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aDepartment for Applied fundamental disciplines, Faculty of Technical Sciences, University of Novi Sad,
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Abstract. In this paper we provide novel algorithms for computing the minimal Geršgorin set for the local-
izations of eigenvalues. Two strategies for curve tracing are considered: predictor-corrector and triangular
grid approximation. We combine these two strategies with two characterizations (explicit and implicit)
of the Minimal Geršgorin set to obtain four new numerical algorithms. We show that these algorithms
significantly decrease computational complexity, especially for matrices of large size, and compare them
on matrices that arise in practically important eigenvalue problems.

1. Introduction

There are numerous ways to localize eigenvalues. One of the best known results in numerical linear
algebra is that the spectrum of a given square complex matrix is a subset of a union of circles centered at
diagonal elements of the matrix whose radii equal to the sum of the moduli of the off-diagonal elements
of a corresponding row in the matrix (Geršgorin’s theorem, 1931). Among all Geršgorin-type sets, the
minimal Geršgorin set (MGS) gives the sharpest and the most precise localization of the spectrum ([6]).
While the research on the minimal Geršgorin set provided several interesting theoretical results, its practical
computation remain the bottleneck for its wide use. Unlike the Geršgorin set, it is not easy to numerically
determine MGS, ([11, 12]), since it is defined as an intersection of infinitely many sets. Luckily, as we will
see in the paper, using different approaches, it is possible to overcome this problem even for large matrices.

The paper consists of five sections. In Section 2 we provide some preliminary results. Sections 3 and
4 contains the main contribution, while in Section 5 numerical tests of new algorithms are performed and
their comparison with existing algorithms is provided. Finally, we summarize all advantages of new results
in a brief conclusion in Section 6.
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2. Preliminaries

The spectrum σ(A) of a given matrix A = [ai j] ∈ Cn,n, i, j ∈ N := {1, 2, . . . ,n} is

σ(A) := {λ ∈ C : det(λI − A) = 0}, (1)

where I is the identity matrix of a size n, n ∈N. The spectral abscissa α(A) of A ∈ Cn,n is defined by

α(A) := {max(Re(λ)) : λ ∈ σ(A)}. (2)

The following well-known eigenvalue perturbation result is at the basis of our algorithms.

Theorem 2.1. ([8], Theorem 2) Let λ0 be a simple eigenvalue of a matrix A0 ∈ Cn,n, and let v0 be an associated
eigenvector, so that A0v0 = λ0v0. Then a (complex) function λ and a (complex) vector function v are defined for all
A in some neighborhood O(A0) ∈ Cn,n of A0, such that

λ(A0) = λ0, v(A0) = v0

and
Av = λv, v∗0v = 1, A ∈ O(A0).

Moreover, the functions λ and v are smooth on O(A0) and the differentials at A0 are

dλ = u∗0(dA)v0/u∗0v0 (3)

and

dv = (λ0I − A0)+(I − v0u∗0/u
∗

0v0)(dA)v0, (4)

where u0 is the left eigenvector of A0 associated with the eigenvalue λ0.

The set

Γ(A) :=
{
z ∈ C :

n⋃
i=1

|z − aii| ≤
∑

j∈N\{i}

|ai j|
}
. (5)

is called the Geršgorin set. It is a well-known result that the spectrum of matrix A is a subset of its Geršgorin
set, i.e., σ(A) ⊂ Γ(A).
Given a positive vector x = [x1, x2, . . . , xn] > 0 and a diagonal matrix X := dia1(x) ∈ Rn,n, the associated
Geršgorin set for matrix X−1AX is

Γrx
(A) :=

n⋃
i=1

{
z ∈ C : |z − aii| ≤

∑
j∈N\{i}

|ai j|x j

xi

}
. (6)

The set

ΓR(A) :=
⋂

x∈Rn, x>0

Γrx
(A) (7)

is called the minimal Geršgorin set and it is obvious that σ(A) ⊆ ΓR(A) ⊆ Γ(A).Moreover, in a certain sense, it
gives the sharpest inclusion set for σ(A) among all Geršgorin-type sets [6].
The abscissa µ(A) of the minimal Geršgorin set ΓR(A) is

µ(A) := {max(Re(z)) : z ∈ ΓR(A)}. (8)
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Given any matrix A = [ai j] ∈ Cn,n and the complex number z ∈ C, define the matrix QA(z) = [qi j(z)] by

qii(z) := −|z − aii| and qi j(z) := |ai j|, for i, j ∈ N, i , j. (9)

The right-most eigenvalue of the essentially non-negative QA(z) = [qi j(z)] is real and it can be computed by

νA(z) := inf
x>0

max
i∈N

(rx
i (A) − |z − aii|). (10)

Using this notation, one obtains the following characterization of the minimal Geršgorin set in the complex
plane.

