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Further results on Berezin number inequalities and related problems
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Abstract. In this article, we obtain certain Berezin number inequalities which extend certain earlier existing
results in the literature. Also, we give some reverse Berezin number inequalities for normal operators on

reproducing kernel Hilbert spaces. Moreover, we characterize the projection operators and the partial
isometry operators in terms of Berezin number.

1. Introduction

Let H be a complex Hilbert space with an inner product (-, -) and B(H) be the C*-algebra of all bounded
linear operators from H into itself. For T € B(H), the numerical range of T is defined as

W(T) = {{Tx,x) : x € H, ||x|| = 1}.

The numerical radius of T, denoted by w(T), is defined as w(T) = supilz| : z € W(T)}. It is well-known that

w(-) defines a norm on H, and is equivalent to the usual operator norm ||T|| = sup{||Tx|| : x € H, ||x|| = 1}. In
fact, for every T € B(H),

1

TN < w(T) < ITII (1)
Several numerical radius inequalities that provide alternative lower and upper bounds for w(-) have at-
tracted great research interest in recent years. For example, the estimation of the numerical radii of operator
matrices is useful in obtaining bounds for the zeros of polynomials (see [6]). One may refer to the excellent

articles [8, 11, 18, 21, 26] for the history and significance of numerical radius inequalities.
Kittaneh [16] showed that if T is an operator in B(H), then

(T < 2 (71 + IT2112) @
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Consequently, if T? = 0, then
1
w(T) = SIITlI )

A Hilbert space H = H(Q2) of complex valued functions on a nonempty open set Q2 C C which has the
property that point evaluations are continuous, is called a functional Hilbert space. The point evaluations
are continuous means for each A € Q, the map f +— f(A) is a continuous linear functional on H. For each
A € Q, there is a unique element K, of H such that f(1) = (f,K,) for all f € H by Riesz representation
theorem. The collection {K; : A € Q}is known as the reproducing kernel of H. Problem 37 of [12] states that the
reproducing kernel of a functional Hilbert space H with {e, } as an orthonormal basis is K, (z) = Z eq,(A)ey(2).

n
Letk,y = K;/|IK,|| be the nomalized reproducing kernel of H, where A € Q). The function A defined on Q by
AN = (AIAcA,IAcﬁ is the Berezin symbol of a bounded linear operator A on H. Berezin set and Berezin number
of the operator A are defined by Karaev [15]

Ber(A) ={A(A): A € Q} and ber(A) = sup{|A(A)|: A € Q)},

respectively. These definitions are named in honor of Felix Berezin, who introduced these notions in [7].
Clearly, the Berezin symbol A is a bounded function on Q whose values lie in the numerical range of the
operator A, and hence

Ber(A) € W(A) and ber(A) < w(A).

Berezin number of an operator T satisfies the following properties:
(i) ber(aT) = |a|ber(T) for all @ € C.
(ii) ber(T + S) < ber(T) + ber(S).

The Berezin symbol has been studied in detail for Toeplitz and Hankel operators on Hardy and Bergman
spaces. A nice property of the Berezin symbol is mentioned next. If A, B € B(H) then A(A) = B(A) for all
A € Q, implies A = B. Thus the Berezin symbol uniquely determines the operator.

Let Hi,Hy, ..., H, be Hilbert spaces. If H = @7{, and S € B(H), then the operator S can be

represented as an 7 X nn operator matrix, i.e., S = [Sij]nx,l1 xlzvith Sij € B(H;, H;), the space of all bounded linear
operators from H; to H;. Operator matrices provide a useful tool for studying Hilbert space operators,
which have been extensively studied in the literature. The block-norm matrix $ associated with an operator
matrix S = [S;j]ux, is defined by S = [ISijlllnxn which is an n X n non-negative matrix. Hou et al. [14]
established some estimates for the numerical radii, operator norm, and spectral radii of an n X n operator
matrix S = [S;;]. In particular, they showed that if S = (S;j)ux, is an operator matrix and S= (I1SijlD)nxn is its
block-norm matrix, then

(i) w(S) < w(S), (@) ISl < lISll, (i) p(S) < p(S), (4)

where p(S) denotes the spectral radius of S.

