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Estimates on some functionals over non-linear resolvents
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Abstract. Estimation of linear and quadratic functionals over different classes of univalent functions is
one of the classical problems in geometric function theory. In this paper we solve the problem over some
classes of so-called non-linear resolvents, which arise as a fruitful tool in dynamic systems. Sharp estimates
on early Taylor coefficients and the Fekete–Szegö functional are established.

1. Introduction

Let D be a domain in the complex plane C. Denote the set of holomorphic functions on D by Hol(D,C),
and by Hol(D) := Hol(D,D), the set of all holomorphic self-mappings of D. We use the notion Dr(c) for the
open disk of radius r centered at c ∈ C and denote Dr := Dr(0). Also we denoteD = D1, the open unit disk.

Let Ω be the subclass of Hol(D) consisting of functions vanishing at the origin:

Ω = {ω ∈ Hol(D) : ω(0) = 0}. (1.1)

The identity mapping onDwill be denoted by Id.
In this paper we deal with the class of so-called non-linear resolvents. To define this class, we need the

notion of semi-complete vector field. Recall that a mapping f ∈ Hol(D,C) is called a semi-complete vector
field onD if for every z ∈ D the Cauchy problem ∂u(t,z)

∂t + f (u(t, z)) = 0,

u(0, z) = z
(1.2)

has a unique solution u = u(t, z) ∈ D for all t ≥ 0. In this case, the unique solution of (1.2) forms a
semigroup of holomorphic self-mappings of the open unit disk D; see, for example, [2, 9, 10, 17, 18]. The
next theorem gives criteria for a holomorphic function to be a semi-complete vector field.

Theorem 1.1 (see [9, 10, 17, 18] for detail). Let f ∈ Hol(D,C), f . 0. The following statements are equivalent:

(i) f is a semi-complete vector field onD;
(ii) there exist a point τ ∈ D and a function p ∈ Hol(D,C) with Re p(z) ≥ 0 such that

f (z) = (z − τ)(1 − zτ)p(z), z ∈ D, (1.3)

and this representation is unique;
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(iii) f satisfies the so-called range condition:(
Id+r f

)
(D) ⊃ D for all r > 0,

and Gr := (Id+r f )−1 is a well-defined self-mapping ofD.

We notice that formula (1.3) is called the Berkson–Porta representation after the seminal work [1] by Berkson
and Porta. The mappings Gr ∈ Hol(D), r > 0, are called the nonlinear resolvents of a semi-complete vector
field f , the net {Gr}r>0 is the resolvent family for f . It is known that every non-linear resolvent is a univalent
self-mapping of the open unit disk.

It follows from the uniqueness of the Berkson–Porta representation (1.3) that every semi-complete vector
field must have at most one null point inD. Moreover, if the function p in assertion (ii) satisfies Re p(z) > 0,
then this point is the Denjoy–Wolff point for the semigroup {u(t, ·)}t≥0 defined by (1.2) in the sense that
τ = lim

t→∞
u(t, z). Moreover, lim

r→∞
Gr(z) = τ uniformly on compact subsets ofD.

In this paper we concentrate on the case τ = 0. Thus f (z) = zp(z) with Re p(z) > 0 by the Berkson–Porta
formula (1.3) and lim

r→∞
Gr(z) = 0. In addition to their importance for dynamical systems (see [9, 17, 18]), such

resolvents form a very specific subclass of univalent self-mappings of the unit disk.
Recently, interesting geometric aspects of this class were discovered in [11] and [8]. For instance, it

was established there that the resolvent family constitutes an inverse Lœwner chain. Some covering and
distortion results and the quasi-conformality of resolvents were proved. Further, the orders of starlikeness
and of strong starlikeness were found. Also, it was shown there that the family of normalized resolvents
converges to the identity mapping, uniformly on compact subsets of the unit disk.

The study of non-linear resolvents in the framework of geometric function theory naturally includes
searching for sharp estimates on linear and non-linear functionals over this class as well as extremal
functions. Note that the estimation of Taylor coefficients for different classes of analytic functions is a
classical problem in geometric function theory (see, for example, [4]) starting from the famous Bieberbach
conjecture.

Estimation of coefficient functionals over the class of non-linear resolvents is the aim of the current
paper. More precisely, we consider the set of all semi-complete vector fields such that f (0) = 0 with fixed
derivative f ′(0) = q. It can be seen from the Berkson–Porta representation (1.3) that Re q ≥ 0. Since the case
Re q = 0 is trivial, we assume that Re q > 0. We denote byJr the set of non-linear resolvents Gr =

(
Id+r f

)−1

of such vector fields. Our first problem is:
Problem 1: Find the sharp estimates and extremal functions for early Taylor coefficients overJr andJ :=

⋃
Jr.

