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Abstract. Let R be a ring and 4,d;,d, € R. First, we obtain several equivalent conditions for the equality
aa" = gl2q to hold, under the condition @ € Rl"1 N R2, Then, when a € RI* N RI*%:, the equality
amglh = gl2gm (m € IN) is also investigated by means of Drazin inverses. Next, some characterizations for

the invertibility of aal® — a2 are obtained. Particularly, a number of examples are given to illustrate our
results.

1. Introduction

Throughout this paper, R denotes an associative ring with unity 1 and IN means the set of all positive
integers. An involution *: R — R is an anti-isomorphism: (a*)* = a, (a + b)* = a* + b* and (ab)* = b*a" for all
a,b € R. We call R a *-ring if there exists an involution * on R. First, we list several types of generalized
inverses as follows.

An element 2 € R is said to be Moore-Penrose invertible with respect to the involution * [18] if the
following equations

(D axa=a, 2)xax=1x, (3) (ax) =ax, (4) (xa)' = xa

have a common solution. Such solution is unique if it exists, and is denoted by a.
The Drazin inverse [9] of 2 € R is the element x € R which satisfies

(1% a* = 4 1x for some k € N, (2) xax =x, (5)ax = xa.

The element x is unique if it exists and we will write x = aP. The smallest such k is called the index of 4, and

denoted by ind(a). Particularly, if ind(a) = 1, then the Drazin inverse a® is called the group inverse of 2 and
it is denoted by a*.
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In 2010, Baksalary and Trenkler [1] introduced the core inverse and dual core inverse for complex
matrices, which were extended to the *ring case [19]. The core inverse of a € R is the unique element x
(written x = a®) satisfying

() axa=a, 2)xax=x, (3)(ax)" =ax, (6)xa*=a, (7)ax* = x.
Similarly, the dual core inverse of a € R is the unique element x € R (written x = a,) satisfying
(N axa=a, 2)xax=x, (4) (xa)' =xa, (6)a’x=a, (7)x*a=x.

The symbols R™!, RT, RP, R¥, R® and R, stand for the sets of all invertible, Moore-Penrose invertible,
Drazin invertible, group invertible, core invertible and dual core invertible elements of R, respectively.

As is well known, EP matrix A € C*" [20] means R(A) = R(A*), where R(A) denotes the column space
of A, ie.,, AA* = A*A. Then, a square matrix A is said to be co-EP [5] if AAT — AT A is invertible. In a *ring
R, an element a € R is said to be EP (resp. co-EP) if a € R" and aa’ = a'a (resp. aa® — a'a € R™'). Many
researchers studied the EP-ness and co-EP-ness in different settings, such as complex matrices, C*-algebras,
Banach algebras and rings [2, 4-8, 11, 15-17]. For the co-EP matrix, we have to mention the next results.
Benitez and Rakocevi¢ [5] showed that the co-EP-ness of A € C™" implies the nonsingularity of A + A",
A+ A*, AA* + A*A and AAT + A*A, which were extended to the nonsingularity [25] of aA + DAY + cAAT,
aA + bA* + cAA*, aAA* + bA*A + cA(A*)?A, aAAT + bATA + cA(AT)?A, where a,b,c € C and ab # 0. Later, the
authors [23] showed that if A is a co-EP matrix, then aAA" + bATA + cA(AT)?A + dATA%AY is nonsingular,
where a,b,c,d € C and ab # cd.

In 2011, Mary [13] defined a new generalized inverse called the inverse along an element (namely Mary
inverse) in a ring or semigroup. The element a € R is said to be invertible along d € R [13] if there exists
b € R such that

bad = d = dab, bR C dR and Rb C Rd,

ie.,
bab =b, bR = dR and Rb = Rd.

If such b exists, then it is unique and is said to be the inverse of a along d, which will be denoted by al. In
particular, al! =471, 4" = 4* and 4" = 4. Moreover, if aala = g, then we say that 4! is an inner inverse
of a along d, and a is inner invertible along d. Next, we use R!¥ and RI*? to denote the sets of all invertible
elements along 4 and inner invertible elements along d in the ring R, respectively.