Several numerical radius inequalities improving and refining inequality (1) have been obtained by
many authors see for examples [1, 2, 6, 14]. Among others, important facts concerning the numerical radius
inequalities of n X n operator matrices are obtained by different authors which are grouped together, as
follows: Let S = [S;;] be an 1 X n operator matrix with S;; € B(H;, H;). Then

w ([Sf}l) ), BaniDomi & Kittaneh in [6]
w(S) < ; ®)
w ([s(.?) ), AbuOmar & Kittaneh in [1]

1
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where

Sw:{%OﬁM+wﬂ”) i
T Ul i#j

and
o= il
T Uil i
In the other direction, Bakherad [3] and Sahoo et al. [24] established certain inequalities involving the

Berezin number of operators. Using the ideas given in [1], Bakherad [3] and Sahoo et al. [24] proved that if
S = [Sij] is an n X n operator matrix with S;; € B(H(Q;), H(C2;)), 1 <i,j < n. Then

w([sl(]l)]), Bakherad in [3]
ber (S) < ; (6)
w ([sl(]z)]) , Sahoo et al. in [24]

where

S0 = ber(S;j) fori=j
ij = ||S,]|| fori # i’

and

$@ = %ber(MSﬁIZ +(1- a)lsﬁilz), fori=j
i

ISill, i+ j.

Recently, Bakherad et al. [5] established Berezin number inequality via Aluthge transform of operator
is presented below.

1 1 -
ber(T) < ZIIITIZt + TP + 5ber(Ty), 7)

where T € B(H), t € [0, 1]. For other related upper and lower bounds for Berezin number one may refer to
[3,4,22,23].

The main objective of this paper is to extend the inequalities (6), (7) and to obtain Berezin number
inequalities for operators on reproducing kernel Hilbert space. To this end, the paper is organized as
follows. Section 2 begins with the description of some useful preliminary results. In Section 3, we have
established Berezin number inequalities via generalized Aluthge transform of an operator. Certain Berezin
number inequalities for n X n operator matrices are also obtained. Some reverse Berezin number inequalities
for normal operators on reproducing kernel Hilbert space are proved in Section 4. In Section 5, we have
characterized the projection operators and partial isometry operators in terms of Berezin number.

2. Preliminaries

Here, we collect some definitions and earlier results which will be used to prove the main results in the
next section. We begin with a formula for the numerical radius of a matrix with non-negative entries (see
page No. 44, Problem 23(n)[13]).

Lemma 2.1. ([13], Page No. 44, Problem 23(n)) Let T = [t;;] € M,,(C) be such that t;; > 0 forall i,j = 1,2,...,n.
Then
1
w(T) = EP([tij + ).

Here p(-) denotes the spectral radius.
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A generalization of the mixed Cauchy-Schwarz inequality which is useful in proving our main results is
presented below.

Lemma 2.2. ([17], Theorem 1) Let A be an operator in B(H). If f and g are non-negative continuous functions on
[0, oo) satisfying the relation f(t)g(t) =t for all t € [0, 00). Then

KAx, v < IF(1AIlg (A" )
forall x,y in H.

The following lemma is an operator version of the classical Jensen inequality.

Lemma 2.3. ([20], Theorem 1.2) Let A be a self adjoint operator in B(H) with sp(A) C [m, M] for some scalars
m < M, and let x € H be a unit vector. If f(t) is a convex function on [m, M], then

f((Ax, ) < (f(A)x, x).
The next lemma follows from the spectral theorem for non-negative operators and Jensen inequality (see
[17]).

