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Abstract. Let R be a ring and a, d1, d2 ∈ R. First, we obtain several equivalent conditions for the equality
aa∥d1 = a∥d2 a to hold, under the condition a ∈ R∥d1 ∩ R∥d2 . Then, when a ∈ R∥•d1 ∩ R∥•d2 , the equality
ama∥d1 = a∥d2 am (m ∈ N) is also investigated by means of Drazin inverses. Next, some characterizations for
the invertibility of aa∥d1 − a∥d2 a are obtained. Particularly, a number of examples are given to illustrate our
results.

1. Introduction

Throughout this paper, R denotes an associative ring with unity 1 and N means the set of all positive
integers. An involution ∗: R→ R is an anti-isomorphism: (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all
a, b ∈ R. We call R a ∗-ring if there exists an involution ∗ on R. First, we list several types of generalized
inverses as follows.

An element a ∈ R is said to be Moore-Penrose invertible with respect to the involution ∗ [18] if the
following equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa

have a common solution. Such solution is unique if it exists, and is denoted by a†.
The Drazin inverse [9] of a ∈ R is the element x ∈ R which satisfies

(1k) ak = ak+1x for some k ∈N, (2) xax = x, (5) ax = xa.

The element x is unique if it exists and we will write x = aD. The smallest such k is called the index of a, and
denoted by ind(a). Particularly, if ind(a) = 1, then the Drazin inverse aD is called the group inverse of a and
it is denoted by a#.
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In 2010, Baksalary and Trenkler [1] introduced the core inverse and dual core inverse for complex
matrices, which were extended to the ∗-ring case [19]. The core inverse of a ∈ R is the unique element x
(written x = a #O) satisfying

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (6) xa2 = a, (7) ax2 = x.

Similarly, the dual core inverse of a ∈ R is the unique element x ∈ R (written x = a #O) satisfying

(1) axa = a, (2) xax = x, (4) (xa)∗ = xa, (6
′

) a2x = a, (7
′

) x2a = x.

The symbols R−1, R†, RD, R#, R #O and R #O stand for the sets of all invertible, Moore-Penrose invertible,
Drazin invertible, group invertible, core invertible and dual core invertible elements of R, respectively.

As is well known, EP matrix A ∈ Cn×n [20] means R(A) = R(A∗), where R(A) denotes the column space
of A, i.e., AA† = A†A. Then, a square matrix A is said to be co-EP [5] if AA† − A†A is invertible. In a ∗-ring
R, an element a ∈ R is said to be EP (resp. co-EP) if a ∈ R† and aa† = a†a (resp. aa† − a†a ∈ R−1). Many
researchers studied the EP-ness and co-EP-ness in different settings, such as complex matrices, C∗-algebras,
Banach algebras and rings [2, 4–8, 11, 15–17]. For the co-EP matrix, we have to mention the next results.
Benı́tez and Rakočević [5] showed that the co-EP-ness of A ∈ Cn×n implies the nonsingularity of A ± A†,
A ± A∗, AA∗ ± A∗A and AA† ± A†A, which were extended to the nonsingularity [25] of aA + bA† + cAA†,
aA + bA∗ + cAA∗, aAA∗ + bA∗A + cA(A∗)2A, aAA† + bA†A + cA(A†)2A, where a, b, c ∈ C and ab , 0. Later, the
authors [23] showed that if A is a co-EP matrix, then aAA† + bA†A + cA(A†)2A + dA†A2A† is nonsingular,
where a, b, c, d ∈ C and ab , cd.

In 2011, Mary [13] defined a new generalized inverse called the inverse along an element (namely Mary
inverse) in a ring or semigroup. The element a ∈ R is said to be invertible along d ∈ R [13] if there exists
b ∈ R such that

bad = d = dab, bR ⊆ dR and Rb ⊆ Rd,

i.e.,
bab = b, bR = dR and Rb = Rd.

If such b exists, then it is unique and is said to be the inverse of a along d, which will be denoted by a∥d. In
particular, a∥1 = a−1, a∥a = a# and a∥a∗ = a†. Moreover, if aa∥da = a, then we say that a∥d is an inner inverse
of a along d, and a is inner invertible along d. Next, we use R∥d and R∥•d to denote the sets of all invertible
elements along d and inner invertible elements along d in the ring R, respectively.

After introducing the notion of the inverse along an element, EP and co-EP properties were investigated
by means of Mary inverses. For example, Benı́tez and Boasso [3] gave several equivalent characterizations
for the equality aa∥d = a∥da (when a ∈ R∥d), which were applied in a ∗-ring by taking d = a∗. Wang, Mosić
and Yao [22] also studied this equality in a ring. Recently, the authors [24] showed that the invertibility
of aa∥d − a∥da is related to the invertibility of elements expressed by certain functions of a, d and suitable
elements from the center of the ring.

Motivated by the above results, in this paper we will consider more general case, that is to say when
a ∈ R∥d1 ∩ R∥d2 or a ∈ R∥•d1 ∩ R∥•d2 , the equality aa∥d1 = a∥d2 a, as well as the invertibility of aa∥d1 − a∥d2 a is
investigated, extending the special case d1 = d2. In addition, the results obtained are applied to the core
and dual core inverses in a ∗-ring.