We solve this problem for the second and third Taylor coefficients.
Concerning quadratic functionals, we deal with the Fekete–Szegö functional that was introduced in

[12], found numerous applications and was studied by many mathematicians (see, for example, [16, p. 124]

and [4, p. 104]). Recall that for an analytic function h, h(z) =
∞∑

k=1
hkzk and λ ∈ C, the Fekete–Szegö functional

is defined by

Φ(h, λ) := h1h3 − λh2
2. (1.4)

It involves the Hankel determinant of second order H2
1( f ) := Φ(h, 1) =

∣∣∣∣∣h1 h2
h2 h3

∣∣∣∣∣ and the Schwarzian derivative

of h at zero {h, 0} = 6
h2

1
·Φ(h, 1). The Fekete–Szegö problem is to find the sharp estimate on |Φ(·, λ)| over a class

of analytic functions. Some general approaches to its solution were developed in [3, 13], see also reference
therein. We estimate the Fekete–Szegö functional over non-linear resolvents. Our aim is

Problem 2: Find the sharp estimates and extremal functions for the Fekete–Szegö functional over Jr and J .
We solve this problem completely over Jr for every fixed r > 0 and partially over the union J .
Note that the sets Jr and J are invariant under the rotations G 7→ e−iθG(eiθ

·). Therefore estimation of
absolute values of the functionals in Problems 1 and 2 is equivalent to estimation of their real parts. It
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is worth mentioning that estimates on the second and third coefficients and the Fekete–Szegö functional
over inverses for some families of functions were studied by many mathematicians. For some recent
developments in this direction see, for example, [19] and references therein.

Our approach is based on a conventional concept that by its definition any resolvent family consists
of inverse functions for a one-parameter net {Id+r f }r>0. Hence we can use our previous results in [7] on
families of inverse functions (see also [6]).

Following the scheme suggested there, we introduce in the next section the subclass Aψ of Hol(D,C)
consisting of functions F such that F(z)/z takes values in a given half-plane and F is invertible around
zero. To be concrete, let fix a mapping ψ ∈ Hol(D,C), ψ(0) , 0, of the open unit disk D onto a half-plane.
Consider the class of holomorphic functions

Aψ :=
{

F ∈ Hol(D,C) :
F(z)

z
≺ ψ

}
.

In other words, F ∈ Aψ if there exists a function ω ∈ Ω, see (1.1), such that

F(z) = zψ(ω(z)) for all z ∈ D. (1.5)

We represent coefficients of such functions using determinants.
Clearly, every F ∈ Aψ is locally univalent at the origin, and the inverse function F−1 preserves z = 0.

Denote

Bψ := {F−1 : F ∈ Aψ}.

We establish sharp estimates on early Taylor coefficients and the Fekete–Szegö functional over Bψ.
It turns out that for an appropriate choice of the function ψ the class Bψ coincides withJr. This enables

us in Section 3 to apply the previous results to non-linear resolvents and to solve Problems 1 and 2. Namely,
Proposition 3.1 and Theorem 3.1 solve Problem 1 for Jr, while Theorem 3.3 solves it for J . Theorem 3.2
solves Problem 2 for Jr and Theorem 3.4 gives a partial solution of Problem 2 for the class J . The results
of this section complete and generalize earlier results obtained in [6].

It is worth mentioning that in geometric function theory different coefficient functionals are studied as
usual over families of normalized univalent functions. By this reason we complete the paper presenting a
theorem that solves problems analogous to the above Problems 1 and 2 over the class of normalized resolvents.

2. Estimates over the classesAψ andBψ

We now focus on the case

ψ(z) = β +
αz

1 − z
, (2.1)

where α, β ∈ C with Re β
α > 0. Each such function ψ maps the open unit disk D onto a half-plane. The

subordination relation F(z)
z ≺ ψ(z) means

Aψ =

{
F : F(0) = F′(0) − β = 0, Re

1
α

(
F(z)

z
− β

)
> −

1
2

}
.

Proposition 2.1. Let F ∈ Aψ, that is, F(z) = z
(
β + αω(z)

1−ω(z)

)
with ω(z) =

∞∑
n=1

cnzn
∈ Ω. Then the Taylor coefficients of

F can be calculated by the formula

ap = α · det


c1 c2 c3 . . . cp−1
−1 c1 c2 . . . cp−2
0 −1 c1 . . . cp−3
...