Theorem 2.2. ([11, Proposition 4.3]) For any A = [ai j] ∈ Cn,n, n ≥ 2, then z ∈ ΓR(A) if and only if νA(z) ≥ 0. If
z ∈ ∂ΓR(A), then νA(z) = 0.

Theorem 2.3. ([11, Theorem 4.6]) For any irreducible matrix A = [ai j] ∈ Cn,n, n ≥ 2, then νA(aii) > 0, for every
i ∈ N.Moreover, for each aii and each real θ, 0 ≤ θ ≤ 2π, let ρ̂i(θ) be the smallest positive number for which

νA(aii + ρ̂i(θ)eiθ) = 0 (11)

and there is a sequence of complex numbers {z j}
∞

j=1 with lim
j→∞

z j = aii + ρ̂i(θ)eiθ, such that νA(z j) < 0, j ∈ N. Then,

the complex interval [aii + teiθ]ρ̂i(θ)
t=0 is contained in ΓR(A), i.e.,

2π⋃
θ=0

[aii + teiθ]ϱ̂i(θ)
t=0 (12)

is a star-shaped subset of ΓR(A) with respect to aii and

aii + ϱ̂i(θ)eiθ
∈ ∂ΓR(A). (13)

As the boundary points of ΓR(A) are of the form aii + ϱ̂i(θ)eiθ, here, for a given matrix A ∈ Cn,n, ξ ∈ C and
θ ∈ [0, 2π),we define a function f ξ,θA : [0,∞)→ R by

f ξ,θA (t) = νA(ξ + teiθ). (14)

Using the function (14), we get the explicit characterization of MGS ([7]).

Next, we present a different characterization of the minimal Geršgorin set constructed in ([10]). Given
an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ and a real number θ ∈ [0, 2π), let us fix a
vector c ∈ Rn, c > 0, and for every t ≥ 0 construct a system of linear equations[

−QA(ξ + t eiθ) −c
−cT 0

]
︸                       ︷︷                       ︸

Mξ,θA (t)

[
wξ,θA (t)
1
ξ,θ
A (t)

]
=

[
0
−1

]
. (15)

For a fixed ξ ∈ C and 0 ≤ θ < 2π, for t ≥ 0, define the functions:

χξ,θA (t) := min
{
(wξ,θA (t))i : 1 ≤ i ≤ n

}
and hξ,θA (t) := min

{
1
ξ,θ
A (t), χξ,θA (t)

}
. (16)

Theorem 2.4. ([10, Theorem 3.4]) Let be given an arbitrary irreducible matrix A ∈ Cn,n and its arbitrary diagonal
entry ξ = akk, k ∈ N and z = ξ + t eiθ, where t ≥ 0 and 0 ≤ θ < 2π. Then,

• z < ΓR(A) if and only if hξ,θA (t) > 0;
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• z ∈ ∂ΓR(A) such that t = ρ̂k(θ) if and only if

i) hξ,θA (t) = 1ξ,θA (t) = 0,

ii) hξ,θA (s1) ≤ 0 holds for all 0 ≤ s1 ≤ t, and

iii) for every ε > 0 there exists s2 ≥ t such that s2 − t < ε and hξ,θA (s2) > 0.

We refer to the previous theorem as the implicit characterization of MGS ([10]).
Finally, to simplify notation, by diag(ai)i∈N we will denote a diagonal matrix diag(a1, . . . , an).

3. Predictor-corrector framework : algorithms eMGSp and iMGSp

One of the typical path following methods to numerically trace the curve C in the complex plane is a
generic predictor-corrector method. It uses a combination of two different steps.
Let C be a solution curve of the equation H(ω) = 0,where H : C→ R is a smooth map and 0 ∈ range(H).
In the first step (predictor step), an approximation along the curve is used, usually in the direction of the
tangent of the curve. In the second step (corrector step), iterations for solving H(ω) = 0 are used. In that
way, the predicted point ”brings back” to the curve.

Generic predictor-corrector method
Input: ω0 ∈ C, H(ω0) ≈ 0 (initial point), h > 0 (initial step length)

1: for k = 1 : m do
2: (Predictor step) Predict zi ∈ C such that ||zi − ωi−1|| ≈ h in the direction of tracing;
3: (Corrector step) Let ωi ∈ C approximately solve

min
ω
{||zi − ω|| : H(ω) = 0} and choose a new step-length h > 0;

4: end for
Output: ωi ∈ C, i ∈ {1, 2, ...,m}

Since we will repeatedly work on construction of mappings with a complex argument f : C → Cm,n,
where m,n ∈N,without possible confusion to simplify notations, we will use abbreviations:

f = f (z), for z ∈ C;

f ξ,θ(t) = f (ξ + teiθ), for ξ ∈ C, θ ∈ [0, 2π), t ∈ R;

f (x, y) = f (x + iy), for x, y ∈ R.