The following lemmas will be used in the sequel.

Lemma 1.1. [10, Theorem 1] Let a ∈ R. Then a ∈ R# if and only if a ∈ a2R ∩ Ra2. In this case, if a = a2x = ya2,
then a# = ax2 = y2a = yax.

Lemma 1.2. [14, Theorem 2.1] Let a, d ∈ R. Then the following statements are equivalent:

(i) a ∈ R∥d. (ii) dR ⊆ daR and da ∈ R#. (iii) Rd ⊆ Rad and ad ∈ R#.

In this case, a∥d = d(ad)# = (da)#d.



H. L. Zou et al. / Filomat 37:30 (2023), 10237–10247 10239

Lemma 1.3. [24, Lemma 3] and [21, Corollary 1] Let a, d ∈ R. Then the following statements are equivalent:

(i) a ∈ R∥•d. (ii) d ∈ R∥•a. (iii) a ∈ R∥d and d ∈ R∥a.

In this case, aa∥d = d∥ad and a∥da = dd∥a.

2. Characterizations for the equality aa∥d1 = a∥d2 a

In this section, we will mainly consider two aspects. One is the characterizations for the equality
aa∥d1 = a∥d2 a, when a ∈ R∥d1 ∩ R∥d2 . The other is the equivalent conditions of the equality ama∥d1 = a∥d2 am

(m ∈N), when a ∈ R∥•d1 ∩R∥•d2 . Both of the aspects cover the special case d1 = d2. First, we have to give the
following example to illustrate that aa∥d1 = a∥d2 a does not imply d1 = d2 or a∥d2 a = a∥d1 a in general.

Example 2.1. Let R = C2×2. Then, take a =
(
0 1
1 0

)
, d1 =

(
0 1
0 0

)
and d2 =

(
0 0
1 0

)
. By direct computation we see

that a∥d1 = d1 and a∥d2 = d2. Clearly, aa∥d1 = a∥d2 a. However, d1 , d2 and a∥d2 a , a∥d1 a.

Inspired by [3, Theorem 7.3], we characterize the equality aa∥d1 = a∥d2 a under the condition a ∈ R∥d1 ∩R∥d2

as follows.

Theorem 2.2. Let a, d1, d2 ∈ R be such that a ∈ R∥d1 ∩ R∥d2 . Then the following statements are equivalent:

(i) aa∥d1 = a∥d2 a.

(ii) d1 = d1a∥d2 a and d2 = aa∥d1 d2.

(iii) Rd2a ⊆ Rd1 and ad1R ⊆ d2R.

(iv) Rd1 ⊆ Rd2a and d2R ⊆ ad1R.

(v) Rd1 = Rd2a and d2R = ad1R.

(vi) Rad1 = Rd2a and d2aR = ad1R.

Proof. (i)⇒ (ii), (iii) and (iv). Suppose that aa∥d1 = a∥d2 a. Then, by Lemma 1.2 we deduce

d1 = d1aa∥d1 = d1a∥d2 a = d1(d2a)#d2a ∈ Rd2a

and

d2 = a∥d2 ad2 = aa∥d1 d2 = ad1(ad1)#d2 ∈ ad1R,

which conclude that items (ii) and (iv) hold. In addition,

ad1 = aa∥d1 ad1 = a∥d2 a2d1 = d2(ad2)#a2d1 ∈ d2R

and

d2a = d2aa∥d2 a = d2a2a∥d1 = d2a2(d1a)#d1 ∈ Rd1.

So, item (iii) holds.
(ii)⇒ (i). By item (ii), we get

aa∥d1 = a(d1a)#d1 = a(d1a)#d1a∥d2 a = aa∥d1 a∥d2 a = aa∥d1 d2(ad2)#a
= d2(ad2)#a = a∥d2 a.

(iii)⇒ (i). Note that ad1 = d2u and d2a = vd1, for some u, v ∈ R. So, we claim that

aa∥d1 = ad1(ad1)# = d2u(ad1)# = a∥d2 ad2u(ad1)# = a∥d2 aad1(ad1)# = a∥d2 a2a∥d1 .
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On the other hand,

a∥d2 a = (d2a)#d2a = (d2a)#vd1 = (d2a)#vd1aa∥d1 = (d2a)#d2aaa∥d1 = a∥d2 a2a∥d1 .

Therefore, aa∥d1 = a∥d2 a.
(iv)⇒ (ii). Since Rd1 ⊆ Rd2a, we obtain d1 = xd2a for some x ∈ R. Multiplying the previous equality by

a∥d2 a from the right, we get d1a∥d2 a = xd2aa∥d2 a = xd2a = d1. Similarly, d2 = aa∥d1 d2.
(i)⇔ (v) is clear by what we have proved just now.
(v)⇔ (vi). Note that Rd1 = Ra∥d1 ad1 ⊆ Rad1 and Rad1 ⊆ Rd1. Hence Rd1 = Rad1. Similarly, d2R = d2aR, as

required.