Lemma 2.4. [McCarthy inequality] Let S € B(H), S = 0 and x € H be a unit vector. Then
(i) (Sx,x)" <(S'x,x) forr > 1;
(ii) (S"x,x) < (Sx,x) for0 <r < 1.

Lemma 2.5. [3, Corollary 2.2] Let S € B(H(()1)), X € B(H(Q), H()), Y € B(H(Q1), H(Qy)) and R €
B(H(Q)). Then the following statements hold:

(a) ber (| g 12 ]) < max{ber(S), ber(R)}.
0 ber([ . ]) < 10IXI + 1Y)

In particular,

ber([ ; %( ])s X1l 8)

We conclude this section with the following lemma from [4].

Lemma 2.6. ([4], Lemma 2.1) Let A € B(H), then

ber(A) = sup ber (%(eieA)) = sup ber (ﬁ(eieA)) .
OeR 0eR

3. Some extended Berezin number inequalities

Let S = U|S| be the polar decomposition of S. Here U is a partial isometry and |S| = ($*S)2. The Aluthge
transform of the operator S, denoted by S'is defined as S = |S I% u|s I%. Okubo [19] introduced a more general
notion called t-Aluthge transform. It is denoted by gt, and is defined as Et = |SFUIS|** for 0 < t < 1. It
coincides with the usual Aluthge transform for t = % When t = 1, the operator §1 = |S|U is called the
Duggul transform of S € B(H). Shebrawi and Bakherad [25] introduced generalized Aluthge transform of the
operator S, denoted by §f,g. It is defined by §f,g = f(ISl)Ug(|S]), where f, g are non-negative continuous
functions such that f(x)g(x) = x (x > 0) and S € B(H).

The following theorem is an extension of (7).
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Theorem 3.1. Let S € B(H(Q)) and f, g are two non-negative continuous functions defined on [0, oo) such that
ft)gt) =t fort>0. Then

ber(s) < 125D + DI + ber(S). ©)

Proof. Let ki € H. Then we have
RSk, k) = ReOUISIky, kr)
= R Ug(IS) F(ISDka, k)
= RO £(Ska, g(ISHU k)

1. . N 1 . A
= ZII(E'Gf(ISI) +g(ISHU k> ~ le(elef(ISI) = g(SHU Ykl
(by the polarization identity)

< Z1 £(1S + gSHU Rl
= Z(FSI) + gSHU Yoy, (45D + gSHU V)
= $€ ) + 9SO FSD + UgIs, k)
= SRS + (S + €5+ 03, o)
= P08 + S k) + 35 0+ ¢S Mot b
= 208D + Sk k) + 3 (RES ks )
1

1 L
< ZIF21S1) + g(SDI + Sber(R(eS )
1 1 ~
< 12081 + F(SDIl + Sber(Sy).
By taking the supremum over A € Q, and using Lemma 2.6 we get the desired result. [

As a special case of our result we have the following result [5, Theorem 3.2].

Remark 3.2. 1. Put f(t) = t*,g(t) = 1=, & € [0, 1], we have
1 1,
ber(S) < ISP + SPU=l| + Sber(S), (10)
2. By putting a = § in Theorem 3.1, we get
1 1,
ber(S) < §||5|| + Eber(S), (11)

where S € B(H(Q)).
The following Theorem is the extension of [5, Theorem 3.1].

Theorem 3.3. Let S = 502 %1 € B(H(Q) P H(Qy) and f, g are two non-negative continuous functions

defined on [0, oo) such that f(t)g(t) =t for t > 0. Then

ber(Syg) < %(IIf(ISzI)Q(IS]I)II +11£(S1Dg(S3DID. (12)
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Proof. Let S; = U|S1| and S; = VS| be the polar decompositions of the operators S; and S, respectively.
Then

ERTEE] Kty

is the polar decomposition of S. By generalized Aluthge transform of S, we have

= 0 u | fas2D 0 0 u g(|S21) 0
sw=s00] 5 5 oo =| PG sy ||V 5L s

_ [ 0 £1S2)Ug(1S11) ]
FUS1) V(1)) 0 '