In that context, derivatives in the corresponding arguments are denoted as:

fx =
∂
∂x

f (x, y), fy =
∂
∂y

f (x, y), fxx =
∂2

∂x2 f (x, y), fxy =
∂2

∂x∂y
f (x, y), fyy =

∂2

∂y2 f (x, y).

First, we consider the explicit characterization of the minimal Geršgorin set. In the following theorem, we

ω0

ω1

ω2

z1

z2

Figure 1: Predictor-corrector step.

present derivatives of the first and second order of fA, with respect to x and y.
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Theorem 3.1. For a given an irreducible matrix A ∈ Cn,n and z = x + iy ∈ C, let’s v(x + iy) and u(x + iy) be right
and left eigenvector of QA(x+ iy), corresponding to fA(x+ iy), where QA(x+ iy) and fA(x+ iy) are defined by (9) and
(14), respectively. Then, the first and second derivatives of fA are defined by:

fx = −
uTDxv

uTv
, (17)

fy = −
uTDyv

uTv
, (18)

fxx = −
uTDxxv + 2uTDxvx + 2 fxuTvx

uTv
, (19)

fxy = −
uTDxyv + uTDxvy + uTDyvx + fxuTvy + fyuTvx

uTv
, and (20)

fyy = −
uTDyyv + 2uTDyvy + 2 fyuTvy

uTv
, (21)

where for i ∈ N:

Dx = diag
(Re(x + iy − aii)
|x + iy − aii|

)
i∈N
,

Dy = diag
( Im(x + iy − aii)
|x + iy − aii|

)
i∈N
,

Dxx = diag
( (Im(x + iy − aii))2

|x + iy − aii|
3

)
i∈N
,

Dxy = diag
(−Re(x + iy − aii)Im(x + iy − aii)

|x + iy − aii|
3

)
i∈N
, and

Dyy = diag
( (Re(x + iy − aii))2

|x + iy − aii|
3

)
i∈N
, for z = x + iy , aii.

Proof. From the definition of fA,we have

QA(x + iy)v(x, y) = fA(x + iy)v(x, y), (22)

(u(x, y))TQA(x + iy) = fA(x + iy)(u(x, y))T. (23)

Differentiating the equation (22) with respect to x and y,we obtain

−Dxv +QAvx = fxv + f vx, (24)
−Dyv +QAvy = fyv + f vy. (25)

Multiplying the equations (24) and (25) by uT and using (22) and (23),we obtain (17) and (18).

Using Theorem 2.1, we have

vx = −( fAI −QA)+(I −
vuT

uTv
)Dxv (26)

vy = −( fAI −QA)+(I −
vuT

uTv
)Dyv. (27)

Differentiating the equation (24) with respect to x and y, and the equation (25) with respect to y, we obtain
equations:

−Dxxv − 2Dxvx +QAvxx = fxxv + 2 fxvx + f vxx, (28)
−Dxyv −Dxvy −Dyvx +QAvxy = fxyv + fxvy + fyvx + f vxy, (29)

−Dyyv − 2Dyvy +QAvyy = fyyv + 2 fyvy + f vyy, (30)
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respectively.

Multiplying the equations (28), (29) and (30) by uT and using (22) and (23),we obtain expressions (19), (20)
and (21).

Now, let’s consider the implicit characterization of the minimal Geršgorin set given by the system:[
−QA(x + iy) −c
−cT 0

] [
wA(x, y)
1A(x, y)

]
=

[
0
−1

]
. (31)

Theorem 3.2. Given an irreducible matrix A ∈ Cn,n, a vector c > 0, c ∈ Rn, and wA and 1A defined by the system
(31). Then, the first and second derivatives of 1A are given by systems:[

−QA −c
−cT 0

] [
wx wy
1x 1y

]
=

[
−Dxw −Dyw

0 0

]
(32)

and [
−QA −c
−cT 0

]  wxx wxy wyy
1xx 1xy 1yy
0 0 0

 =
[

D1 D2 D3
0 0 0

]
, (33)

where D1 = −2Dxwx −Dxxw, D2 = −Dxwy −Dywx −Dxyw and D3 = −2Dywy −Dyyw.