...
0 . . . 0 −1 c1


, p ≥ 2.
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Proof. Write ψ in the form ψ(z) = β − α + α 1
1−z . Then each F ∈ Aψ can be written as

F(z)
z
= β − α + α

F̃(z)
z
, where F̃(z) =

z
1 − ω(z)

.

Let F̃(z) =
∞∑

n=1
ãnzn. Then a1 = β− α and ap = αãp, p ≥ 2. Reminding that ãp can be calculated by Theorem 4.1

in [7], we complete the proof.

Let now turn to the class Bψ.

Example 2.1. Let F ∈ Aψ with ω ∈ Ω defined by ω(z) = eiθz, θ ∈ R. Then G = F−1
∈ Bψ satisfies

(β − α)eiθG2(z) − (β + zeiθ)G(z) + z ≡ 0.

Solve this equation taking in mind that G(0) = 0. Then we get

G(z) =
2z

β + zeiθ +
√

(β − zeiθ)2 + 4αeiθz
. (2.2)

The following auxiliary assertion will be used to estimate the early coefficients and the Fekete–Szegö
functionals over the classesAψ and Bψ.

Lemma 2.1. Let a, b ∈ C. Then for any ω(z) =
∞∑

n=1
cnzn

∈ Ω the following estimate holds:

|ac2
1 + bc2| ≤ max{|a|, |b|}. (2.3)

This inequality is sharp. Specifically,

if |a| > |b|, equality in (2.3) holds only for ω(z) = eiθz, θ ∈ R;

if |a| < |b|, equality in (2.3) holds only for ω(z) = eiθz2, θ ∈ R;

if |a| = |b|, equality in (2.3) holds only for ω(z) = z ρ+eiθz
1+ρeiθz , where ρ ∈ D and θ ∈ R.

Proof. By the Schwarz Lemma |c1| ≤ 1. Also |c2| ≤ 1 − |c1|
2 (see, for example, [4]). Thus,

|ac2
1 + bc2| ≤ |a| · |c1|

2 + |b| · |c2| ≤ max{|a|, |b|}. (2.4)

To find extremal functions, let separate the following cases.
If |a| > |b|, both signs in (2.4) are equalities only when |c1| = 1 and c2 = 0. By the Schwarz Lemma

w(z) = eiθz, θ ∈ R, is the only extremal function in this case.
If |a| < |b|, both signs in (2.4) are equalities only when c1 = 0 and |c2| = 1. Then ω(z) = eiθz2 with some

θ ∈ R is the only extremal function in this case.
Suppose |a| = |b|. The second sign in (2.4) is equality only when c2 = (1− |c1|

2)e−iθ, θ ∈ R, that is, ω is the
product of the identity mapping Id(z) = z with an automorphism of the disk. The first sign in (2.4) becomes
equality only if arg b − θ = arg a + 2 arg c1. The proof is complete.

Now we are ready to present sharp estimates for the early coefficients over the class Bψ as well as
extremal functions. Assume that F ∈ Aψ and

G(z) = F−1(z) =
∞∑

k=1

bkzk. (2.5)



M. Elin, F. Jacobzon / Filomat 37:3 (2023), 797–808 801

Theorem 2.1. Let F ∈ Aψ and G = F−1
∈ Bψ have Taylor expansion (2.5). Then b1 =

1
β and

(1) |b2| ≤
|α|
|β|3 with equality only for F(z) = zψ(eiθz), θ ∈ R. In this case G = F−1 is defined by (2.2).

(2) |b3| ≤
|α|
|β|5 max{|β|, |2α − β|}. Moreover,

(i) if Re β
α < 1, then equality holds only for F(z) = zψ(eiθz) with some θ ∈ R;

(ii) if Re β
α > 1, then equality holds only for F(z) = zψ(eiθz2) with some θ ∈ R;

(iii) if Re β
α = 1, then equality holds only for F(z) = zψ

(
z ρ+eiθz

1+ρeiθz

)
with some ρ ∈ D and θ ∈ R.

Proof. Formula (2.1) implies ψ(z) = β + α
∞∑

n=1
zn. By (1.5) we have a1 = F′(0) = β, hence b1 =

1
β

by (2.5).

Further, Proposition 2.1 gives a2 = αc1. Using the fact that F◦G = Id we get F′′(0)G′(0)2 + F′(0)G′′(0) = 0.
Then

b2 = −
αc1

β3 . (2.6)

By the Schwarz Lemma |c1| ≤ 1 with equality only for rotations ω(z) = eiθz. The explicit formula for G was
found in Example 2.1. Thus assertion (1) is proven.

Similarly, one sees that a3 = α(c2
1 + c2) and b3 =

1
β5 (2a2

2 − a3β), that is,

b3 =
α

β5 ((2α − β)c2
1 − βc2). (2.7)

Denote a := 2α − β and b := −β. Assertion (2) holds by Lemma 2.1.