So

5 ) o 0 fUS:Ug(Si)
bertSre) = ber([ fASVels:h o ])

< S(FAS2DUg (SN + 1LF SV g(1S2DI)- (by Lemma 2.5)

N =

Since, [S;* = 515} = UIS1PU", and [S;|* = 5,55 = V|S2[*V*, so we have g(|S1]) = U*g(IS;)U and g(|S2]) =
V*g(IS;|)V for every non-negative continuous function g on [0, c0). Therefore,

= 1
ber(Szg) < S (Ilf(1S2Dg(1S1DIF+ 11£(1S1Dg(1S3DIN)
which proves the theorem. [

As a special case of our result we have the following remark (see [5, Theorem 3.1]).

Remark 3.4. Put f(t) = t*,g(t) = t'=%,a € [0, 1] in Theorem 3.3, we have

ber(S) < S(NS2A* IS4+ IS 1S5 ) (13)

N —

The following theorem is an extension of the first part of the inequality (6).

Theorem 3.5. Let S = [S;;] be an n X n operator matrix with S;; € B(H(Q;), H(C)), 1 <i,j < nand f, g are two
non-negative continuous functions defined on [0, o) such that f(t)g(t) =t fort > 0. Then

ber(S) < w([s;j]),

where

ber(S;j), fori=j,
Sij = 1 . 1L .
J ||f2(|sij|)||2||92(|S,-]-|)”2 for i#j.

n k/\l
Proof. Let H = @'H(Qi). For every (Ay,...,A,) € Q X -+ x Qy, let ku,,,) = | : | be the normalized

,,,,,

i=1 kA

n
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reproducing kernel of H. Using Lemma 2.2, we then have
IS, -, An)l = KSKay,.. 10, Ky,

= 1) (Sijkn

ij=1

n
< Y KSika, k)

ij=1

= Y KSika, ki) + Y KSifka, k)
=1 ij=1
i#]

n n
< Y ber(Sllkn | + Y CFUSilkn, ki Y HGAIST D, K )12
i=1

i,j=1

i#j
S Z ber(Si)llka > + Z ||f2(|5ij|)||1/2||g2(IS§J»I)II1/2||kA,||||kAj||
i=1 ij=1
l 1]¢]
= ([sijlx, x),
[lica, I
wherex =| : | Since x|l = 1,50 [S(A1, ..., Al < w([si]).
lIkea, I
Hence
ber(S)=  sup  [5(As,..., Al < w((sif)),
(A1) € Qpx--XQy

which proves the theorem. [

One can notice that Remark 3.6 is in [3, Theorem 2.1].
Remark 3.6. If we take f(t) = g(t) = t'/% in Theorem 3.5, we get
ber(S) < w([s;;),

where

. ber(S;j), fori=j,
TSI for i #

Siu Si2

Corollary 3.7. IfS = ([521 Sy

D € LIH(Qy) P H(Q,), then

ber(S) < % [ber(Sn) + ber(Sy) + \/(ber(Sn) —ber(Sx»))? + (M + N)ZJ ,

where M = || f2(IS12D1Z l92(S,DII* and N = || f2(Sa1)lI2 1g7(1S5, DI

10421
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Proof. Using Theorem 3.5, we obtain

Siu Si2
wer( 52

IN

w([ ber(Sn) 1||f2(|512|)||%||92(|5§2|)||%])
IF(S2aDII1lg (1S5, DIl ber(S2)

[ o)
A@ ber(Szz)

[ber(Si1) + ber(Sx) + /(ber(Siy) - ber(S))? + (M + N)?]|,

N—=

which proves the corollary. [

Remark 3.8. If we take f(t) = g(t) = t'/2 in Corollary 3.7, we get [3, Corollary 2.2].

ber([gi ﬁ;ﬁ]) < 5 [ber(51) + ber(2) + Vloer(S11) — ber(S2)? + (Grall + 51l

The following theorem is an extension of the second part of the inequality (6).