Proof. Differentiating the system of equations

−QAw − c1 = 0

−cTw = −1
(34)

with respect to x and y,we obtain systems:

−QAwx − c1x = −Dxw

−cTwx = 0
(35)

and

−QAwy − c1y = −Dyw

−cTwy = 0,
(36)

respectively.
Writing (35) and (36) in a matrix form, we obtain (32).

Differentiating the system (35) with respect to x and y, and the system (36) with respect to y, we obtain
systems:

−QAwxx − c1xx = −2Dxwx −Dxxw

−cTwxx = 0
, (37)

−QAwxy − c1xy = −Dxwy −Dywx −Dxyw

−cTwxy = 0
(38)

and

−QAwyy − c1yy = −2Dywy −Dyyw

−cTwyy = 0
, (39)

respectively. Finally, using (37), (38) and (39), it follows (33).
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Now, we construct the algorithm eMGSp given in detail in Appendix A.1. The boundary of the minimal
Geršgorin set is given by ∂ΓR(A) = {z = x + iy ∈ C : fA(x + iy) = 0}. Starting with the point ω0 ∈ ∂ΓR, which
we can obtain by the procedure eSearch from [7], we want to find the next point on the boundary of ΓR(A),
named ω1.

Firstly, in the predictor step, we obtain the point

z1 := ω0 + hdl, (40)

where h is a given length of a step and dl := ±
− fy + i fx
| − fy + i fx|

(we choose the sign in the direction of the curve

tracing), where fx and fy are computed in ω0.

Then, in the corrector step, we want to find the point ω1 ∈ ∂ΓR, which is the nearest to z1. To that end, we
solve the problem:

||ω − z1||
2
2 → min, fA(ω) = 0.

Forming a function
L(x, y, λ) := (x − Re(z1))2 + (y − Im(z1))2 + λ fA(x, y)

and differentiating it with respect to x and y,we obtain the following iterations:


x(k)

1
y(k)

1
λ(k)

 =


Re(ω(k)
1 )

Im(ω(k)
1 )

1

 −
 2 + λ fxx λ fxy fx
λ fxy 2 + λ fyy fy

fx fy 0


−1 

2Re(ω(k)
1 − z1) + λ fx

2Im(ω(k)
1 − z1) + λ fy

f

 , (41)

where ω(0)
1 := z1, ω

(k)
1 := x(k−1)

1 + iy(k−1)
1 , k ∈N, and f , fx, fy, fxx, fxy and fyy are computed in ω(k)

1 .

Computation of these iterations will stop when | fA| ≤ tol, for some l ∈ N and a given accuracy tol > 0. In
practice, as z1 is near the border of ΓR(A), it is sufficient to compute just a few iterations. In that way, we
get ω1 := ω(l)

1 .

Analogously, we find a sequence of points {ω j}
m
j=0,which approximate the boundary of the one component

of minimal Geršgorin set. In the same way, we can find approximation of all other components of ΓR(A).

Finally, using the function 1A instead of fA for the characterization of the boundary of the minimal
Geršgorin set and the procedure iSearch from [10] instead of the procedure eSearch, we construct the
implicit predictor-corrector method for computing the minimal Geršgorin set- iMGSp, see Appendix A.1.
In that case, we use the characterizations of derivatives of 1A given in Theorem 3.2.

4. Triangular grid framework: algorithms eMGSt and iMGSt

In this section, two new algorithms for computing the minimal Geršgorin set are constructed. For a
given matrix A ∈ Cn,n,we combine the triangular grid approach presented in [9] with the characterizations
of ΓR(A) by the functions fA and hA to develop algorithms eMGSt and iMGSt, respectively.

Given any (zi, ze) ∈ C2 such that zi , ze, for k , l, define the following points:

Lk,l = zi + k(ze − zi) + l(ze − zi)e
iπ
3 ,

to obtain a uniform lattice of vertices

L(zi, ze) = {Lk,l : (k, l) ∈ Z2
},

satisfying

|Lk,l+1 − Lk,l| = |Lk+1,l − Lk,l| = |zi − ze|.
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Next, we define a triangular mesh, see Figure 2, as:

Ω(zi, ze) = Ψ(zi, ze) ∪ Ψ̃(zi, ze),

where

Ψ(zi, ze) = {Tkl = {Lk,l,Lk+1,l,Lk,l+1} : (k, l) ∈ Z2
},

and

Ψ̃(zi, ze) = {T̃kl = {Lk,l,Lk+1,l,Lk+1,l−1} : (k, l) ∈ Z2
}.

,

Figure 2: Triangular grid.