Let us recall the following facts in a ∗-ring [19]: (1) a ∈ R #O
∩ R #O if and only if a ∈ R#

∩ R†. (2) If a ∈ R†,
then a ∈ R∥aa∗ if and only if a ∈ R #O. In this case, a∥aa∗ = a #O. (3) If a ∈ R†, then a ∈ R∥a∗a if and only if a ∈ R #O. In
this case, a∥a∗a = a #O. (4) a is EP if and only if a ∈ R #O

∩R #O with aa #O = a #Oa. Then, by taking d1 = aa∗ and d2 = a∗a
in Theorem 2.2, we directly obtained the next results, which can been seen as the new characterizations for
the EP element in a ∗-ring.

Corollary 2.3. Let R be a ∗-ring and a ∈ R #O
∩ R #O. Then, the following statements are equivalent:

(i) a is EP.

(ii) a = a #Oa2 = a2a #O.

(iii) Ra∗a2
⊆ Raa∗ and a2a∗R ⊆ a∗aR.

(iv) Raa∗ ⊆ Ra∗a2 and a∗aR ⊆ a2a∗R.

(v) Raa∗ = Ra∗a2 and a∗aR = a2a∗R.

(vi) Ra2a∗ = Ra∗a2 and a∗a2R = a2a∗R.

Next, we show that the equality aa∥d1 = a∥d2 a can be described by the equations.

Proposition 2.4. Let a, d1, d2 ∈ R be such that a ∈ R∥d1 ∩ R∥d2 . Then the following statements are equivalent:

(i) aa∥d1 = a∥d2 a.

(ii) There exist x, y ∈ R such that d1ad1xa = d1, ayd2ad2 = d2 and ad1xa = ayd2a.

(iii) There exist x′, y′ ∈ R such that d1x′ = d1, y′d2 = d2, Rx′ ⊆ Rd2a and y′R ⊆ ad1R.

Proof. (i)⇒ (ii). Let x = (ad1)#a∥d2 and y = a∥d1 (d2a)#. Then, it is easy to check that such x, y satisfy item (ii).
(ii)⇒ (i). Suppose that item (ii) holds. Then, we get

aa∥d1 = a(d1a)#d1 = a(d1a)#d1ad1xa = aa∥d1 ad1xa = ad1xa
= ayd2a = ayd2aa∥d2 a = ayd2ad2(ad2)#a = d2(ad2)#a
= a∥d2 a.

(i)⇒ (iii). Let x′ = a∥d2 a and y′ = aa∥d1 . By Theorem 2.2 (i) and (ii), we obtain d1x′ = d1 and y′d2 = d2.
Also, it is clear that Rx′ = R(d2a)#d2a ⊆ Rd2a and y′R = ad1(ad1)#R ⊆ ad1R.

(iii)⇒ (i). Since Rx′ ⊆ Rd2a and y′R ⊆ ad1R, there exist u, v ∈ R such that x′ = ud2a and y′ = ad1v. Hence,
Rd1 = Rd1x′ = Rd1ud2a ⊆ Rd2a and d2R = y′d2R = ad1vd2R ⊆ ad1R. Using Theorem 2.2 (i) and (iv), we have
aa∥d1 = a∥d2 a.

In the following theorem, we consider the relationship between ad1 = d2a and aa∥d1 = a∥d2 a.

Theorem 2.5. Let a, d1, d2 ∈ R be such that a ∈ R∥d1 ∩ R∥d2 . Then the following statements are equivalent:
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(i) ad1 = d2a.

(ii) aa∥d1 = a∥d2 a and d1a∥d2 = a∥d1 d2.

(iii) There exists x ∈ R such that d1ad1x = d1, xd2ad2 = d2 and ad1x = xd2a.

Proof. (i)⇒ (ii) and (iii). Suppose that ad1 = d2a. Then we have

aa∥d1 = ad1(ad1)# = d2a(ad1)# = a∥d2 ad2a(ad1)# = a∥d2 aad1(ad1)#

= a∥d2 aaa∥d1 = (d2a)#d2aaa∥d1 = (d2a)#ad1aa∥d1

= (d2a)#ad1 = (d2a)#d2a
= a∥d2 a

and
d1a∥d2 = d1(d2a)#d2 = d1d2a

(
(d2a)#

)2
d2 = d1ad1

(
(d2a)#

)2
d2

= d1(ad1)#(ad1)2
(
(d2a)#

)2
d2 = a∥d1 (d2a)2

(
(d2a)#

)2
d2

= a∥d1 d2a(d2a)#d2 = a∥d1 d2aa∥d2

= a∥d1 d2.

Hence, item (ii) holds.
Let x = (ad1)# = (d2a)#. Then, we get d1ad1x = d1ad1(ad1)# = d1aa∥d1 = d1 and xd2ad2 = d2 goes similarly.