Remark 2.1. It follows from the proof of Theorem 2.1 that |a2| ≤ |α| with equality only for F(z) = zψ(eiθz), θ ∈ R,
and |a3| ≤ 2|α| with equality only for ω(z) = z ρ+eiθz

1+ρeiθz for some ρ ∈ D and θ ∈ R. Moreover, equalities |a2| = |α| and

|b2| =
|α|
|β|3 are equivalent and imply |b3| =

|α||2α−β|
|β|5 .

To proceed we note that Proposition 2.1 enables to obtain estimates of the Fekete–Szegö functionalΦ(·, λ)
defined by (1.4) over the class Aψ by a straightforward calculation. We provide estimates on Φ(·, λ) over
both classesAψ and Bψ, as well as describe extremal functions.

Theorem 2.2. Let F ∈ Aψ and G = F−1
∈ Bψ. Then

|Φ(G, λ)| ≤
|α|

|β|6
max(|β|, |β − (2 − λ)α|).

Moreover,

(i) if |β − (2 − λ)α| > |β|, then equality holds only for F(z) = zψ(eiθz), θ ∈ R;

(ii) if |β − (2 − λ)α| < |β|, then equality holds only for F(z) = zψ(eiθz2), θ ∈ R;

(iii) if |β − (2 − λ)α| = |β|, then equality holds only for F(z) = zψ
(
z ρ+eiθz

1+ρeiθz

)
with ρ ∈ D and θ ∈ R.

Proof. Using formulas (2.6) and (2.7), we calculate

|Φ(G, λ)| =
|α|

|β|6

∣∣∣(β − (2 − λ)α)c2
1 + βc2

∣∣∣ .
Denote a := β − (2 − λ)α and b := β. Then the result follows from Lemma 2.1.
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Note in passing that using early coefficients of F that were found in the proof of Theorem 2.1, one sees

|Φ(F, λ)| = |α|
∣∣∣(β − λα)c2

1 + β
∣∣∣ = |β|6|Φ(G, 2 − λ)|.

Therefore, in fact, Theorem 2.2 provides also the sharp estimates on |Φ(·, λ)| overAψ, as well as the extremal
functions.

To be more concrete, let Re β > 0 and α = 2 Re β. Then the function ψ maps the open unit disk onto
the right half-plane. So, the last displayed formula can be transformed to estimates over the Noshiro–
Warschawski class. In fact, this estimate coincides with the particular case m = n = 2 of Theorem 3.2 in
[5].

Example 2.2. Consider the set of all functions F ∈ Hol(D,C) such that F(0) = F′(0) − 1 = 0 and Re F(z)
z ≥

1
2 . This

is equivalent to F ∈ Aψ with ψ(z) = 1
1−z , that is, to the choice α = β = 1 . It is well-known that this class contains

the class S∗( 1
2 ) of starlike functions of order 1

2 which, in turn, contains the class C of convex functions. Clearly, Aψ

is much wider since its elements are not necessarily univalent functions. Combination of Theorem 2.2 with results
proven in [14] leads to

|Φ(F, λ)| ≤


max( 1

3 , |1 − λ|) for F ∈ C,
max( 1

2 , |1 − λ|) for F ∈ S∗( 1
2 ),

max(1, |1 − λ|) for F ∈ Aψ.

3. Estimates for nonlinear resolvents

In this section we rely on previous results to establish estimates on the Taylor coefficients and the
Fekete–Szegö functional over the class of nonlinear resolvents and to show that these estimates are sharp.

It turns out that for specific choices of ψ, the classes Bψ consist of non-linear resolvents. To make this
clear, fix q ∈ Cwith Re q > 0. From now on we focus on the particular case α = 2r Re q and β = 1+ rq, that is,

ψr(z) = 1 + r
q + qz
1 − z

= 1 + rq + 2r Re q
∞∑

n=1

zn.

Notice that in this case Φn(ψr, λ) = (2r Re q)2(1 − λ) for n ≥ 1.
The following criteria for a holomorphic function F to belong to the classAψr follows directly from our

notations.

Lemma 3.1. Let F ∈ Hol(D,C), F(0) = 0. The following conditions are equivalent:

(i) Re F(z)
z ≥ 1 for all z ∈ D and F′(0) = 1 + rq;

(ii) F(z) = z + rz q+qω(z)
1−ω(z) for some ω ∈ Ω;

(iii) F ∈ Aψr .