For a given matrix A ∈ Cn,n, let us denote by T the subset of Ω(zi, ze), where T ∈ T if and only if T has at
least one vertex in ΓR(A) and at least one outside of ΓR(A).
Let the pivot p(T) be the vertex of a triangle T ∈ T which is situated on the opposite side of the border of
ΓR(A) to other two vertices, e.g., vertex z̃i,0 in the triangle {z̃i,0, z̃i,1, z̃i,2} in Figure 3. Define a transformation:

F(T) = ρ(p(T), sgn(νA(p(T))) ·
π
3

)(T),

where sgn(x) =
{

1, x ≥ 0
−1, x < 0 and ρ(z, θ)(ω) denotes the rotation of ω ∈ C centered at z ∈ C with angle θ,

i.e.,
ρ(z, θ)(ω) := z + (ω − z)eiθ.

Now, we state some useful properties of triangular grids and mapping F defined on them. The proofs
of the following prepositions are given in [9].

Proposition 4.1. For zi , ze, T is a finite set.

Proposition 4.2. For a given triangle T ∈ T , the following statements hold:

1. F(T) , T;
2. p(T) is a vertex of F(T);
3. T and F(T) are adjacent;
4. F(T) ∈ T ;
5. p(F(T)) is a vertex of T;
6. F2(T) , T;
7. if T ∈ Ψ(zi, ze), then F(T) ∈ Ψ̃(zi, ze) and if T ∈ Ψ̃(zi, ze), then F(T) ∈ Ψ(zi, ze).

Proposition 4.3. F is a bijection from T onto T .

For any given T ∈ T define Tk := Fk(T), k ∈N, and set O(T) := {Tk, k ∈N},where T0 := T.

Proposition 4.4. For a given triangle T ∈ T , the following statements hold:
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1. the set O(T) is finite;
2. if n = card(O(T)), then n is even and the smallest positive integer such that Tn = T;

3.
n−1∑
i=0

θi = 2πm, m ∈N0, where θi is the rotation angle of F for the triangle Ti;

4. for a given triangle T′, either O(T) = O(T′) or O(T) ∩O(T′) = ∅.

Using the prepositions above and the function fA,we can construct an algorithm eMGSt, see Appendix
A.2. As before, given irreducible matrix A ∈ Cn,n, the set of its different diagonal elements is D =
{ai1i1 , ai2i2 , ..., aiñiñ }, where Re(ai1i1 ) ≤ Re(ai2i2 ) ≤ ... ≤ Re(aiñiñ ), ñ ∈ N, and let s be the number of disjoint
components of ΓR(A). We denote mi points representing the approximation of the boundary of the ith

component of the minimal Geršgorin set by {zi, j}
mi
j=1, i ∈ {1, 2, ..., s}. Starting with ξ = ai1i1 , φ = −π and

given accuracy ϵ > 0 (e.g., ϵ = 10−12), we use the procedure eSearch from [7] to obtain ω1 := ξ + t1eiφ, with
t1 := eSearch(A, ξ, φ, ϵ).

Then, we get the points z̃1,0 := ω1−
τ̃
2 and z̃1,1 := ω1+

τ̃
2 ,where τ̃ is a given length of edge of equilateral triangles

which form triangular grid and z1,1 := z̃1,1. Furthermore, we obtain the point z̃1,2 := z̃1,0 + (z̃1,1 − z̃1,0)e
iπ
3 . As

a result, the triangle T1 = {z̃1,0, z̃1,1, z̃1,2} is an element of T which generates the set O(T1). If fA(z̃1,2) < 0,
we define z1,2 := z̃1,2 and choose as pivot z̃piv the point z̃1,0 to get z̃1,3 := z̃piv + (z̃1,2 − z̃piv)e

iπ
3 . Otherwise,

we choose z̃piv := z̃1,1 and z̃1,3 := z̃piv + (z̃1,2 − z̃piv)e−
iπ
3 . Analogously, we construct a sequence of points

{z̃1,l}, l ∈ N0, as long as z̃1,l = z̃1,0. From that set of points, we choose a subset {z1, j}
m1
j=1, such that fA(z1, j) < 0.

The obtained polygon {z1, j}
m1
j=1 contains one component of the set minimal Geršgorin set ΓR(A), see Figure

3, and dist(zi, j, ∂ΓR(A)) ≤ τ̃.Notice, that we could give also an inner approximation of the boundary ∂ΓR(A)
simply by taking a subset of points with non-negative values of fA.

zi,4 = zi,3

zi,1 = zi,1
~

zi,2 = zi,2
~

~

zi,0
~

zi,3
~

ωi

Figure 3: Construction of the polygon {zi, j}
mi
j=1.