Theorem 3.9. Let S = [S;;] be an n X n operator matrix with S;; € B(H(Q;), H(Y)), 1 <i,j < nand f, g are two
non-negative continuous functions defined on [0, oo) such that f(t)g(t) =t for t > 0. Then

ber(S) < w([s;j]),

where
o [rer s s 2sy,
! ||f2(|5ij|)||f||92(|5f]-|)||7 for i#j.
n k/\l
Proof. Let H = @'H(Qi). For every (Aq,...,A,) € Q1 X -+ X Qy, let IQ(M ,,,,, 1) =| ¢ | be the normalized

i=1 kA

n
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reproducing kernel of H. Using Lemma 2.2, we then have

IS(A1, ..., Al

= 1) (Sijkn, )l

ij=1

n
< Y KSijka, )l

ij=1
= Y KSika, ka) + Y KSifka, k)
i=1 ij=1
i#]

< YUk k) 2GS k)2 + YRS DK, ) RGPS D, Ko )Y

i=1 i,j=1
i#]
1 n n
<3 [<f2(|5ii|)k)\,-/k/\i> + (gZ(ISZ-I)kA[,kM] + Z(fz(lsijl)k}\j/kAj>1/2<!72(|S;j|)k/\,/kA,->1/2
i=1 ij=1
| R
1 n ) n . ) .
) (F20Sal) + Sy e, k) + ,Zi ILF2ASDIE IS, DIk, e,
i
1v - !
<3 ber(f2<|sﬁ|) + Skl + 3 IS DI e k|
i=1 ij=1
Z
= ([sijlx, x),
[k, 11
wherex =| : |. Since|lx|| =1, so IS(A1,..., Al < w([sij])-
Ilkea, Il
Hence
ber(S) = sup IS(A1, ..., Al < w([sij]),
M yrh) € QX Qy

which proves the theorem. [

For « € (0,1), putting f(t) = %, g(t) = '™ in Theorem 3.9, we obtain the following inequality see [24,
Corollary 3.6].

Corollary 3.10. Let S = [S;;] be an n x n operator matrix, where S;; € L(H(Q;), H(CY;)), 1 <i,j < n. Then
ber(S) < w([s]),
where

. = %ber(alsiilz +(1- a)IS;‘iIZ), fori=j
1Sill, i+ j.
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Sit S

Corollary 3.11. Let S = [521 Sy

] € L(H,(Q) D HA(Q)), then

ber(S) < % (§11 + 522 + \/(511 - 522)2 + (M + N)Z)/

where S; = %ber(ﬂqsﬁn + 92(|S;|)), i=1,2, M=If2(1SuDIZlg>(S;,DII* and N = [|f2(Sa1)lI2 lg7(1S5, DIz

Proof. Proof is very easy by using spectral radius formula. [J

Remark 3.12. If we take f(t) = g(t) = t'/? in Corollary 3.11, we get

S S 1/~ - ~ ~
ber([si si]) <3 (SH + 52+ (S~ 522 + (ISuall + ||521||)2),

where 3 = $ber(|Sil +15), i =1,2

4. Some reverse Berezin number inequalities for normal operators

In this section, we give some reverse Berezin number inequalities for normal operators on reproducing
kernel Hilbert spaces H = H (Q).
The first theorem is as follows:

Theorem 4.1. Let H = H (Q) be a reproducing kernel Hilbert space and let A : H — H be a normal operator. If
u € C\ {0} and k > 0 are such that

|4 - pAT| <k (4.1)
then
1+—W ||AE||2 < ber (A%) + L 4.2)
2|l ) 2|l
forall A € Q.
Proof. The inequality (4.1) is clearly equivalent to
k|| + luf 4% < 2Re [ ARy, a%)] + £ 43)

for all A € Q. Since A is a normal operator, then ”AE\” = ||A7c\;t|| for any A € Q and by (4.3) we have

(1+e) k|| < 2re [ (4%, 5] + 2

forany A € Q.
Also we have that

Re [ (4%, K1 )] < [u] |22 ()
< |y|sup |ZE ()\)|
AeQ)
= |y| ber (Az).