In addition, ad1x = ad1(ad1)# = aa∥d1 = a∥d2 a = (d2a)#d2a = xd2a, which means item (iii) holds.
(ii)⇒ (i). Since aa∥d1 = a∥d2 a and d1a∥d2 = a∥d1 d2, we have

ad1 = ad1aa∥d1 = ad1a∥d2 a = aa∥d1 d2a = a∥d2 ad2a = d2a.

(iii)⇒ (i). Suppose that (iii) holds. Then,

ad1 = ad1ad1x = ad1xd2a = xd2ad2a = d2a.

Now, we focus on the equivalent conditions for ama∥d1 = a∥d2 am to hold, when a ∈ R∥•d1 ∩ R∥•d2 .

Theorem 2.6. Let a, d1, d2 ∈ R be such that a ∈ R∥•d1 ∩ R∥•d2 and m ∈ N. Then the following statements are
equivalent:

(i) ama∥d1 = a∥d2 am.

(ii) Ram
⊆ Rd1 and amR ⊆ d2R.

(iii) There exist x ∈ Rd1 and y ∈ d2R such that am = am+1x = yam+1.

Proof. (i)⇒ (iii). Let x = a∥d1 and y = a∥d2 . Clearly, x ∈ Rd1 and y ∈ d2R. Also, we see that am = ayam = am+1x
and am = amxa = yam+1.

(iii)⇒ (ii) is obvious.
(ii)⇒ (i). Let us write am = ud1 = d2v, for u, v ∈ R. Then,

am+1a∥d1 = amaa∥d1 = ud1aa∥d1 = ud1 = am

and

a∥d2 am+1 = a∥d2 aam = a∥d2 ad2v = d2v = am.

Hence, ama∥d1 = a∥d2 am+1a∥d1 = a∥d2 am.

Let m = 1 in Theorem 2.6, we have

Corollary 2.7. Let a, d1, d2 ∈ R be such that a ∈ R∥•d1 ∩ R∥•d2 . Then the following statements are equivalent:

(i) aa∥d1 = a∥d2 a.
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(ii) Ra ⊆ Rd1 and aR ⊆ d2R.

(iii) a ∈ R# and a# = a∥d2 aa∥d1 .

Proof. (i)⇔ (ii) and (i)⇒ (iii) are trivial by Theorem 2.6 and Lemma 1.1.
(iii)⇒ (i). From item (iii), we deduce that

aa∥d1 = aa∥d2 aa∥d1 = aa# = a#a = a∥d2 aa∥d1 a = a∥d2 a.

Applying Corollary 2.7 (i)(ii) and Lemma 1.3, we deduce the following result.

Corollary 2.8. Let a, b, d ∈ R be such that a, b ∈ R∥•d. Then, the following statements are equivalent:

(i) aa∥d = b∥db.

(ii) dR ⊆ aR and Rd ⊆ Rb.

By Theorem 2.6 (iii) and [9, Theorem 4], we see that if a ∈ R∥•d1 ∩ R∥•d2 and ama∥d1 = a∥d2 am, then a ∈ RD.
So, we will characterize the equality ama∥d1 = a∥d2 am by using Drazin inverses.

Theorem 2.9. Let a, d1, d2 ∈ R be such that a ∈ R∥•d1 ∩ R∥•d2 ∩ RD and let m,n ≥ ind(a), i, j, l ∈ N. Then the
following statements are equivalent:

(i) ama∥d1 = a∥d2 am.

(ii) ana∥d1 = a∥d2 an.

(iii) R(aD)i
⊆ Rd1 and (aD)iR ⊆ d2R.

(iv) (aD) ja∥d1 = a∥d2 (aD) j.

(v) alaDa∥d1 = a∥d2 aDal.

Proof. (i)⇔ (ii). Obviously, we only need to show that (i)⇒ (ii). Suppose that ama∥d1 = a∥d2 am.
Case 1. If n > m, then we get

ana∥d1 = an−m(ama∥d1 ) = an−ma∥d2 am = an−m−1(aa∥d2 a)am−1 = an−1.

Similarly, we have a∥d2 an = an−1. Hence, ana∥d1 = a∥d2 an.
Case 2: If n < m, then by the hypotheses we conclude that

ana∥d1 = (aD)m−n(ama∥d1 ) = (aD)m−na∥d2 am = (aD)m−n+1(aa∥d2 a)am−1

= (aD)m−n+1am = aDan.

Similarly, we have a∥d2 an = anaD. So, ana∥d1 = a∥d2 an.
(i)⇔ (iii). Since a ∈ RD and m ≥ ind(a), we get

Ram = RaD = R(aD)i and amR = aDR = (aD)iR.

Then, by Theorem 2.6 we obtain the equivalence of (i) and (iii).
(i)⇒ (iv). By the condition ama∥d1 = a∥d2 am, we have

(aD) ja∥d1 = (aD)m+ jama∥d1 = (aD)m+ ja∥d2 am = (aD)m+ j+1aa∥d2 am = (aD) j+1.