After completing the construction of the first component of the minimal Geršgorin set, we check which
entries fromD are in that component and denote the set of these diagonal entries byS1. IfS1 , D, choosing
for ξ the leftmost element ofD\S1, we construct a new polygon {z2, j}

m2
j=1 that represents the approximation

of next disjoint component of the minimal Geršgorin set. Then, we again test which entries from the set
D\S1 are in that component and denote the set of these entries by S2.We stop with that procedure when
all elements ofD are included in some components of the minimal Geršgorin set.

Finally, we can simply construct the implicit version iMGSt by replacing the function fA with the
function hA, see Appendix A.2. Doing so, using the idea of the implicit determinant method [5], we achieve
to reduce significantly the overall number of expensive eigenvalue computations. This algorithm gives
excellent results, especially for matrices of large sizes, which will be shown through examples in the next
section.
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Moreover, remark that both algorithms eMGSt and iMGSt produce polygons that include the minimal
Geršgorin set in their interiors (interior is where diagonal entries lie). Indeed, for every point zi, j of the
constructed polygons by the algorithm eMGSt / iMGSt, it holds that fA(zi, j) < 0 / hA(zi, j) < 0. But this,
according to Theorems 2.2 and 2.4, guaranties that zi, j ∈ C \ ΓR(A) and, hence, polygons {zi, j}

mi
j=1 surround

connected components of MGS.

5. Numerical examples

In this section, we test new ({e,i}MGS{s,p,t}) on three examples and compare their performances with
the performances of eMGS and iMGS algorithms that were the state of art. We notice that new approaches
significantly accelerate convergence. To adapt notation, the abbreviations eMGSs and iMGSs are used

instead of eMGS and iMGS, respectively, and parameters ϵ1 = tol and ϵ2 =
2d(A)

√
3

3Ns
. All algorithms are

implemented in MATLAB version R2018b and tested on 2.7 GHz Intel
RO

Core
TM

i7 machine.

Example 5.1. In the first example we test algorithms on the cyclic matrix of a size n = 4:

A =


1 1 0 0
0 −1 1 0
0 0 i 1
1 0 0 −i

 ,
setting the parameters of the algorithms to be: tol = 10−12, τ = 2, h = 0.0254, Ns = 40 and Nt = 500. CPU times for
all algorithms are presented in Table 1. The number of computed points for eMGSs and iMGSs is 430, for eMGSp
and iMGSp 436 and for eMGSt and iMGSt it is 2086. Figure 4 shows the minimal Geršgorin set of A using
all three approaches. Also, their corresponding zoomed versions around the orgin are presented. Comparing them,
we notice that the algorithms eMGSt and iMGSt give more reliable approximation (zero belongs to the minimal
Geršgorin set of A).

MGS s p t
e 1.4667s 0.2728s 0.1102s
i 0.3721s 0.1203s 0.0282s

Table 1: CPU times for Example 5.1.

Example 5.2. In this example we implement the algorithms on the Leslie matrix: L = dia1(b · (1 : n−1).ˆ(−1),−1)+
a · [ξ.ˆ(1 : n); zeros(n− 1,n)],L(1, 1) = 0, for values a = 0.1, b = 0.2, ξ = 0.95 and n = 70. The results obtained with
parameters tol = 10−12, τ = 2, h = 0.0036,Ns = 100 and Nt = 200 are presented in Table 2. Figure 5 represents
the approximation of the minimal Geršgorin set of the Leslie matrix obtained by (a) eMGSs/iMGSs algorithm (315
points), (b) iMGSp algorithm (315 points) and (c) eMGSt/iMGSt algorithm (602 points).

MGS s p t
e 38.9456s / 2.3955s
i 1.0306s 0.2796s 0.2576s

Table 2: CPU times for Example 5.2.
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Example 5.3. In this example, we test all algorithms on the Orr-Sommerfeld matrix of a size n = 1000 from the Matrix
Market respiratory ([4]). For tol = 10−12 and Nt = 400, the CPU time for iMGSt is 51.41335s (546 points, see Fi1ure 6).
Other algorithms do not give results in the observed period.

Example 5.4. Finally, in the last example, the performance of the algorithms w.r.t. computational time is measured
for randomly perturbed the Grcar matrices ([4]). Namely, for different problem sizes n ∈ {10, 25, 50, 100, 150, 200},
we run all six algorithms for the matrix A + xT y, where A is the Grcar matrix and x and y are normed standard
Gaussian vectors of a size n. For each size experiment is repeated ten times and mean CPU times are shown in Table
3 together with standard deviations in the brackets. Additionally, this is illustrated in Figure 8 and the typical shape
of MGS is shown in Figure 7 for one instance of perturbation. The parameters for the algorithms are chosen as
tol = 10−12, τ = 2 and Ns = 50 for *MGSs, tol = 10−12 and h = 0.08 for *MGSp, and tol = 10−12 and Nt = 200 for
*MGSt, where ∗ ∈ {e, i}. We observe that as the size of the problem grows, implicit algorithms perform much better,
and among them specially iMGSt outperforms others by a safe margin.

