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Approximation by Bernstein-Kantorovich type operators
based on Beta function
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Abstract. With the idea taken from the King type operators which preserve some test functions, we
introduce here some Durrmeyer variants of Bernstein operators based on Beta functions. Some direct ap-
proximation theorems are provided of this introduced sequence of operators. We also proved Voronovkaja
type theorem. Furthermore, graphical and numerical examples are also given with the help of MATLAB.

1. Introduction

The integral modification of Bernstein operators, called Bernstein-Kantorovich operators, was defined
by Kantorovich in [16] to obtain an approximation for Lebesgue integrable functions, Kantorovich operators

kel
expressed from those of Bernstein by replacing the sample values o(k/n) with (m + 1) f vt o(t)dt the mean

values of o in the interval ﬁ, ’%1]; thatis, for y € [0,1]and m € N :
j+1

Koloi) = 014D ) Pus) [ oo,
=0 T

where P, j(y) = (T)yf 1- y)’”‘j. For more study on Kantorovich type operators, one can refer to [6, 12, 13,
15, 17,19, 21]. In the approximation of functions by positive linear operators, Bernstein operators are the
most studied and discussed operators. Many researchers have studied different variants of these operators.
For some variations of Bernstein operators and interesting approximation results, see [1, 2, 14, 18]. In the
recent past, research works have been carried out in such a direction to construct and modify the operators
which fix some functions (see [18]). Szdsz type operators involving Charlier polynomials and associated
approximation properties are given in [4], and different variants of Baskakov operators are discussed in
[3, 5]. Recent studies on Gamma and Meyer-Konig and Zeller operators can be found in [8, 24]. Operators

using g-calculus are also introduced and studied their approximation properties by many authors. Some
of them can be seen in [9, 10, 20, 22].
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Very recently, Bhatt et al. [7] introduced a new sequence of Bernstein-type operators with the help of
the beta function as follows:
For y € [0,1] and ¢ € C([0, 1]), Beta-Bernstein operator is defined as

Culoiy) =Y gm,j(wo(n%), (1)
=0
where
_(m Bmy+j+1,2m—j—my+1)

Here B(p, q) is the Beta function defined as

1
Bp,q) = fo 11— t)1dt (p,q > 0).

In [23], Ozarslan and Duman studied various approximation properties of the following operators :

m 1 ]'+ o
Wm,(x(g;y) = mer](y)‘f(; Y m+1 dt.
j=0

By combining the ideas given in [7, 23], we construct a new sequence of operators as follows:

& =Y o [ o2 3
m,a(aly)_;gm,](y)jo‘ o m+1 7 ()

where g, j(y) is given by (2).

The rest of the paper is organized as follows. In Section 2, we recall the moments of operators defined
in (1) we also establish the moments of our operators. Section 3 is devoted to proving some direct
approximation theorems. In Section 4, we will also prove the Voronovkaja type theorem. In the last section,
graphical and numerical examples are also given with the help of MATLAB.

2. Auxiliary results

In order to prove the moments of our operator, we recall the following lemma:

Lemma 2.1. [7] For x € [0, 1] and the operator given in (1), the following equalities hold true.
L Cu(Ly) =1

my +1
2. Cuty) = T2 ;
s« (m=1)(my+1)(my+2) my+1
3 Sy = = D+ 3) m(m +2)’
4 6B y) = (m —1)(m — 2)(my + 1)(my + 2)(my + 3) N 3(m —1)(my + 1)(my + 2) my+1
Y= 12(m + 2)(m + 3)(m + 4) m2(m + 2)(m + 3) m2(m +2)’
5. Cu(tsy) = (m = 1)(m — 2)(m — 3)(my + 1)(my + 2)(my + 3)(my + 4)

m3(m + 2)(m + 3)(m + 4)(m + 5)
. 6(m — 1)(m = 2)(my + 1)(my + 2)(my +3)  7(m — 1)(my + 1)(my + 2) my +1

m3(m + 2)(m + 3)(m + 4) m3(m + 2)(m + 3) m3(m +2)




L. Aharouch, K.]. Ansari / Filomat 37:30 (2023), 10445-10457 10447

Lemma 2.2. Form € N, a > 0 and x € [0, 1], we have

. 1 i m" i )
cSm,oz(el/ y) = (m + 1) Z ali—n)+ 1( ) m(€n; Y),
where §,, denotes the operators given by (1) and e;(y) = yi, (1=0,1,2,...).