After introducing the notion of the inverse along an element, EP and co-EP properties were investigated
by means of Mary inverses. For example, Benitez and Boasso [3] gave several equivalent characterizations
for the equality aal¥ = al¥a (when a € RI), which were applied in a *ring by taking d = a*. Wang, Mosi¢
and Yao [22] also studied this equality in a ring. Recently, the authors [24] showed that the invertibility
of aa” — gl¥g is related to the invertibility of elements expressed by certain functions of a,d and suitable
elements from the center of the ring.

Motivated by the above results, in this paper we will consider more general case, that is to say when
a € RIM N Rz or g € RI* N RI*%:, the equality aal® = al2q, as well as the invertibility of aal® — al#2q is
investigated, extending the special case d; = d,. In addition, the results obtained are applied to the core
and dual core inverses in a *-ring.

The following lemmas will be used in the sequel.

Lemma 1.1. [10, Theorem 1] Let a € R. Then a € R* if and only if a € a>R N Ra®. In this case, if a = a®x = ya?,
then a* = ax* = y*a = yax.

Lemma 1.2. [14, Theorem 2.1] Let a,d € R. Then the following statements are equivalent:
(i) a € R¥. (ii) dR C daR and da € R¥. (iii) Rd C Rad and ad € R*.
In this case, d" = d(ad)* = (da)*d.
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Lemma 1.3. [24, Lemma 3] and [21, Corollary 1] Let a,d € R. Then the following statements are equivalent:
(i)a € RI*. (i) d € RI**. (iii)a € R and d € R,

In this case, aa" = dVd and aVa = dd°,

2. Characterizations for the equality aal" = all2q

In this section, we will mainly consider two aspects. One is the characterizations for the equality
aa" = g2q, when a € Rl 0 Rz, The other is the equivalent conditions of the equality a”alt = gli2qg™
(m € N), when a € RI* 0 RI*%2, Both of the aspects cover the special case d; = d,. First, we have to give the
following example to illustrate that aal¥t = al#2a does not imply d; = d, or al2a = 4" in general.

Example 2.1. Let R = C?2, Then, take a = ((1) (1)), d = (8 (1)) and dp = ((1) 8 . By direct computation we see

that ah = dy and a'> = d,. Clearly, aa" = al2q. However, d; # d, and al2a # ala.

Inspired by [3, Theorem 7.3], we characterize the equality aa!® = al*2q under the condition a € RIt 0 RI%2
as follows.

Theorem 2.2. Let a,dy,d € R be such that a € RV N RI92. Then the following statements are equivalent:
(i) aal® = gltg,
(i) di = dia'>q and dp = aa"d,.
(iii) Rdpa C Rdy and ad R C dyR.
(iv) Rdy € Rdya and dyR C adiR.
(v) Rdy = Rda and d,R = ad{R.
(vi) Rady = Rdpa and dyaR = adqR.
Proof. (i) = (ii), (iii) and (iv). Suppose that aal®t = 4l"2g. Then, by Lemma 1.2 we deduce
dy = dyaa" = dya'>q = d\(dya)*dra € Rdoa
and
dr = a2ad, = aa d, = ad,(ady)*d, € ad,R,
which conclude that items (ii) and (iv) hold. In addition,
ad; = aa" ad; = a20?d, = dy(ad,)*a*d, € doR
and
doa = draaa = dra?a = dya®(dia)*d; € Rd;.
So, item (iii) holds.
(ii) = (i). By item (ii), we get

ad® = a(dia)td; = a(dra)*dia2a = aadl a2q = gal™ d, (ad,)a
= dy(ad>)*a = al®2q.

(iii) = (i). Note that ad; = dyu and dya = vd;, for some u, v € R. So, we claim that

ad® = ad, (ad,)* = dyu(ady)* = A2adru(ady) = a2aad, (ad,)* = al2a%al%
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On the other hand,
a2q = (dya)*doa = (dya)*od, = (dra)*vdiad™ = (dra)tdraaal® = ald2q2ql%

Therefore, aa™ = gli2g.