MGS s p t
n=10

e 1.8192s (0.0361s) 0.2053s (0.0287s) 0.0295s (0.0029s)
i 0.3243s (0.0116s) 0.11373s (0.0167s) 0.0405s (0.0023s)

n=25
e 11.6757s (0.4536s) 0.8182s (0.0132s) 0.1424s (0.0126s)
i 0.7342s (0.0239s) 0.1031s (0.0196s) 0.0869s (0.0125s)

n=50
e 12.5082s (0.3717s) 2.7947s (0.0415s) 0.5593s (0.0218s)
i 2.2096s (0.1085s) 0.2564s (0.0238s) 0.1941s (0.0158s)

n=100
e 31.3543s (4.3844s) 10.7534s (0.2943s) 2.5751s (0.1344s)
i 6.1163s (0.4178s) 0.9892s (0.0807s) 0.4161s (0.0243s)

n=150
e 61.4527s (12.2141s) 31.4344s (0.5817s) 8.8938s (0.1544s)
i 13.9478s (0.2921s) 2.2617s (0.0351s) 0.7827s (0.0273s)

n=200
e 101.2427s (13.1459s) 56.9199s (0.9823s) 14.9982s (0.4493s)
i 22.2831s (1.2684s) 4.7791s (0.4092s) 1.0643s (0.0302s)

Table 3: CPU times for Example 5.4.

6. Conclusion

In this paper, we have developed new algorithms for computing the minimal Geršgorin set that have
several important advantages. Firstly, new methods are significantly faster. As it is presented in the
examples, the run time of new algorithms outperforms the existing ones. Furthermore, for some test
matrices of large sizes, the previously known algorithms did not produce any result in the observed period
of time. Secondly, new algorithms are simpler for implementation. For example, the algorithms which use
the triangular approach for curve tracing are straightforward since they do not depend on many parameters
(the only required information is accuracy and the number of triangular grid points). All other necessary
information is computed automatically. Third, new approaches are more reliable. The algorithms eMGSt
and iMGSt produce the polygons that always contain the desired localization set.
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Figure 4: The results of the algorithms for the the cyclic matrix A from Example 5.1: complete plot and plot zoomed around the origin.
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Figure 5: The results of the algorithms for the Leslie matrix of a size n = 70: complete plot and plot zoomed around the rightmost
eigenvalue.
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Figure 6: The result of the algorithm iMGSt for the Orr-Sommerfeld matrix of a size n = 1000.
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Figure 7: The results of the algorithms for the Grcar matrix of a size n = 100.

Figure 8: The comparison of CPU times of the algorithms for the Grcar matrices.
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Appendix A. Algorithms in psedocode

For reader’s connivance we provide pseudocodes of the proposed algorithms.

Appendix A.1. Algorithms based on predictor-corrector method

eMGSp
Input: A, h, tol

1: SetD = {ai1i1 , ai2i2 , ..., aiñiñ } and initialize i = 1;
2: whileD , ∅ do
3: Initialize ξ = D(1), θ = −π, θ1 = −3π and j = 0;
4: Set ω =eSearch (A, ξ,−π, tol), and ωi,0 := ω;
5: while θ − θ1 > −π do
6: Compute fx and fy in ωi, j by (17) and (18);
7: Compute zi, j+1 using (40)
8: Set w = zi, j+1 and compute f = f (w) as the Perron-Frobenius eigenvalue of QA(w);
9: while | f | > tol do

10: Compute fxx, fxy and fyy in w by (19), (20) and (21);
11: Compute w by solving the system (41);
12: Compute f = f (w) as the Perron-Frobenius eigenvalue of QA(w);
13: end while
14: Update j← j + 1 and ωi, j ← w;

15: Set θ1 := θ, θ := −i ln ωi, j−ξ
|ωi, j−ξ|

;
16: end while
17: Update i← i + 1;
18: UpdateD to exclude all elements inside of the polygon {ωi, j}0≤ j≤mi ;
19: end while
Output: {{ω1, j}0≤ j≤m1 , {ω2, j}0≤ j≤m2 , ..., {ωs, j}0≤ j≤ms }
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iMGSp
Input: A, h, tol