Similarly, we get a∥d2 (aD) j = (aD) j+1. Hence, (aD) ja∥d1 = a∥d2 (aD) j.
(iv)⇒ (v). Suppose that item (iv) holds. Then, we get

alaDa∥d1 = al+ j−1(aD) ja∥d1 = al+ j−1a∥d2 (aD) j = al+ j−1a∥d2 a(aD) j+1 = al−1aD.
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Similarly, a∥d2 aDal = aDal−1. Hence, alaDa∥d1 = a∥d2 aDal.
(v)⇒ (i). By the hypotheses, we conclude that

ama∥d1 = am+1aDa∥d1 = am(aaD)la∥d1 = am(aD)l−1alaDa∥d1 = am(aD)l−1a∥d2 aDal = amaD.

Analogously, we get a∥d2 am = aDam. So, ama∥d1 = a∥d2 am.

As a consequence of Theorem 2.9 (i) and (ii), we get the following.

Corollary 2.10. Let R be a ∗-ring and a ∈ R #O
∩ R #O and m,n ∈N. Then, the following statements are equivalent:

(i) ama #O = a #Oam.

(ii) ana #O = a #Oan.

3. Characterizations for the invertibility of aa∥d1 − a∥d2 a

In this section, for given a, d1, d2 ∈ R, when a ∈ R∥d1 ∩ R∥d2 , we investigate several equivalent conditions
for the invertibility of aa∥d1 − a∥d2 a, extending related results in [24]. In the beginning, we need to give an
example to show that aa∥d1 − a∥d2 a ∈ R−1 does not imply d1 , d2 or a∥d2 a , a∥d1 a in general.

Example 3.1. Setting R = M2(Z2). Let a =
(
0 1
1 1

)
, d1 =

(
1 0
1 0

)
and d2 =

(
0 0
0 1

)
. Then, we can check that

a∥d1 = d1, a∥d2 = d2 and aa∥d1 − a∥d2 a ∈ R−1. But, d1 , d2 and a∥d2 a , a∥d1 a.

The following lemmas are necessary to prove our main theorems.

Lemma 3.2. [12, Theorem 3.2] and [4, Theorem 1] Let f , 1 ∈ R be idempotents. Then the following statements
are equivalent:

(i) f − 1 ∈ R−1.

(ii) f R ⊕ 1R = R and R f ⊕ R1 = R.

(iii) There exist idempotents h, k ∈ R such that f h = h, h f = f , 1(1 − h) = 1 − h, (1 − h)1 = 1, k f = k, f k = f ,
(1 − k)1 = 1 − k and 1(1 − k) = 1.

By Lemma 3.2 and the definition of the inverse along an element, we directly obtain

Lemma 3.3. Let a, d1, d2 ∈ R be such that a ∈ R∥d1 ∩R∥d2 . If aa∥d1 − a∥d2 a ∈ R−1, then there exist idempotents h, k ∈ R
satisfying

aa∥d1 h = h, had1 = ad1, a∥d2 a (1 − h) = 1 − h, hd2 = 0,
and (∗1)

kaa∥d1 = k, d1k = d1, (1 − k) a∥d2 a = 1 − k, d2ak = 0.

Denote by C(R) the center of R, that is the set of such elements that commute with all elements of R. The
right annihilator of a ∈ R is defined by a0 = {x ∈ R | ax = 0}. Now, we are ready to establish the following
result concerning the invertibility of aa∥d1 − a∥d2 a.

Theorem 3.4. Let a, d1, d2 ∈ R be such that a ∈ R∥d1 ∩ R∥d2 . Then, the following statements are equivalent:

(i) aa∥d1 − a∥d2 a ∈ R−1.

(ii) r = λ1(ad1)m + λ2(d2a)n + λ3(ad1)m(d2a)n + λ4(d2a)n(ad1)m
∈ R−1, λ1d1r−1(ad1)m = d1, λ2(d2a)nr−1d2 = d2,

λ1λ2(d2a)nr−1(ad1)m = −λ4(d2a)n(ad1)m and λ1λ2d1r−1d2 = −λ3d1d2, where λi ∈ C(R) (i ∈ 1, 4), λ1λ2 ∈ R−1,
λ3λ4 ∈ a0 and m,n ∈N.
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Proof. (i) ⇒ (ii). Suppose that aa∥d1 − a∥d2 a ∈ R−1. In view of Lemma 3.3, there exist idempotents h, k ∈ R
satisfying (∗1). Now, let

r′ = λ1(1 − k)
(
(d2a)#

)n
(1 − h) + λ2k

(
(ad1)#

)m
h − λ3k(1 − h) − λ4(1 − k)h. (∗2)

Since λi ∈ C(R) (i ∈ 1, 4) and λ3λ4 ∈ a0, combining what we have shown yields that

rr′ = (λ1(ad1)m + λ2(d2a)n + λ3(ad1)m(d2a)n + λ4(d2a)n(ad1)m) ·(
λ1(1 − k)

(
(d2a)#

)n
(1 − h) + λ2k

(
(ad1)#

)m
h − λ3k(1 − h) − λ4(1 − k)h

)
= λ1λ2ad1(ad1)#h − λ1λ3(ad1)m(1 − h) + λ1λ2d2a(d2a)#(1 − h) − λ2λ4(d2a)nh
+λ1λ3(ad1)md2a(d2a)#(1 − h) + λ2λ4(d2a)nad1(ad1)#h