(iv) = (ii). Since Rd; € Rd»a, we obtain d; = xda for some x € R. Multiplying the previous equality by
al®2q from the right, we get dyal2a = xdyaaa = xdya = d;. Similarly, d, = aal™ d,.

(i) © (v) is clear by what we have proved just now.

(v) © (vi). Note that Rd; = Raad; C Rad; and Rad; C Rd;. Hence Rd; = Rady. Similarly, doR = dhaR, as
required. [

Let us recall the following facts in a *-ring [19]: (1) 2 € R® N R, if and only if 2 € R* " R'. (2) If a € R,
then a € RI*" if and only if a € R®. In this case, ™ = 4®. (3) Ifa € RY, thena € R1"? if and only if 2 € Ry. In
this case, a"* = ag. (4) ais EP if and only if a € R® N Ry with aa® = gga. Then, by taking d; = aa" and d, = a*a
in Theorem 2.2, we directly obtained the next results, which can been seen as the new characterizations for
the EP element in a *ring.

Corollary 2.3. Let R be a »-ring and a € R® N Ry. Then, the following statements are equivalent:

(i) ais EP.
(i) a = = a%a®.
(iii) Ra*a® C Raa* and a®a’R C a*aR.

(iv) Raa* C Ra*a? and a*aR C a’a’R.
(v) Raa* = Ra*a? and a*aR = a*a*R.
= Ra*a? and a*a®R = a*a’R.

)
)
) R
)
)
) R

(vi

Next, we show that the equality aa¥' = al*24 can be described by the equations.

Proposition 2.4. Let a,dy,ds € R be such that a € R 0 RV, Then the following statements are equivalent:
(i) aglh = g,
(ii) There exist x, y € R such that diadixa = dy, aydyad, = dp and adyxa = ayd,a.
(iii) There exist x',y" € R such that dix’ = dy, y'd, = dy, R’ € Rdpa and y'R C adiR.

Proof. (i) = (ii). Let x = (ad1)*al®> and y = a1 (d,a)*. Then, it is easy to check that such x, y satisfy item (ii).
(ii) = (i). Suppose that item (ii) holds. Then, we get

a(dia)*dy = a(dia)*dadixa = ad adyxa = adixa
aydya = aydoaad2a = aydyady(ady)*a = da(ady)*a
= al®2q,

(i) = (iii). Let ¥’ = a2a and y’ = aa". By Theorem 2.2 (i) and (ii), we obtain d1x’ = d; and y'd> = d».
Also, it is clear that Rx" = R(dya)*dra C Rdya and y'R = ad;(ad;)*R C adiR.

(iii) = (i). Since Rx" € Rd,a and y'R C ad;R, there exist u,v € R such that x’ = ud,a and iy’ = ad,v. Hence,
Rdy = Rdx" = Rdyudra € Rdya and doR = y'd>R = ad1vdyR C adiR. Using Theorem 2.2 (i) and (iv), we have
aa = glq, O

In the following theorem, we consider the relationship between ad; = dpa and aalh = glid2g,

Theorem 2.5. Let a,dq,ds € R be such that a € Rt 0 R¥2, Then the following statements are equivalent:
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(i) ady = dsa.
(ii) aah = alq and dyal> = alhd,.
(iii) There exists x € R such that dyadyx = dy, xdyad, = dy and ad1x = xdpa.
Proof. (i) = (ii) and (iii). Suppose that ad; = d,a. Then we have
ad® = ad, (ad1)* = dya(ady)* = A2adya(ady) = a2aad; (ad;)*
= a2qaar = (dya)*dyaad™ = (dya)*ad aal®

= (dz&l)#adl = (dza)#dza

and
W = dy(doa)'dy = drdoa (doa)?)” da = dyad (da0)?) do
2

= dy(ady)*(ady ? ((da0)?)” d = ¥ (doa)? ((d20)?) o
= al dya(dya)*dy = al dyaal®
= gl dp.