Each condition of this lemma is equivalent to the fact that the function f defined by

f (z) =
F(z) − z

r
= z

q + qω(z)
1 − ω(z)

, ω ∈ Ω, (3.1)

is a semi-complete vector field on D by the Berkson–Porta formula. Hence the (right) inverse function
F−1 =: G(= Gr), which, in fact, solves the functional equation

Gr + r f ◦ Gr = Id
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is holomorphic in the open unit disk D by Theorem 1.1. (Recall that Gr is a univalent self-mapping of D,
which is called the resolvent of f , see Section 1.)

Let construct several semi-complete vector fields by formula (3.1). These examples will be useful in the
sequel.

Example 3.1. Let ω ∈ Ω and f (z) = z q+qω(z)
1−ω(z) .

(i) Choosing ω(z) = eiθz, θ ∈ R, we get f1(z) = z
q + qzeiθ

1 − zeiθ . In this case

Gr(z) =
2z

zeiθ + rq + 1 +
√

(zeiθ − 1 − rq)2 + 8rzeiθ Re q
. (3.2)

Indeed, the form of Gr in (3.2) can be obtain from Example 2.1.

(ii) Choosing ω(z) = eiθz2, θ ∈ R, we get f2(z) = z
q + qeiθz2

1 − eiθz2
.

(iii) Choosing ω(z) = z ρ+eiθz
1+ρeiθz with ρ ∈ D and θ ∈ R, we get

f3(z) = z
q +

(
qρ + ρqeiθ

)
z + qeiθz2

1 + (ρeiθ − ρ)z − eiθz2
.

If |ρ| = 1, then f3 coincides with f1, while if ρ = 0 then f3 ≡ f2.

Throughout this section, we will write the functions f1, f2, f3 without explicitly indicating their dependence on the
parameters θ and ρ, although this dependence is implied. Note that f1, f2 and f3 can be obtained from extremal
functions described in Theorem 2.2 by the formula f (z) = F(z)−z

r (see (3.1)).

We denote the by Jr set of nonlinear resolvents Gr for all semi-complete vector fields f normalized by
f (0) = 0 and f ′(0) = q (thus Jr = Bψr ).

Let a nonlinear resolvent Gr ∈ Jr have the Taylor expansion

Gr(z) =
z

1 + rq
+

∞∑
n=2

bnzn.

Theorems 2.1–2.2 imply estimates on the Taylor coefficients and the Fekete–Szegö functional over Jr.
Indeed, let substitute β = 1 + rq and α = 2r Re q into the inequalities in that theorems. Then using the
notations

uq(r) :=
2r Re q
|1 + rq|5

and

vq(r) := uq(r) · wq(r) with

wq(r) :=

∣∣∣1 + rq − 2(2 − λ)r Re q
∣∣∣

|1 + rq|


(3.3)

one gets:

Proposition 3.1. For every G ∈ Jr the following estimates hold:

|b2| ≤ uq(r) · |1 + rq|2, (3.4)

|b3| ≤ uq(r) ·max
(
|1 + rq|,

∣∣∣1 + rq − 4r Re q
∣∣∣), (3.5)

|Φ(G, λ)| ≤ max
(
uq(r), vq(r)

)
. (3.6)
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Comparison of the estimates on b2 and b3 in this proposition with Theorem 2.1 allows to get the
description of functions maximizing |b2| and |b3| overJr. To this end we use semi-complete vector fields f1,
f2 and f3 introduced in Example 3.1.

Theorem 3.1. Estimates (3.4) and (3.5) are sharp. Moreover, let G ∈ Jr be the resolvent of f , then

(i) if f = f1, then equality in (3.4) holds for all r > 0 and equality in (3.5) holds whenever rRe q > 1;

(ii) if either f = f2 and r Re q < 1, or f = f3 and r Re q = 1, then inequality (3.4) is strong, while (3.5) becomes
equality;

(iii) otherwise, both inequalities (3.4) and (3.5) are strong for all r > 0.

Note that in the case (i) G is defined by (3.2) and for rRe q > 1 we have |b3| =
2r Re q
|1+rq|5 ·

∣∣∣1 + rq − 4r Re q
∣∣∣.

Proof. Recall that G ∈ Jr is the resolvent of f only if G is the inverse function of F = Id+r f (cf. Lemma 3.1
and formula (3.1)).

Suppose that r Re q < 1. Then by Theorem 2.1, equality in (3.5) holds only if F(z) = zψr(z2eiθ), θ ∈ R. In
this case f = f2 (cf. Example 3.1(ii)) and inequality in (3.4) is strong.