= λ1λ2aa∥d1 h − λ1λ3(ad1)m(1 − h) + λ1λ2a∥d2 a(1 − h) − λ2λ4(d2a)nh
+λ1λ3(ad1)ma∥d2 a(1 − h) + λ2λ4(d2a)naa∥d1 h

= λ1λ2h − λ1λ3(ad1)m(1 − h) + λ1λ2(1 − h) − λ2λ4(d2a)nh
+λ1λ3(ad1)m(1 − h) + λ2λ4(d2a)nh

= λ1λ2.

On the other hand, one can check that r′r = λ1λ2. Owing to λ1λ2 ∈ R−1, then we get r ∈ R−1 and
r−1 = (λ1λ2)−1r′, which leads to the equality λ1d1r−1(ad1)m = λ−1

2 d1r′(ad1)m. Now, substituting (∗2) into the
previous equality, we conclude λ1d1r−1(ad1)m = d1. In addition, λ2(d2a)nr−1d2 = d2, λ1λ2(d2a)nr−1(ad1)m =
−λ4(d2a)n(ad1)m and λ1λ2d1r−1d2 = −λ3d1d2 go similarly.

(ii)⇒ (i). First we show that there exist h, k ∈ R such that had1 = ad1, hd2 = 0, d1k = d1 and d2ak = 0. In or-
der to verify this, we need to define h = (λ1(ad1)m + λ3(ad1)m(d2a)n) r−1 and k = r−1 (λ1(ad1)m + λ4(d2a)n(ad1)m).
By item (ii), we obtain

h(ad1)m = (λ1(ad1)m + λ3(ad1)m(d2a)n) r−1(ad1)m

= (ad1)m−1a
(
λ1d1r−1(ad1)m

)
− (λ1λ2)−1(λ3λ4)(ad1)m(d2a)n(ad1)m

= (ad1)m,

which implies had1 = h(ad1)m
(
(ad1)#

)m−1
= (ad1)m

(
(ad1)#

)m−1
= ad1. Also, we get

hd2 = (r − λ2(d2a)n
− λ4(d2a)n(ad1)m) r−1d2

= d2 − λ2(d2a)nr−1d2 − λ4(d2a)n(ad1)m−1a(d1r−1d2)
= d2 − d2 + (λ1λ2)−1(d2a)n(λ3λ4)(ad1)md2
= 0.

Analogously, we have d1k = d1 and d2ak = 0.

Next, our aim is to see that aa∥d1 − a∥d2 a ∈ R−1. By Lemma 3.2, we only need to infer aa∥d1 R ⊕ a∥d2 aR = R
and Raa∥d1 ⊕ Ra∥d2 a = R, which is clearly equivalent to ad1R ⊕ d2aR = R and Rad1 ⊕ Rd2a = R. From the
invertibility of r, we get ad1R+ d2aR = R. Let x ∈ ad1R∩ d2aR. So, x = ad1w1 = d2aw2, for suitable w1,w2 ∈ R.
Hence, x = had1w1 = hd2aw2 = 0, which means ad1R ∩ d2aR = {0}. Therefore, ad1R ⊕ d2aR = R. Similarly,
Rad1 ⊕ Rd2a = R, as announced above.

In particular, when a ∈ R∥•d1 ∩ R∥•d2 , we further characterize the invertibility of aa∥d1 − a∥d2 a as follows.

Theorem 3.5. Let a, d1, d2 ∈ R be such that a ∈ R∥•d1 ∩ R∥•d2 . Then, the following statements are equivalent:

(i) aa∥d1 − a∥d2 a ∈ R−1.

(ii) s = µ1a + µ2ad1 + µ3d2a + µ4ad1d2a ∈ R−1, as−1a = 0 and µ2ad1s−1a = µ3as−1d2a = a, where µi ∈ C(R)
(i ∈ 1, 4) and µ2µ3 ∈ R−1.
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Proof. (i)⇒ (ii). Now, we know that there exist idempotents h, k ∈ R satisfying (∗1). Furthermore, we find
that ha = a and ak = 0, because ha = haa∥d1 a = had1(ad1)#a = ad1(ad1)#a = aa∥d1 a = a and ak = aa∥d2 ak =
a(d2a)#d2ak = 0. Write

s′ = −µ1k(ad1)#(ad2)#a(1 − h) + µ2(1 − k)(d2a)#(1 − h) + µ3k(ad1)#h − µ4k(1 − h).

Note that a(d2a)# = (ad2)#a. Then, one can check that

ss′ = µ2µ3 − µ1µ2ad1(ad1)#(ad2)#a(1 − h) + µ1µ2a(d2a)#(1 − h)
= µ2µ3 − µ1µ2(aa∥d1 a)d2((ad2)#)2a(1 − h) + µ1µ2(ad2)#a(1 − h)
= µ2µ3 − µ1µ2ad2((ad2)#)2a(1 − h) + µ1µ2(ad2)#a(1 − h)
= µ2µ3.