Hence, item (ii) holds.

Let x = (ad1)* = (d2a)*. Then, we get diadix = dyad(ad1)* = dyaa" = dy and xdoad, = dy goes similarly.
In addition, adix = ady(ad,)* = aal = al%2q = (dra)*dya = xdra, which means item (iii) holds.

(ii) = (i). Since aal® = g2 and d,al*> = 41 d,, we have
ady = adyaad" = adaV2q = ad dra = aV2ad,a = doa.
(iii) = (i). Suppose that (iii) holds. Then,
ady = advadyx = adyxdya = xdyadra = dya. [
Now, we focus on the equivalent conditions for a"al®t = al®2g™ to hold, when a € Rl*"1 N Rll*%2,

Theorem 2.6. Let a,d1,dy € R be such that a € RI*" 0 RI*% and m € N. Then the following statements are
equivalent:

(i) a™al® = glizg™,
(i) Ra™ € Rdy and a™R C dyR.
(iii) There exist x € Rdy and y € dyR such that a™ = a™x = ya™*!,

Proof. (i) = (iii). Let x = a and y = al*2. Clearly, x € Rd; and y € d,R. Also, we see that ™ = aya™ = a"*+'x
and a™ = a"xa = ya™*.
(iii) = (ii) is obvious.
(ii) = (i). Let us write a” = udy = d,v, for u,v € R. Then,
gm+lights = gmagldy = 4 d, galh = ydy = g™
and
allt2 g+l = glidaggm — ghgdo v = doo = g™.
Hence, a"alhh = gld2gm+lglds = gldgm 4
Let m = 1 in Theorem 2.6, we have

Corollary 2.7. Let a,dy,ds € R be such that a € RI*" N RI*%:, Then the following statements are equivalent:

(i) aal® = alt2q,
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(i) Ra C Rdy and aR C drR.
(iii) a € R* and a* = al>qql,
Proof. (i) & (ii) and (i) = (iii) are trivial by Theorem 2.6 and Lemma 1.1.

(iii) = (i). From item (iii), we deduce that

aal
Applying Corollary 2.7 (i)(ii) and Lemma 1.3, we deduce the following result.
Corollary 2.8. Let a,b,d € R be such that a,b € RI**, Then, the following statements are equivalent:
(i) aal® = plp,
(ii) dR C aR and Rd C Rb.

By Theorem 2.6 (iii) and [9, Theorem 4], we see that if a € Rll*dr 0 Rli*d2 and gl = g™ then a € RP.
So, we will characterize the equality a"al"! = al*24™ by using Drazin inverses.

Theorem 2.9. Let a,dy,dy € R be such that a € RI*" N RI*2 N RP and let m,n > ind(a), i,j, € N. Then the
following statements are equivalent:

(1) a™alh = gldagm,
(ii) a"alh = gltq",
(iii) R(aP)' € Rdy and (aP)'R C d,R.
(iv) @P)alh = gl (aP)i,
(v) alaPal = gl2qDgl,
Proof. (i) & (ii). Obviously, we only need to show that (i) = (ii). Suppose that a"al® = gll®2q™.
Case 1. If n > m, then we get
{Z"lil”dl — an—m(amalldl) — an—malld2am — an—m—l(aa\\dza)am—l — an—l‘
Similarly, we have al®2a" = 4"~1. Hence, a"al' = al#24".

Case 2: If n < m, then by the hypotheses we conclude that

a”a”dl — (aD)m—n(amalldl) — (aD)m—naHdzam — (aD)m—nH(aaHdza)amfl
— (aD)m—n+1am =aPa".
Similarly, we have al®2a" = "aP. So, a"al® = gl®q".
(i) © (iii). Since a € RP and m > ind(a), we get
Ra" = RaP = R(aP)' and "R = aPR = (aP)'R.
Then, by Theorem 2.6 we obtain the equivalence of (i) and (iii).
(i) = (iv). By the condition a™al"1 = al#24™, we have
(aD)jﬂlldl — (aD)m+jama||d1 — (aD)m+ja||d2am — (aD)m+j+1ﬂﬂlld2ﬂm — (LID)j+1.
Similarly, we get al?2(aP)/ = (a”)*1. Hence, (a”)/al® = al®(aP)/.
(iv) = (v). Suppose that item (iv) holds. Then, we get