Proof. It follows from (3) that

€, (i _zm: o [ a
m,a(el/y) - ]-: Qm,j(y)j; m+1
(m+1)lZ( )Z Om,j(N)]" f fati-n) g
j=0

1
) (m+1)’z‘a(z—n)+1( )Z@mf(y

1 i m"
- (m+1)’Za(z—n)+1( ) leni¥)

which completes the proof. 0O

Lemma 2.3. We have the moments for the defined operators (3) using Lemma 2.1 and Lemma 2.2 as follows:

L&GLy=1

0 & (b ) = m(my + 1) 1 '
Gl = T D) T e Da s 1)
. o m(m=1)(my + 1)(my + 2) m(my + 1) 2 1 )
3 ) = = R D +3) T s 12+ 2) ( ot 1) T 1) a+ 1y

m(m — 1)(m - 2)(my + 1)(my + 2)(my + 3)
(m+ 1)3(m + 2)(m + 3)(m + 4)
3m(m — 1)(my + 1)(my + 2) 1
(m + 1)3(m + 2)(m + 3) ( az+1)
m(my + 1) (1+ 3 . 3 )+ 1 _
(m+1)3(m +2) a+1l 2a+1) m+13GBa+1)
m(m — 1)(m — 2)(m — 3)(my + 1)(my + 2)(my + 3)(my + 4)
(m + 1)*(m + 2)(m + 3)(m + 4)(m + 5)
2m(m — 1)(m — 2)(my + 1)(my + 2)(my + 3) (3 N 2 )

4. G, (Fry) =

5. @thy) =

(m+ 1)*(m + 2)(m + 3)(m + 4) a+1
m(m — 1)(my + 1)(my + 2) (7 N 12 6 )
(m + 1)*(m + 2)(m + 3) a+1l 2a+1
m(my + 1) 4 6 4 1
(m+1)4(m+2)( o+l 2a+l 3a+1)+ m+1@dat1)

3. Some direct approximation theorems

We start with the following lemma.
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Lemma 3.1. Foreach m € N,a > 0and y € [0, 1], we have

2
m+1

G:n,a((i);; y) < (Tny(1 - y) + Aoz)r

where

30 +10a% + 1la + 3
1+ a)?QRa+1)

¢y() = (t = y)* and A, =

Proof. We have

) =2m3 + 11m* +17m+6 , 2m> — 8m?* — 6m
Cral®yiy) = y y
ATY (m+ 1)2(m + 2)(m + 3) (m+1)2(m + 2)(m + 3)
2m—2y(Bm+2) 1 1 3m? +m

10448

m+12(m+2) 1+a  (m+12Qa+1)  (m+12m+2)(m+3)
1

,  —2m3+8m?+2m—-12 ,
= 3y~ +
(m+1) | (m+2)(m+3)

N 2m3 — 8m? — 6m 2m-2yBm+2) 1 N 1 3m? +m
(m+12(m +2)(m +3)” m+2  1+a 2a+1 " (m+2)(m+3)
1 [2m3 — 8m? — 2m 2(1-v) 1 3m? +m

)y(l—y)+3yz+

(m+1)2| (m+2)(m+3 1+a 20+ 1

or
2m3—8m2—2m<2m and 3m2+m <3
m+2)(m+3) ~ m+2)m+3) "’
we get
1
* 2. < _
oy y) < T 1p 2my(1 - y) + Ba(y)),
where 21 : .
-y
B.(y) = 317 )
W =3y + = Y oae1 73
Now, since
max Bofy) = 1803 + 6002 + 64a + 17
seton eV = 31+a)2Ra+1)
we deduce that
30 + 1022 + 1la + 3
(O 2-y) < 1-
ma(@yiy) < ——— [my( Dt Tt areatD }

0
Before getting the next result, we give the K-functional [25] defined as :
Ka(0,6) = inf {llo — gll + 8llg”ll, g € C*(10,1D}, &>0,
and the second-order modulus of smoothness of f € C([0, 1])

wy(0,0) = sup sup |o(y—h)—20(y)+o(y+h), 6>0.
0<h<o y+hel0,1]

We recall that (see [11]) there exists a positive constant C such that

Ky(0,6%) < Cwy(0,0) for & > 0.