A symmetric argument shows that it is true for s′s = µ2µ3. So, s ∈ R−1 and s−1 = (µ2µ3)−1s′. Using the
expression of s−1, we conclude that the equalities in item (ii) hold.

(ii) ⇒ (i). Suppose that item (ii) holds. Set h = (µ1a + µ2ad1 + µ4ad1d2a)s−1 and k = µ2s−1ad1. Since
µ3as−1d2a = a, we deduce that µ3d2as−1d2 = d2(µ3as−1d2a)a∥d2 = d2aa∥d2 = d2. Also, from µ2ad1s−1a = a, it
follows that µ2d1s−1ad1 = a∥d1 (µ2ad1s−1a)d1 = a∥d1 ad1 = d1. Then, it is straightforward to check that ha = a,
hd2 = 0, d1k = d1 and ak = 0.

Now, we have to claim that aR ⊕ d2R = R. Since m = µ1a + µ2ad1 + µ3d2a + µ4ad1d2a ∈ R−1, we get
aR + d2R = R. Let y ∈ aR ∩ d2R. Then, y = aw1 = d2w2, for some w1,w2 ∈ R. Thereby, y = haw1 = hd2w2 = 0.
This implies aR∩d2R = {0}. Consequently, aR⊕d2R = R. Observe that aR = aa∥d1 aR = aa∥d1 R and d2R = a∥d2 aR.
Hence, aa∥d1 R ⊕ a∥d2 aR = R. Dually, Raa∥d1 ⊕ Ra∥d2 a = R. Therefore, aa∥d1 − a∥d2 a ∈ R−1.

From Lemma 1.3, it follows that Theorem 3.5 becomes to the next result.

Corollary 3.6. Let a, b, d ∈ R be such that a, b ∈ R∥•d. Then, the following statements are equivalent:

(i) aa∥d − b∥db ∈ R−1.

(ii) t = ξ1d+ ξ2ad+ ξ3db+ ξ4dbad ∈ R−1, dt−1d = 0 and ξ2dt−1ad = ξ3dbt−1d = d, where ξi ∈ C(R) (i ∈ 1, 4) and
ξ2ξ3 ∈ R−1.

Let us recall [16, Theorem 4.3]: if a ∈ R #O
∩ R #O, then a is co-EP if and only if aa #O

− a #Oa ∈ R−1. Motivated
by this, we get the following result, which is a new property of the co-EP element.

Corollary 3.7. Let R be a ∗-ring and a ∈ R #O
∩ R #O. Then, the following statements are equivalent:

(i) a is co-EP.

(ii) r = τ1a2a∗ + τ2a∗a2 + τ3a2(a∗)2a2 + τ4a∗a4a∗ ∈ R−1, τ1τ2ar−1a = −τ4a2, τ1a∗r−1a = a #O, τ2ar−1a∗ = a #O,
τ1τ2a∗r−1a∗ = −τ3(a∗)2, where τi ∈ C(R) (i ∈ 1, 4), τ1τ2 ∈ R−1 and τ3τ4 ∈ a0.

(iii) s = ν1a + ν2a2a∗ + ν3a∗a2 + ν4a2(a∗)2a2
∈ R−1, as−1a = 0, ν2a∗s−1a = a #O, ν3as−1a∗ = a #O, where νi ∈ C(R)

(i ∈ 1, 4) and ν2ν3 ∈ R−1.

Proof. Note that a #O = a∥aa∗ and a #O = a∥a∗a, when a ∈ R†. Then, by taking d1 = aa∗ and d2 = a∗a in Theorem 3.4
and Theorem 3.5, we conclude that Corollary 3.7 holds. Indeed, since a ∈ R #O

∩ R #O, we have a ∈ R† ∩ R#,
a #O = a#aa† and a #O = a†aa#. Combining that a is ∗-cancellable, we get

τ1τ2a∗a2r−1a2a∗ = −τ4a∗a4a∗ ⇔ τ1τ2a2r−1a2 = −τ4a4
⇔ τ1τ2ar−1a = −τ4a2

and

τ1aa∗r−1a2a∗ = aa∗ ⇔ τ1aa∗r−1a2 = a⇔ τ1a†aa∗r−1a2a# = a†aa#
⇔ τ1a∗r−1a = a #O,

as required.

If we add the condition d1 ∈ d2R and d2 ∈ Rd1 in Theorem 3.5, then we obtain
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Theorem 3.8. Let a, d1, d2 ∈ R be such that a ∈ R∥•d1 ∩R∥•d2 , d1 ∈ d2R and d2 ∈ Rd1. Then, the following statements
are equivalent:

(i) aa∥d1 − a∥d2 a ∈ R−1.

(ii) u = η1d1 + η2ad1 + η3d2a + η4d2a2d1 ∈ R−1, d1u−1d2 = 0 and η2ad1u−1a = η3au−1d2a = a, where ηi ∈ C(R)
(i ∈ 1, 4) and η2η3 ∈ R−1.