alaPalds = gl+i=1(gDight = gl+i=1gli (gD = gh*i=1gl2g(zP)i+1 = gl=1gD



H. L. Zou et al. / Filomat 37:30 (2023), 10237-10247 10243

Similarly, 244’ = aPa'~1. Hence, a'aPal® = gl2qPg!.
(v) = (i). By the hypotheses, we conclude that
algldy = gm+1,D glldy — am(aaD)la”dl — am(aD)l—lalaDqul — am(aD)l—lalldzaDal =a"gP.
Analogously, we get al®2q™ = aPa™. So, a"al = al2g™.
As a consequence of Theorem 2.9 (i) and (ii), we get the following.
Corollary 2.10. Let R be a »-ring and a € R® N Ry and m,n € IN. Then, the following statements are equivalent:
(i) a™a® = agza™.

(ii) a"a® =aga".

3. Characterizations for the invertibility of aal" — all2q

In this section, for given a,d;,d> € R, when a € Rt 0 RI%2, we investigate several equivalent conditions
for the invertibility of aal" — al®2q, extending related results in [24]. In the beginning, we need to give an
example to show that aa — al#2q € R~! does not imply d; # d; or al®a # a¥14 in general.

Example 3.1. Setting R = My(Z,). Let a = ((1) }), di = (} 8) and d, = (8 (1)) Then, we can check that

alh = gy, a2 = d, and aa — al2q € R7L. But, dy # dp and a2q # al1g.
The following lemmas are necessary to prove our main theorems.

Lemma 3.2. [12, Theorem 3.2] and [4, Theorem 1] Let f, g € R be idempotents. Then the following statements
are equivalent:

(i) f-geR™
(ii) fR®gR =Rand Rf ®Rg =R.
(iii) There exist idempotents h,k € R such that fh = h, hf = f, gl -h)=1-h, (1 -h)g=g,kf =k, fk = f,
1-kg=1-kandg(l-k) =g
By Lemma 3.2 and the definition of the inverse along an element, we directly obtain
Lemma 3.3. Leta,dy,do € Rbesuch thata € R ARz, [f aalh —al2q € R, then there exist idempotents h,k € R
satisfying
ad"h = h, hady = ady,d"2a (1 —h)=1-h,hd, =0,
and (*1)
kaa" = k,dik = di, (1 — k)a'®a = 1 — k, dpak = 0.
Denote by C(R) the center of R, that is the set of such elements that commute with all elements of R. The

right annihilator of a € R is defined by a° = {x € R | ax = 0}. Now, we are ready to establish the following
result concerning the invertibility of aal® — al®2q.

Theorem 3.4. Let a,dy,d, € R be such that a € R N Rz, Then, the following statements are equivalent:
(i) aalh —glt2q € R71,

(i) 7= Ai(adi)" + Aa(d2a)" + As(adi)"(d2a)" + Aa(d2a)"(adh)" € R™Y, Avdir~(ady)" = di, Aa(doa)"17"'dy = d,
/\1/\2(d2a)n1’_1(ﬂd1)m = —/\4(d261)"(ﬂd1)m and Al/\zdlr_ldz = —A3d1d,, where A; € C(R) (i el, 4), MAy € R_l,
AsAy € a® and m,n € N.
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Proof. (i) = (ii). Suppose that aal®™ — al2q € R™'. In view of Lemma 3.3, there exist idempotents 11,k € R
satisfying (+1). Now, let

v = M1 =K ((@dan)?) (1= h) + Aok ((ad)*) " 1= Ask(1 = ) = As(1 = K)h. (+2)

Since A; € C(R) (i € 1,_4) and A3y, € 4dP, combining what we have shown yields that