(m+2)m+3)|

)
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Theorem 3.2. Let o be a continuous function on [0, 1], the sequence €, ,(0,y) converges uniformly to o.

Proof. Let ei(y) = yi, i =0,1,2. In virtue of Bohman-Korovkin theorem it suffices to prove that ¢;, ,(e;, v)
converge to ¢;(yy) uniformly in [0, 1].
If we take into consideration (1) — (3) of Lemma 2.3, the proof is completed. [

Theorem 3.3. Let 0 € C([0,1]) and y € [0, 1], there exists an absolute constant C > 0 such that

l a0, y) = o(y)| < sz( \/pma(y)) + w(0, Om,a(y)), forall m e Nand y € [0,1],

1 1a)2' (_y+ 1J1ra)2}]’

where

1
Pma(y) = m my(1 —y) + A, + max {(1 -3y +

1
and A, is given by (4).
Proof. Consider the operator
Cual0,9) = €, o (0,9) + 0 (S, 4 (e1, 1)) + o), (6)

we can easily check that

Chralen,y) =1 and §,4(dy,y) = 0. )
Applying Taylor formula on h € C*([0, 1]), we get

h(z) = h(y) + z — YI' (y) + fz(z — )i (s)ds for z € [0,1]
y

using (6) and (7), we have
Gl y) = h(y) = W( f s (5)ds, y)-
y

From (6) we can see that

_ Z (‘:;n,(v (ery)
Craly) =h(y) = §,, ( f Ps(z)h" (s)ds, y) - f (€ aler, y) =)W (5)ds (8)
y y
On the one hand, since
@i e)ds| < 1)
we get
. < W,
e q>s<z>h (s)ds, y G (03 9)- 9)
On the other hand
Calery)
f (€01, ) = s) H" (5)ds
y
" p— — 2
< |l ((1—=3y)m -2y + 1 (10)
2(n + 1)2 n+2 a+1

[IR"| (
< — —
e 1)2max{1 3y+1

1\ 1 \?
+a) ’ (_y+1+a) }
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Combining (8)-(10) we deduce that

T 1L} [IP”"]| 1V 1\
[l ) = hy)] < [ o (00 9) + 5 e max {(1 o) (e ) }]

thus from Lemma 2.3, we have

| 1y 1y
Gt ) = )] < 50 +1)2(Aa+my(1—y>+max{(1—3y+m),(—y+1+a)})-

Now, let 0 € C([0,1]), y € [0,1] and h € C*([0, 1]), we get
|Ga@ )=o) < [Gualo =R y) = (0 =W+ [T, ah, y) = h(y)|

(1-3y)m -2y 1
’a((m +1)(m+2)  (m+1)(a+ 1)) - o(y)l :

©;,2(0, )| < 3lloll, and
(1 =3y)m -2y '< 1
m+DH(m+2) m+D@+1)| m+1
we conclude that

|, (0, y) — o (y)|

Since

max{l—By

2

_y+1+a

IA

4(llo = hll + pma(WIIL”IN)

1
max{1—3y+m’,’—y+1 }),

+ZU(UL
"m+1

+a
which implies that

IA

€00, y) = o(y)| 4(|lo = hll + pra I 1) + (3, T a(y))

+4K2(0, P a(y)) + (0, Oma(y))-
Using (5), we get

'G:m,a(ar y) - U(y)l < Cws (0/ me,a(y)) +w(o, Om,a(]/))-
|

We denote by AC([0, 1]) the space of all absolutely continuous functions in [0, 1].
Let ¢(y) = +/y(1 —y), and 6 > 0. The second-order modified K-functional for o € C([0, 1]) is defined by
K2(0,8) = inf{llo — gll + 8112”1l + 2llg”"ll, g € WD)},

where
W) = {7 € C([0,1]) : ¢’ € AC([0,1]), $*7” € C([0,1])} .