Hence, we deduce (4.2) together with inequality (4.3) and above inequality. [J
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For a normal operator A, we see that
— —_ o~ — — — 12
42 o] = [k, 4| < k][] = [lak |
for any A € Q. Therefore,
1
147 | - [(4, AT )| > 0
forany A € Q.
Denote 6 (A) = inf [
AeQ

1
Ak,\” - |<AkA,A*kA>|2] > (0. We can state the following result.
Theorem 4.2. Let A be a normal operator satisfying Theorem 4.1. Then we have

||AEH2 ~ber (4%) < —2|u[6(A) 7 (4),

forany A € Q, where n(A) = }1@5 |Zi ()\)|1/2 .
Proof. From the inequality (4.3), we get
HABHZ - 'ZE (/\)l < 2Re[HAZ (V)] - |Z§ (/\)| —|uf HAE”Z e (4.4)

forany A € Q.
We can write the right hand side of above inequality as follows:

-l

I= +2Re[FA2 ()] - 2|u| |42 (/\)|1/2 14 | - ((Zﬁ ()\)'1/2

Since, clearly,
Re [fiA2 (V)] < |u][42 ()
and
(ol ) =0
then
1<-2|y 'AVZ ()\)‘1/2 (||A7€AH - ’XZ (/\)’1/2)
<=2l n(4)|a2 (/\)|1/2.
Using the inequality (4.4), we have
||ABH2 <[a2 ()| -2[u[n(a) |22 ()\)|1/2 + 2
sup 0] - 2l g [ o]+
< ber (A2) = 2|u|n(A) 6 (A) + K2

for any A € Q, which gives the desired result. [
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Notice that for a normal operator A and u € C\ {0}, k > 0, the following two conditions are equivalent
() ”AEA - tuAﬁc\A” <k< M ||AE” forany A € Q
and

(i) [JA-pa’] < kand ©(4) = inf |4k > L

A€Q |[J|
Theorem 4.3. Let A beanormal operator on a reproducing kernel Hilbert space H satisfying either (i) or, equivalently,
(ii) for u € C\ {0} and k > 0. Then we have

(i1)
HA’}ZAH4 ~ber? (A2) < K2 HA'}ZA”Z
(i)
1/2
I [o2 a0 - k_] < (4
forall A € Q.

Proof. We know from Dragomir result (see [9, 10]):
[1xIP llall* — [Re ¢x, a)]* < K [lx]?

ifllx—al| <k< llall - .
Putting x = Ak, and a = uAk;, we get

T s e B
and hence
A& < ver (42) « 2 AT

which gives the desired result (iy) .
Also we know that provided ||x — a| < k < [|a]|, then (see [9, 10])

IlP (a2~ 1) < [Re (x, )],
which gives
A8 (1P 5 - 2) " = Re (R, wa o)
< [u] |22 ()|
< [u] ber (4%),

that is,

N e g2 1/2
I (5 __2] < (4

|y
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for any A € Q. Since, clearly,

1/2 1/2
HAEH2 - k—zz] > [cp2 (A) - k_Zz] )
| ]

then we have

_ k2 1/2
HAkA” D2 (A) - ‘—2] < ber (A2)
U

which gives the desired inequality (i,). O

Theorem 4.4. Let A beanormal operator on a reproducing kernel Hilbert space H satisfying either (i) or, equivalently,
(ii) for u € C\ {0} and k > 0. Then we have

‘ |A7€\/\

" ber? (4%) < 2ber (42) [y [hul 1473 - (|y|2 D2 (A) - kz)l/z]

forany A € Q.