' = (Mad)" + Aa(d2a)" + As(adr)"(d2a)" + Aa(dza)" (adr)™) -

(A1 =0 (@0)*)" (1 = 1) + Aok ((adn)?)" = Ask(1 = ) = Aa(1 = b)h)

= Al)\Zadl(adl)#h - Al/\3({1d1)m(1 - I’l) + /\1/\2(1211((12[1)#(1 - h) - /\2/\4(1125[)71}1
+/\1/\3(ﬂd1)md2{1(d25[)#(1 - h) + /\2/\4((12(1)”&(11({1611)#}1

= /\1/\2&(1”0]1}1 - Al/\3(ﬂd1)m(1 - ]’l) + /\1/\2a”d2a(1 - h) - /\2A4(d2ﬂ)nh
+A1A3(ad1)"a2a(1 — h) + AsAy(doa)aa"h

= Aok — A As(ad)™(1 = B) + Ay As(1 = ) — AoAs(da)h
+/\1/\3(11d1)m(1 - ]’l) + /\2/\4((12{1)"1’1

= Aids.

On the other hand, one can check that r'r = A;4;. Owing to 44, € R71 then we get r € R7! and
rt = (A1A2)7'7, which leads to the equality Aydyr~*(ady)" = A;'dq7’(ad1)™. Now, substituting (+2) into the
previous equality, we conclude Aydir~ (ady)" = di. In addition, Ax(daa)"r1dy = da, AAa(daa)"r (ady)™ =
—Ag(daa)"(ad1)™ and A1 Adqr~dy = —Asdqds go similarly.

(ii) = (i). First we show that there exist &, k € R such that had, = adq, hd, = 0, d1k = dy and dyak = 0. In or-
der to verify this, we need to define i = (A1(ad1)™ + As(ad1)"™(dra)") r~' and k = = (A1(ad1)™ + As(daa)"(ady)™).
By item (ii), we obtain

h(ady)™ = (A1(adr)™ + Az(ady)"™(dpa)") r~ (adq )™
= (ad1)™ a (/\11117’_1(0011)"1) — (MA2) H(AsA4)(ady)"™(d2a)" (ady )™
= (ady)™,

m—1

which implies had; = h(ad;)™ ((adl)#) = (adqy)™ ((adl)#)m_1 = ady. Also, we get
hdy = (r = Aa(d20)" = Aa(dra)"(ady)"™) r~"do
= dy — Aa(daa)"'r~"dy — Aa(daa)" (adh)" " a(drr " d2)
= dy — dp + (M142) " (d2a)" (A3 A4) (ad1)"d
=0.

Analogously, we have dik = dy and dak = 0.

Next, our aim is to see that aal* — al*2g € R=!. By Lemma 3.2, we only need to infer aal™ R @ al2aR = R
and Raa!™ & Ral2a = R, which is clearly equivalent to adiR & d,aR = R and Rad; ® Rdya = R. From the
invertibility of r, we get adiR + d>aR = R. Let x € adiRNdyaR. So, x = adiw, = draw,, for suitable wy, w, € R.
Hence, x = hadyw; = hdaw, = 0, which means ad;R N dyaR = {0}. Therefore, ad1R ® d,aR = R. Similarly,
Rady ® Rdya = R, as announced above. [

In particular, when a € RI* 0 RI*%2, we further characterize the invertibility of aal* — al®24 as follows.
Theorem 3.5. Let a,dy,d € R be such that a € RI*® 0 RI*®, Then, the following statements are equivalent:
(i) aal® —glt2q € R71,

(i) s = wia + poady + psdoa + psadidya € R7Y, as™'a = 0 and ppadis™'a = pzas~'dra = a, where y; € C(R)
(i€1,4)and upus € R7%
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Proof. (i) = (ii). Now, we know that there exist idempotents &, k € R satisfying (+1). Furthermore, we find
that ha = a and ak = 0, because ha = haa"a = hady(ad\)*a = adi(ad))*a = aad"a = a and ak = adak =
a(dra)*drak = 0. Write

§' = —ik(ady)*(ady)*a(1 — h) + po(1 — k)(daa)* (1 — h) + psk(ady)*h — psk(1 — h).
Note that a(d,a)* = (ad)*a. Then, one can check that

ss’ = pops — 1 poady (adr)* (ady)*a(l — h) + ppoa(dara)* (1 — h)
= o3 — iz (aaa)d; ((ady)*)?a(1 — h) + p1pz(ads)*a(l — h)
= Loz — ppoady((ady)*)?a(l — h) + ppo(ada)*a(l — h)
= liafis.