The second-order Ditzian-Totik modulus is given by

m(‘j 0)=sup sup |o(y—ho)—20(y)+o(y+ho)l
0<h<d y+h¢el0,1]

It is well-known (see [11]) that, for any 6 > 0,
KZ(0,8) < Cw(0,0),

holds for some positive constant C.
Finally, we consider the first-order Ditzian-Totik modulus, which is defined by

70)4,(0, 0)=sup sup |o(y+hy)—oy)l

0<h<6 y+hiel0,1]
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Theorem 3.4. Let m € IN and a > 0. Then, for every o € C([0, 1]) and y € [0, 1], there exists a positive constant C
such that

1 — 1
(0, y) — o(y)| < Cw? ( \/ﬁ)+ Wy, (U,m),

where P, = (1 + a)y + 2.

Proof. As in the proof of Theorem 3.2, for a given h € w? 5 We obtain that

(O, ( fy i Os(z)h"' (s)ds, y) +

1
o) =y —y)+ .
Using changing variable s = ty + (1 — 7)u, T € [0, 1] and the fact that 76,,(y) < 6,,(s) by the concavity of 0.,

we get
f ' ¢s()h” (s)ds
y

Calhy) = h(y) < (11)

G’:n,a(g'l ry)
f (€01, ) = s)h"(5)ds|,
y

and we set

1
T(y — u)*h” (s)dt
0

1 A2
Py Eu; S (5)dT
||6mh Il

() P

Thus, we get from (11) that

T w1l . 16,01 (_m(my +1) 1 ’
Cnalhiy) =h(y) < Sm(y) S (3 ) + Sm(y) ((m+1)(m+2) T D@+ _y) ‘

Therefore from Lemma 3.1, we have

|0k, y) = h(y)|

16:R” I 1 )2 1 \?
= I+ 1%0,() (A" rmyd-y) +max{(1 T m) ’ (_y+ 1+ a) })

0 ((y _yy Ao, ] (1_3 L1 )2 (_ L1 )2
S0, \ Y T 1 Tl V" 1va) UV 13
(1 s 2y )
_(m+1)6m(y)y Pl T m1
_ 7wkl
T (m+1)
21,77 ’”
s(m+1)(ll¢h I+ —= 1),

Now, we remark that

@, (1, y) = h(y)|

|(S:,,,a(o, Y) - a(y)| < [€alo—hy) —(0- h)(y)| +
m(my + 1) 1
‘ (m+1)(m+2) - (m+D(a+1) —-a(y)|,
which implies that
a0, )=o) < 7(llo =hil+ Zll6 -+ gl )

m(my + 1) 1
G((m T)m+2) | (m+Da~ 1) (y)‘
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Then

. 1 m(my + 1) 1
[©a(09) ~ o] < 7K (O’ me+ 1)+ ’o((m TD)m+2)  (mrDa+ 1)) _“(y)“

The last term of the previous inequality can be estimated as follows

m(my + 1) 1
‘G((m T)m+2) | (e I)a+ 1)) - G(y)‘
m(my + 1) 1
* -y
=lo|y + ¢a(y) (m+1)(m + 2)%((;1 +D@+1) | o)

m(1—3y)—2y+ 1

< sup lo|t+ vyt m+2 a+1 .
o o B rre Y v
m(1—3y)—2y+ 1
<2 o m+2 a+1
G e (m + 1)a(y) '
or we have
m(1-3y)-2y 1 1 }
‘ — 7 smax{1—3y+1+a, Y+t 114 <2 <9Pu(y).
We deduce that
m(my + 1) 1 B - ( 1 )
‘a((m+1)(m+2)+(m+1)(a+1)) W)= w0 nT)
where
m(1—3y)—2y+ 1
Au(y) = 3+ () —TT+2 a+l . yepo).
()= {1+ o) —1 s [0.1]
O

4. Voronovskaya type theorem

10452

In this last section, we deal with the Voronovskaya-type asymptotic theorem for €;, ,. We start with the

following lemma

Lemma 4.1. For every y € [0; 1], we have

. * — 1 .
D) lim m@&, (¢ -y, y) =1-3y+ —;
(2) lim m,, (¢ = ), y) = 2y(1 - y);
(3) %1_1)1010 m*c;, ((t -y, y) exists.
Proof. (1) From (2) of lemma 2.3 we can easily deduce this assertion.
(2) It suffices to use the relation (4)
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(3) By the linearity of €, ,(., y), we can write

m* @ (=9t y) = 16, (1, y) = 4ym?E, (B, y) + 6m° Y6, (B ) — 4mP P E, (8 y) + mPyt

On the one hand, it is easy to get the following equalities, where the function &(y, n), different from
line to line, and satisfies lim e(y, n) exists.