(iii) v = δ1d2 + δ2ad1 + δ3d2a + δ4d2a2d1 ∈ R−1, d1v−1d2 = 0 and δ2ad1v−1a = δ3av−1d2a = a, where δi ∈ C(R)
(i ∈ 1, 4) and δ2δ3 ∈ R−1.

Proof. To begin with, we show that aa∥d1 − a∥d2 a ∈ R−1 imply u, v ∈ R−1. Note that d1 ∈ d2R and d2 ∈ Rd1. So,
we obtain d1 = d2z1 and d2 = z2d1, for z1, z2 ∈ R. Hence, we get

aa∥d1 = aa∥d2 aa∥d1 = a(d2a)#d2aa∥d1 = a(d2a)#z2d1aa∥d1

= a(d2a)#z2d1 = a(d2a)#d2

= aa∥d2 .

On the other hand, it is clear that

a∥d1 a = d1(ad1)#a = d2z1(ad1)#a = a∥d2 ad2z1(ad1)#a
= a∥d2 ad1(ad1)#a = a∥d2 aa∥d1 a
= a∥d2 a.

Hence, a∥d2 ad1 = a∥d1 ad1 = d1 and a∥d2 = a∥d2 aa∥d2 = a∥d1 aa∥d2 ∈ d1R. Dually, d1aa∥d2 = d1 and a∥d2 ∈ Rd1.
Then, by the definition of the inverse along an element we claim a∥d1 = a∥d2 , which implies that d1(ad1)# =
(d1a)#d1 = d2(ad2)# = (d2a)#d2. When item (i) holds, it has been known to us that there exist idempotents
h, k ∈ R satisfying (∗1), and we further have ha = a, ak = 0, hd1 = hd2z1 = 0, d2k = z2d1k = z2d1 = d2. Now, let

u′ = −η1(1 − k)(d2a)#(d1a)#d1h + η2(1 − k)(d2a)#(1 − h) + η3k(ad1)#h − η4(1 − k)h

and

v′ = −δ1(1 − k)d2(ad2)#(ad1)#h + δ2(1 − k)(d2a)#(1 − h) + δ3k(ad1)#h − δ4(1 − k)h.

Then, it is easily verified that uu′ = u′u = η2η3 and vv′ = v′v = δ2δ3 by what we have shown already, as
desired.

Next, the remaining part of this theorem can be inferred by applying the same strategy as the proof of
Theorem 3.5.

Remark that, the condition d1 ∈ d2R and d2 ∈ Rd1 of Theorem 3.8 in general can not be deleted, which
can been seen from the following example.

Example 3.9. In R = C2×2, let us choose a =
(
1 1
0 0

)
, d1 =

(
0 0
2 1

)
and d2 =

(
0 0
1 1

)
. Then, we can check

that a ∈ R∥•d1 ∩ R∥•d2 , a∥d1 =

(
0 0
1 1

2

)
and a∥d2 =

(
0 0
1 1

)
. Clearly, aa∥d1 − a∥d2 a =

(
1 1

2
−1 −1

)
is invertible. But,

d2 + ad1 − d2a =
(
2 1
0 0

)
is not invertible.

Although by the proof of Theorem 3.8 we see that the condition a ∈ R∥•d1 ∩ R∥•d2 , d1 ∈ d2R, d2 ∈ Rd1 and
aa∥d1 − a∥d2 a ∈ R−1 yields a∥d1 = a∥d2 . However, such condition does not imply d1 = d2 or d1a = d2a in general,
as we will see in the next example.

Example 3.10. Let R = C2×2. Setting a =
(
1 1
0 0

)
, d1 =

(
1
2 0
1
2 0

)
and d2 =

(
1 0
1 0

)
. Observe that d1 ∈ d2R, d2 ∈ Rd1

and a∥d1 = a∥d2 = d1. Hence, a ∈ R∥•d1 ∩ R∥•d2 and aa∥d1 − a∥d2 a ∈ R−1. However, d1 , d2 and d1a , d2a.
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Apply Theorem 3.8 and Lemma 1.3, we directly have

Corollary 3.11. Let a, b, d ∈ R be such that a, b ∈ R∥•d, a ∈ Rb and b ∈ aR. Then, the following statements are
equivalent:

(i) aa∥d − b∥db ∈ R−1.

(ii) p = β1a + β2ad + β3db + β4ad2b ∈ R−1, bp−1a = 0 and β2dp−1ad = β3dbp−1d = d, where βi ∈ C(R) (i ∈ 1, 4)
and β2β3 ∈ R−1.

(iii) q = γ1b + γ2ad + γ3db + γ4ad2b ∈ R−1, bq−1a = 0 and γ2dq−1ad = γ3dbq−1d = d, where γi ∈ C(R) (i ∈ 1, 4)
and γ2γ3 ∈ R−1.
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[23] H.L. Zou, D.S. Cvetković-Ilić, K.Z. Zuo, A generalization of the co-EP property, Comm. Algebra 50 (2022) 3364-3378.
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