A symmetric argument shows that it is true for s’s = uus. So, s € R and s7! = (upu3)~'s’. Using the
expression of s7!, we conclude that the equalities in item (ii) hold.

(ii) = (i). Suppose that item (ii) holds. Set h = (u1a + poad; + psadidra)s™ and k = pps~'ad;. Since
psas'dya = a, we deduce that usdoas™'dy = do(uzas~'dra)a> = dyadl> = d,. Also, from ppadis™a = a, it
follows that ppdistad; = al (upadis—a)d; = aad; = d;. Then, it is straightforward to check that ha = a,
hdg = 0, dlk = dl and ak = 0.

Now, we have to claim that aR ® d,R = R. Since m = pia + prady + psdra + psadidra € R7!, we get
aR + dyR = R. Let y € aR NdyR. Then, y = aw; = dyw,, for some wy, w; € R. Thereby, y = haw, = hdyw, = 0.
This impliesaRNd,R = {0}. Consequently, aR®d,R = R. Observe thataR = aa"aR = aal™ Rand d,R = al*2aR.
Hence, a1 R @ al*2aR = R. Dually, Raa!' @ Ral®2q = R. Therefore, aal®t —al2g € R71. O

From Lemma 1.3, it follows that Theorem 3.5 becomes to the next result.

Corollary 3.6. Leta,b,d € R be such that a,b € RI*?. Then, the following statements are equivalent:
(i) aa — pl¥p € R71.

(ii) t = &1d + Erad + Exdb + Egdbad € R, dt1d = 0 and Exdtad = E3dbt™'d = d, where & € C(R) (i € 1,4) and
&é3 € R7L

Let us recall [16, Theorem 4.3]: if a € R® N Ry, then a is co-EP if and only if aa® — aza € R™!. Motivated
by this, we get the following result, which is a new property of the co-EP element.

Corollary 3.7. Let R be a »-ring and a € R® N Ry. Then, the following statements are equivalent:
(i) ais co-EP.
(i) r = maa* + oa'a® + 13a®(a)?a® + ya'ata’ € R7Y, tymoarla = —14a?, Tia'rla = a,, Toar-la* = a®,
T1Toa' v a* = —13(a*)?, where 1; € C(R) (i € 1,4), 1172 € R and 1374 € a°.

(iii) s = via + vpa®a* + vzaa® + vya®(a’)?a® € R7Y, as™la = 0, voa's™'a = a,, vaas—'a* = a®, where v; € C(R)
(i€1,4)and vov3 € R71,

Proof. Note that a® = al"" and a, = al”®, when a € R'. Then, by taking d; = aa* and d, = a*a in Theorem 3.4
and Theorem 3.5, we conclude that Corollary 3.7 holds. Indeed, since a € R® N Ry, we havea € Rt N RY,

a® = a*aa* and a, = a'aa®. Combining that a is *-cancellable, we get
T1ata?rlalat = —natatat © 111a%r1a? = —rat © tytarla = —14a?
and
Tiaa’r\a’a* = aa* © tiaa'r~'a? = a © rataara’a® = afad® © 110 'a = a,,

as required. [

If we add the condition d; € d,R and d, € Rdy in Theorem 3.5, then we obtain
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Theorem 3.8. Leta,dy,d; € R besuch thata € RI*" nRI*%, d, € dyR and d, € Rdy. Then, the following statements
are equivalent:
(i) aal® — gl € R-1,
(11) u= T]ldl + T]zﬂdl + ﬂgdzﬂ + T]4d2ﬂ2d1 S Ril, d1M71d2 = 0and T]zﬂd1u71ﬂ = T]3ﬂ1/l71d2a = a, where ni € C(R)
(l el, 4) and 13 € R
(iii) 0 = 61dy + pady + O3daa + S4dra’d; € R7Y, dyo'dy = 0 and 6,ad1v™'a = 63av~'dra = a, where 5; € C(R)
(i € T,4) and 5,65 € R,

