of the weight function ωγ and therefore
the fact that the disc polynomials is an orthogonal basis for L2,γ(D).

According to the explicit expression of the constant cγ,ωαm,n in Proposition 5.4, it is clear thatCωαs (Rγm,n) , 0 if
and only if m ≥ n and (γ− α)m , 0. In particular, Span{Rγm,n,m < n} ⊂ ker(Cωαs |A2,γ

n (D)). For the determination

of dim(Cωαs (A2,γ
n (D))) ≤ n+ 1, two cases are to be distinguished γ− α ∈ Z−0 = {0,−1,−2, · · · } and γ− α < Z−0 .

If γ − α < Z−0 , then (γ − α)m is not zero for every nonnegative integer m ≥ 0. Hence Cωαs (Rγm,n) = 0 if
and only if m > n. Subsequently, the restriction of the solid weighted Cauchy transform Cωαs to A2,γ

n (D) is
spanned by

zm

zn + 1
, m = 0, 1, 2, · · · ,n.

In this case the dimension of Cωαs (A2,γ
n (D)) not infected by the choice of the weight functions and is equal to

n + 1.
Now, for γ − α ∈ Z−0 it is not hard to rewrite the result of Proposition 5.4 as

C
ωα
s (Rγm,n)(ξ) =


0 if m > n

(γ − α)mn!
(α + 1)n+1(γ + 1)m

zm

zn+1 if m ≤ min(n, α − γ)

0 if α − γ + 1 ≤ m ≤ n.

Therefore, Cωαs (Rγm,n) , 0 if and only if m ≤ min(n, α − γ). It follows

C
ωα
s (A2,γ

n (D)) = Span
{ zm

zn+1 , 0 ≤ m ≤ min(n, α − γ)
}

and
ker(Cωαs |A2,γ

n (D)) = Span
{
R
γ
m,n,m > min(n, α − γ)

}
.

Thence the dimension of Cωαs (A2,γ
n (D)) is finite and given by N = min(n, α − γ) + 1. Moreover, it is clearly

observed that the family of subspace Cωαs (A2,γ
n (D)), for varying n = 0, 1, · · · , constitutes an increasing

sequence. □
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Remark 5.6. For γ = α, the ranges Cωαs (A2,γ
n (D))n are all of dimension one.

Remark 5.7. The case of γ > α > (γ − 1)/2 > −1 is clearly contained in the case of γ − α < Z−0 . While the case of
−1 < γ < α depends on the quantization of γ − α.
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