1: SetD = {ai1i1 , ai2i2 , ..., aiñiñ } and initialize i = 1;
2: whileD , ∅ do
3: Initialize ξ = D(1), θ = −π, θ1 = −3π and j = 0;
4: Set ω =iSearch (A, ξ,−π, tol), ωi,0 := ω;
5: while θ − θ1 > −π do
6: Compute 1x and 1y in ωi, j by solving the system (32);
7: Compute zi, j+1 using (40);
8: Set w = zi, j+1 and compute 1 = 1(w) by solving the system (31);
9: while |1| > tol do

10: Compute 1xx, 1xy and 1yy in w by solving the system (33);
11: Compute w by solving the system (41);
12: Compute 1 = 1(w) by solving the system (31);
13: end while
14: Update j← j + 1 and ωi, j ← w;

15: Set θ1 := θ, θ := −i ln ωi, j−ξ
|ωi, j−ξ|

;
16: end while
17: Update i← i + 1;
18: UpdateD to exclude all elements inside of the polygon {ωi, j}0≤ j≤mi ;
19: end while
Output: {{ω1, j}0≤ j≤m1 , {ω2, j}0≤ j≤m2 , ..., {ωs, j}0≤ j≤ms }
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Appendix A.2. Algorithms based on triangular grid
In the following algorithms, we use the notation:

ure = max
i∈N
{Re(aii) +

∑
j∈N\{i}

|ai j|}, lre = min
i∈N
{Re(aii) −

∑
j∈N\{i}

|ai j|},

uim = max
i∈N
{Im(aii) +

∑
j∈N\{i}

|ai j|}, lim = min
i∈N
{Im(aii) −

∑
j∈N\{i}

|ai j|}.

eMGSt
Input: A, Nt, tol

1: Set τ̃ =
2d(A)

√
3

3Nt
,where d(A) = max{ure − lre,uim − lim};

2: SetD = {ai1i1 , ai2i2 , ..., aiñiñ } and initialize i = 1;
3: whileD , ∅ do
4: Set ξ = D(1) and θ = −π;
5: Run eSearch(A, ξ, θ, tol) to compute ωi ∈ C;
6: Compute z̃i,0 = ωi −

τ
2 and z̃i,1 = ωi +

τ
2 ;

7: Compute z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

8: Set zi,start = z̃i,0 and zi,1 = z̃i,1;
9: Initialize j = 2;

10: while z̃i,2 , zi,start do
11: if fA(z̃i,2) < 0 then
12: zi, j = z̃i,2;
13: z̃i,0 = z̃i,0;
14: z̃i,1 = z̃i,2;
15: z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e

iπ
3 ;

16: Update j← j + 1;
17: else
18: z̃i,0 = z̃i,2;
19: z̃i,1 = z̃i,1;
20: z̃i,2 = z̃i,1 + (z̃i,0 − z̃i,1)e−

iπ
3 ;

21: end if
22: end while
23: Update i← i + 1;
24: UpdateD to exclude all elements inside of the polygon {zi, j}1≤ j≤mi ;
25: end while
Output: {{z1, j}1≤ j≤m1 , {z2, j}1≤ j≤m2 , ..., {zs, j}1≤ j≤ms }
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iMGSt
Input: A, Nt, tol

1: Set τ̃ =
2d(A)

√
3

3Nt
,where where d(A) = max{ure − lre,uim − lim};

2: SetD = {ai1i1 , ai2i2 , ..., aiñiñ } and initialize i = 1;
3: whileD , ∅ do
4: Set ξ = D(1) and θ = −π;
5: Run iSearch(A, ξ, θ, tol) to compute ωi ∈ C;
6: Compute z̃i,0 = ωi −

τ
2 and z̃i,1 = ωi +

τ
2 ;

7: Compute z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

8: Set zi,start = z̃i,0 and zi,1 = z̃i,1;
9: Initialize j = 2;

10: while z̃i,2 , zi,start do
11: if hA(z̃i,2) < 0 then
12: zi, j = z̃i,2;
13: z̃i,0 = z̃i,0;
14: z̃i,1 = z̃i,2;
15: z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e

iπ
3 ;

16: Update j← j + 1;
17: else
18: z̃i,0 = z̃i,2;
19: z̃i,1 = z̃i,1;
20: z̃i,2 = z̃i,1 + (z̃i,0 − z̃i,1)e−

iπ
3 ;

21: end if
22: end while
23: Update i← i + 1;
24: UpdateD to exclude all elements inside of the polygon {zi, j}1≤ j≤mi ;
25: end while
Output: {{z1, j}1≤ j≤m1 , {z2, j}1≤ j≤m2 , ..., {zs, j}1≤ j≤ms }