Proof. To begin with, we show that aal" — al*2g € R=! imply u,v € R™!. Note that d; € d,R and d, € Rd;. So,
we obtain di = dyz; and d; = zpds, for z1,z; € R. Hence, we get

ad = aa g0 = a(dyay*draah = a(dya)*zodiaal®
= {Il(dzﬂ)#ZZdl = a(dzll)#dz

= agl2,
On the other hand, it is clear that

aq = dy(ad1)*a = dyzi(ady)*a = a"2adyz1 (ady)*a
= al2qd; (ady)*a = al2aal% g
= altzq.

Hence, al®2ad; = aad; = dy and a2 = al®2q4l® = glhggl> € iR, Dually, dyjaa> = d; and a" € Rd;.
Then, by the definition of the inverse along an element we claim al' = g2, which implies that d; (ad;)* =
(dra)*dy = dy(ady)* = (daa)*dr. When item (i) holds, it has been known to us that there exist idempotents
h, k € R satisfying (1), and we further have ha = a, ak = 0, hdy = hdyz1 = 0, dok = zodik = zpd; = dp. Now, let

w = —m(1 = k)(doa)*(dra)*dih + (1 — k)(d2a)* (1 = h) + nak(adq)*h — na(1 — k)h
and
v = =61(1 — k)da(adz)* (ad1)*h + 62(1 = k)(daa)* (1 — h) + 63k(ady)*h — 64(1 — k)h.
Then, it is easily verified that uu’ = w'u = nyn3 and vv’ = v'v = 6,63 by what we have shown already, as
desired.
Next, the remaining part of this theorem can be inferred by applying the same strategy as the proof of
Theorem 3.5. [

Remark that, the condition d; € d,R and d, € Rd; of Theorem 3.8 in general can not be deleted, which
can been seen from the following example.

Example 3.9. In R = C>?, let us choose a = ((1) (1)), dp = (g (1)) and dp = ((1) (1)) Then, we can check

1
that a € Ri* A Rli*%2, gl = (1) (l)) and al = (g (1)) Clearly, aal™ — gl®2q = (_11 _21) is invertible. But,
2

dy +ady —doa = (3 (1)) is not invertible.

Although by the proof of Theorem 3.8 we see that the condition a € RI*" N\ RI*%, d, € d,R, d, € Rd; and

aalhr — g2 ¢ R-1 yields alh = gt However, such condition does not imply di = d; or dia = dya in general,
as we will see in the next example.

1

d =1

Example 3.10. Let R = C?2. Settinga = 0) and d, = (1 0

1 1
0 o) 0 1 0
and aVt = g2 = 4, Hence, a € RI*" N RI*2gnd gallh — gl2q ¢ R-1. However, di # dp and dia # da.

). Observe that di € d>R, dy € Rdq

N
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Apply Theorem 3.8 and Lemma 1.3, we directly have

Corollary 3.11. Let a,b,d € R be such that a,b € RI*!, a € Rb and b € aR. Then, the following statements are
equivalent:

(i) aal — plip € R1,

(ii) p = pra + Baad + Badb + Bsad®b € R™, bp~'a = 0 and Podp~"ad = Padbp~'d = d, where p; € C(R) (i € 1,4)

and ﬁ2ﬁ3 e RL,

(iii) g = y1b + yoad + y3db + y4ad®b € R, bg~'a = 0 and yodg'ad = y3dbq~'d = d, where y; € C(R) (i € 1,4)

and yy3 € R7L.
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