If r Re q = 1, then by assertion (iii) of Theorem 2.1, equality in (3.5) holds only if F(z) = zψ
(
z ρ+eiθz

1+ρeiθz

)
with

some ρ ∈ D and θ ∈ R. In this case f = f3 (cf. Example 3.1(iii)) and inequality in (3.4) is strong. Assertion
(ii) is proven.

By assertions (1) and (2(i)) of Theorem 2.1, if F(z) = zψr(eiθz) with some θ ∈ R, then equality in (3.5)
holds when r Re q > 1, while equality in (3.4) holds for all r > 0. In this case G fits to f1 and is defined by
(3.2) (cf. Example 3.1(iii)). So, assertion (i) is proven. Moreover, we have |b3| =

2r Re q
|1+rq|5 ·

∣∣∣1 + rq − 4r Re q
∣∣∣ by

Remark 2.1.
Otherwise, if G ∈ Jr is not resolvent of either f1, or f2, or f3, then inequalities in (3.4) and (3.5) are strong

for all r > 0 due to Theorem 2.1. This completes the proof.

Corollary 3.1. Let {Gr}r>0 be the resolvent family for a semi-complete vector field.

(i) Equality in (3.4) holds for some r > 0 if and only if it holds for all r > 0.

(ii) Equality in (3.5) holds for some r < 1
Re q (respectively, r > 1

Re q ) if and only if it holds for all r < 1
Re q (respectively,

r > 1
Re q ).

Recall that Jr is a subclass of the class of hyperbolically convex functions normalized by G(0) = 0 and
G′(0) = 1

1+rq . It follows from a result in [15] that |b2| ≤ uq(r)|1+rq|2+ |rq|2

|1+rq|3 for hyperbolically convex functions
and this bound is sharp, while for the best of our knowledge the sharp bound on b3 is unknown.

Search for extremal functions to the Fekete–Szegö functional Φ(·, λ) over Jr is a more complicated
problem. To solve it, in addition to notations (3.3), we denote

c :=
3
2
− i

1
2

tan(arg q), ρ :=
|q|

2 Re q
and µ :=

2 − Reλ

|λ − c|2 − ρ2
. (3.7)

Define a partition of the complex plane C =
5⋃

i=1
Si as follows (see Fig.1)

S1 =
{
λ ∈ C : Reλ ≥ 2, λ < Dρ(c) ∪ {2, 2 − i tan(arg q)}

}
,

S2 = {λ ∈ C : Reλ ≤ 2, λ ∈ Dρ(c) \ {2, 2 − i tan(arg q)}},
S3 = {2, 2 − i tan(arg q)},
S4 = {λ ∈ C : Reλ > 2 and λ ∈ Dρ(c)},
S5 = {λ ∈ C : Reλ < 2 and λ < Dρ(c)}.


(3.8)
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Figure 1: Partition of C

It can be easily seen that if λ ∈ S1 (respectively, λ ∈ S2, λ ∈ S3) then one has uq(r) < vq(r) (respectively
uq(r) > vq(r), uq(r) = vq(r)) for all r > 0. In the case λ ∈ S4

⋃
S5, the relation between uq(r) and vq(r) depends

on r.

Theorem 3.2. Fix r > 0. Then the extremal functions for Φ(·, λ) over Jr can be described as follows.

(1) If λ ∈ S1, then the only extremal function is the resolvent of f1, see (3.2).

(2) If λ ∈ S2, then the only extremal function is the resolvent of f2.

(3) If λ ∈ S3, then the only extremal function is the resolvent of f3.

(4) If λ ∈ S4 then

for r < µ, the only extremal function is the resolvent of f1;

for r > µ, the only extremal function is the resolvent of f2;

for r = µ, the only extremal function is the resolvent of f3.

(5) If λ ∈ S5 then

for r > µ, the only extremal function is the resolvent of f1;

for r < µ, the only extremal function is the resolvent of f2;

for r = µ, the only extremal function is the resolvent of f3.

Proof. It follows from (3.6) in Proposition 3.1 and notations (3.3) that

|Φ(Gr, λ)| ≤

 vq(r), if wq(r) > 1,

uq(r), if wq(r) ≤ 1.

Thus we have to verify whether (and where) wq(r) is greater than 1, or conversely. This verification results
in explicit relation

|Φ(Gr, λ)| ≤

 vq(r), if 2 − Reλ < r Re q
(
|λ − c|2 − ρ2

)
,

uq(r), if 2 − Reλ ≥ r Re q
(
|λ − c|2 − ρ2

)
.