Proof. The reverse of the Schwarz inequality obtained in [9] is as following:

0 < [IxlP flall® = Kx, a)? < 2 Kx, @) lall (Ilall — yllall? — kz)

if lx —all <k <|lall. _ _
Choosing x = Aky and a = uA*k,, we have

| e ] - o |22 oo

<2|u* |42 ()|

AT [M %) - (|li|2 A%“z B kz)l/z]

and hence

]~ sup 2 0 < 2sup 2 o o | 1

A*’k\AHZ B kz)l/z]

forall A € Q.
Therefore, we get

-t ) <) [l - (o o2 -,
which proves the theorem. [

5. Berezin number and projection operator

In this section, we characterize the projection operators and partial isometry operators in terms of Berezin
number. Recall that A is a projection operator if A* = A = A%, and A is a partial isometry if A = AA*A.

Definition 5.1. Let H = H (Q) be a reproducing kernel Hilbert space of complex-valued functions defined on some

set Q0. We say that H has (Ber) property, if for any two operators A1, Ay € B(H), :47 A) = :42 (A) forall A € O
means that A, = A,.
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Notice that any reproducing kernel Hilbert space of analytic functions in the unit disc ID (including
Bergman and Hardy spaces) possesses the (Ber) property (see Zhu [27]).
The main results is as following:

Theorem 5.2. Let H = H (Q) be a reproducing kernel Hilbert space with the (Ber) property and A € B(H) be an
idempotent operator (A% = A). Then A is projection if and only if ber (A*A) < 1.

Proof. From the definition of Berezin number, we have that
ber (A*A) < 1if and only if ”AEH <1 (VAeQ). G.1)

Taking into consideration assertion (5.1), we obtain for all A € Q that

||(A - A*A)'EA”2 ((A- A"k, (A- AAK)

_ AEA”2 — (A, A ARy ) — (A" ARy, ARy ) + ‘A*AB”z

_ AE”Z — (A%, AR — (AR, AT ) + ”A*A’k}”2

S R P

L~ 1P — 12
= |adie|| - ||| <0
and hence (A — A*A)k; = 0 for all A € Q. Since {k; : A € Q} is a total set, we reach that A = A*A, thatis, A is
self-adjoint. So, A is a projection. [
Next result characterizes the partial isometry operator in terms of Berezin number.

Theorem 5.3. Let H = H (Q) be a reproducing kernel Hilbert space with the (Ber) property and A = A for some
positive integer k > 2. Then A € B (H) is partial isometry if and only if ber (A*A) < 1.

Proof. Since A2 = AF2Ak = AF-24 = AF1 AF1 is an idempotent operator, and A*! is a projection by
Theorem 5.2. Also, we know from Theorem 5.2 that ber (A*A) < 1 if and only if HAkA” <1 Ae€Q). Then,

||(A - AA*A)E”2 = (A~ A Ak, (A - AAA)K)

—~ 112 — — — — —~ 112
= |4k - (AR, A AR, ) - (AA Ak, Ay ) + HAA*AkA”

— 12
= ||Akal| -2

—~ 12
< ||Akp|| —2

—~ 112 —~ 12
A*Ak;\| +||AA*Ak,\||

—~ 112 —~ 112
A*AkA| +|A*Ak,\||

—~ 112 —~ 112
— ax.| - HA*Ak,\l

- A’%”2 - ]A*A’EA' ’

Py i P

_ sk—2 A% 7 2_ A1 2
= ||A™"A Ak, A*Ak,

2 - |2 —~ |12
< 1A' 'A*AkAH —HA*AkAH <0.

Therefore, (A — AA*A)k, = 0 for all A € Q. Since {k, : A € Q} is a total set, we obtain that A = AA*A, that is,
A is partial isometric. [
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