(3.9)

Consider now the three cases: (a) 2 − Reλ < r Re q
(
|λ − c|2 − ρ2

)
,

(b) 2 − Reλ > r Re q
(
|λ − c|2 − ρ2

)
, and (c) 2 − Reλ = r Re q

(
|λ − c|2 − ρ2

)
.
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Theorem 2.2 with α = 2r Re q and β = 1 + rq implies that estimate (3.9) is sharp. Furthermore, the same
theorem describes all of the extremal cases. Namely,

|Φ(Gr, λ)|=


vq(r), in case (a) only when G is the resolvent of f1,
uq(r), in case (b) only when G is the resolvent of f2,
uq(r), in case (c) only when G is the resolvent of f3,

(cf. Example 3.1). We now notice that

• the case (a) occurs for all r > 0 whenever λ ∈ S1, for r < µ whenever λ ∈ S4, and for r > µ whenever
λ ∈ S5;

• the case (b) occurs for all r > 0 whenever λ ∈ S2, for r > µ whenever λ ∈ S4, and for r < µ whenever
λ ∈ S5;

• the case (c) occurs for all r > 0 whenever λ ∈ S3 and for r = µ whenever λ ∈ S4 ∪ S5.

Combining these facts, we complete the proof.

Now we pass to the set of all resolvents

J :=
⋃
r>0

Jr.

Our aim is to solve Problems 1 and 2 over J . For simplicity we concentrate on the case q = 1.
We first establish estimates and extremal functions for coefficients b2 and b3.

Theorem 3.3. Let G ∈ J . Then

(a) |b2| ≤
8
27 with equality only if G is the resolvent of f1 and belongs toJ 1

2
. In this case G(z) =

2z

zeiθ + 3
2 +

√
(zeiθ − 3

2 )2 + 4zeiθ
,

hence |b3| =
16

243 .

(b) |b3| ≤
27
128 with equality only if G is the resolvent of f2 and belongs to J 1

3
. In this case b2n = 0.

Proof. Let G ∈ Jr for some r > 0. Inequality (3.4) implies

|b2| ≤ max
r>0

2r
(1 + r)3 =

8
27
,

where the maximum is attained at r = 1
2 . Otherwise 2r

(1+r)3 <
8
27 .

Furthermore, it follows from Theorem 3.1 that equality |b2| =
8

27 holds only if G is the resolvent of
f1(z) = z 1+zeiθ

1−zeiθ , θ ∈ R. Then b2 =
8
27 eiθ and b3 =

16
243 e2iθ. In addition, G ∈ J 1

2
is defined by formula (3.2) with

q = 1 and r = 1
2 . This proves assertion (a).

Further, |b3| ≤
2r

(1+r)5 ·max (1 + r, |3r − 1|) by (3.5). For r > 1 we have |b3| ≤
2r(3r−1)
(1+r)5 . Since 2r(3r−1)

(1+r)5 is a
decreasing function, |b3| < 1

8 for all r > 1. For 0 < r ≤ 1 we have |b3| ≤
2r

(1+r)4 . Then max 2r
(1+r)4 is attained at

r = 1
3 and equals 27

128 . By statement (ii) of Theorem 3.1, the extremal resolvent G ∈ J 1
3

fits to f2(z) = z 1+eiθz2

1−eiθz2 .
This implies G is odd, so b2n = 0 for all n.

Next we obtain estimate on the Fekete–Szegö functional Φ(·, λ) over J . Note that for q = 1 the function

uq(r) = 2r
(1+r)5 attains the maximal value k = 1

2 ·
(

4
5

)5
at the point r = 1

4 .
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Theorem 3.4. Let G ∈ J . Then

|Φ(G, λ)| ≤ k ·max(1, |2λ − 3|)

for all λ ∈ C. Moreover, the estimate |Φ(G, λ)| ≤ k is sharp for every λ such that |2λ − 3| ≤ 1.

Proof. Substituting q = 1 in (3.7), we get c = 3
2 , ρ = 1

2 and µ = 4(2−Reλ)
|2λ−3|2−1

.
Now we relate to the partition of C introduced in (3.8). First, let λ ∈ S1 = {λ ∈ C : Reλ ≥ 2} \ {2}. Then

case (a) from the proof of Theorem 3.2 occurs. Therefore |Φ(G, λ)| ≤ v1(r) by (3.9). Let us estimate v1(r) in
(3.3) as follows

v1(r) = u1(r) ·
∣∣∣∣∣1 + 2r

r + 1
(λ − 2)

∣∣∣∣∣
= u1(r)

(
1 +

r
r + 1

· 4 Re(λ − 2) +
( r

r + 1

)2
· 4|λ − 2|2

) 1
2

< u1(r)
(
1 + 4 Re(λ − 2) + 4|λ − 2|2

) 1
2
= u1(r) · |2λ − 3|.

Thus, |Φ(G, λ)| < k · |2λ − 3| for all r > 0.
Second, let λ ∈ S5 = {λ ∈ C : Reλ < 2 and λ < D 1

2
( 3

2 )}. By the proof of Theorem 3.2, for 0 < r ≤ µ
inequality |Φ(G, λ)| ≤ u1(r) holds, while for r > µ inequality |Φ(G, λ)| ≤ v1(r) holds.

We claim that |Φ(G, λ)| < k · |2λ − 3| for all r > 0. The notations ν := 1
2−λ , a = Re ν and b = Im ν is

convenient to estimate v1(r). Indeed, for all λ ∈ S5 we have µ = a
1−a and 0 < a < 1. Remark also, that r > µ

implies r
r+1 − a > 0. Then

v1(r) = u1(r) ·
∣∣∣∣∣1 + 2r

r + 1
(λ − 2)

∣∣∣∣∣
= u1(r)

(
1 +

r
r + 1

·
4

a2 + b2

( r
r + 1

− a
)) 1

2

< u1(r)
(
1 +

4
a2 + b2

(1 − a)
) 1

2

= u1(r) · |2λ − 3|.

Thus, for all λ ∈ S5 we have |Φ(G, λ)| ≤ k · |2λ − 3|.
Further, if λ ∈ S2 = {λ ∈ C : |2λ − 1| ≤ 3} \ {2} (respectively, λ = 2), then by Proposition 3.1 and the proof

of Theorem 3.2, |Φ(G, λ)| ≤ u1(r) for all r > 0 with equality only when G is the resolvent of f2 (respectively,
of f3) and belongs to J 1

4
. Thus for |2λ − 3| ≤ 1 the estimate |Φ(G, λ)| ≤ max u1(r) = k is sharp.

Since S4 = ∅ as q = 1, the proof is complete.

Inter alia, Theorem 3.4 includes the sharp estimate on the Hankel determinant H2
1 over J , namely,

|H2
1(G)| ≤ k.

Remark 3.1. We emphasize that our estimate is sharp for λ ∈ S2 ∪ S3, while for λ ∈ S1 ∪ S5 it can be improved.
For instance, let λ ∈ S1. Denote a := Re(λ−2) ≥ 0 and b := |λ−2|2 ≥ a2. We already know that |Φ(G, λ)| ≤ v1(r)

as G ∈ Jr. Hence we have to estimate sup
r>0

v1(r). Consider the function v(t) := v1

(
t

1−t

)
= 2t(1 − t)4

|1 + 2t(λ − 2)|

with t = r
1+r ∈ (0, 1). A straightforward calculation leads to(

v(t)2

2

)′
=2t(1 − t)7

(
1 − 5t − 24btϕ(t)

)
) with ϕ(t)= t2

−

(1
3
−

11a
12b

)
t −

a
4b
.

Denote t1 := 1
2

[
1
3 −

11a
12b +

√(
1
3 −

11a
12b

)2
+ a

b

]
, the largest root of ϕ. One sees that 1

4 < t1 < 1 and concludes that v is a

decreasing function as t > t1. Therefore the problem concerns sup
0<t<t1

v(t). Since t(1 − t)4 takes its maximal values k at

t = 1
5 , while |1 + 2t(λ − 2)| is an increasing function, we summarize that v(t) ≤ k · |1 + 2t1(λ − 2)| < k · |2λ − 3|.
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To complete the paper, recall that every element of any resolvent family (that is, each G ∈ J) is a
univalent self-mapping of the open unit disk that preserves zero. Usually, in geometric function theory
different coefficient functionals are studied over families of normalized univalent functions. By this reason
we introduce now the class of normalized resolvents

J̃ :=
{
1 ∈ Hol(D,C) :

1

1 + r
∈ Jr for some r > 0

}
(obviously, if 1 ∈ J̃ , then 1(0) = 1′(0) − 1 = 0) and solve Problems 1 and 2 over J̃ .

Theorem 3.5. Let 1 ∈ J̃ with 1(z) = z + b2z2 + b3z3 + . . .. Then

(a) |b2| ≤
1
2 with equality only if 12 is the resolvent of f1, in which case |b3| =

1
4 .

(b) |b3| ≤
8
27 with equality only if 21

3 is the resolvent of f2, in which case |b2n| = 0.

(c)
∣∣∣Φ(1, λ)

∣∣∣ ≤ 8
27 ·max(1, |2λ − 3|) for all λ ∈ C.

Consequently, the inequality
∣∣∣H2

1(1)
∣∣∣ ≤ 8

27 is sharp.
The proof of Theorem 3.5 is similar to those of Theorems 3.3 and 3.4.
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