. m' — 6m° 10m°
* mZGm,a(t4’ y) = (m+ D*m +2)...(m + 5)]/ (m + 1)*(m + 2)...(m + 5) y3
2m® 2 3, . .
e D 2+ 3+ 9 b rea) vy
) —4m'° — 12m° s 24m
hd _4ym2¢m,a(t3/ y) = (m + D)*(m + 2)..(m + 5)y t- (m+1)*(m +2)...(m + 5) y3
—12m® ( 1 )y3 + e(y, m);
e D+ 26)0(m +3)(m + 4) ?8 .
. 6m'° + 60m° m 3
* Oyt y) = (m + 1)*(n +2)...0m + 5) v (m + D¥m + 2).(m +5)”
6md 2 3
T )+ 2)m+ 3)m + ) (1 1y a)y +elym)y
. AP, (1) = O A ’
(m + 1)*(m +2)...(m + 5)y (m + 1)4(m +2)...(m + S)y
4m8 3
Y+ e(y,m);

S mt+ DA m+2)m+3)m+4)1+a
5y mAm+ 1) m+2)..(m+5) ,
T (m+1)*(m +2)...(m +5)
m'® + 18m’° B
= s D+ 2)m + )+ H(m + 5 T
On the other hand, by straightforward calculations, we get

m*S, (= y)',y) = 0+ e(y,m),

which gives that
mll)rgm m*;, ((t—y)*,y) exists.

O

We will prove the following result:

Theorem 4.2. For o € C%([0,1]) and o € [0, 1], we have

lim m ((S:W(a, y) — a(y)) = (1 —3y+ - 1 1)6’(1/) +y(L = y)a"(y).

Proof. Let o € C%([0,1]) and y € [0, 1]. By Taylor’s formula, we write

(—)2

0 () + €, W)~ )P,

o) —o(y) = w—-y)'(y) + ——

where lim ¢,(u) = 0. Applying €, (.; y) to both sides of the above equality, we get
u—y

m (Q;,a(o/ y) - U(y)) = mo (y)@m a(u Y y) - EU"(V)(Sm a ((u - y)z; ]/)
+m;, , (e, ()@ - y)%y).
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afy) = —64° + 99" — B¢ and g, ,(o,y) for m =15, 20, 30
5 : L ,
—al(y) 3
0.5 —;J;I___ia._t;f
— (e
0.4 r —:J;I_:_(a.g’:

0.3}
0.2}
0.1}
0

01 R

D271 " _‘/
03
0 02 0.4 06 08 1

Figure 1: Approximation to o(x) by €, ,(0) for a = 2,0(x) = —6x3 + 912 — %x and m = 15, 20, 30.

Using the Cauchy Schwartz inequality, we have

m@;,, (e, - y)%y) < \/ e (200 y). \/MZ%,a (=% y). (12)

From (3) of Lemma 4.1, lim m*C;, , ((u -y y) exists and non-negative and by using uniform convergence
m— oo 4

*

mar We have

of the operators ¢
lim € , (ey(u); y) = &y(y) = 0 uniformly for y € [0;1].

Hence, from (12) , we get
lim mG;, , (e, () - y)%y) =0,

this and (12) we deduce that

lim 1 (€,(0,5) = o)) = (1= 3y + — )’ ) + ¥(1 = Yo" W)

a+1

5. Graphical simulations

In this section, we show the approximation of some continuous functions by the operator ¢;, ,(c) graph-
ically using MATLAB.

We first consider the function o(y) = —6y° + 9y? — g—gy, and take a = 2. On the one hand, we show,
in figure 1 and figure 2 respectively, the approximation to this function by the operators ¢, ,(0, x) and the
graphical of Error(y) defined as |€] ,(0,y) — o(y)|, for the values m = 15,20, 30, respectively.

On the other hand, in the table below, we see that when the values of ¢ increase, the maximum error for
m = 20, 30,40 increases too. Secondly, in figure 3 we state that the operator Qﬁ*ml% preserves the convexity of

the function o(y) = 1 — cos(nty — ).
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Error(y) = |p;, »{o. y) — o(y)|, oly) = —6y* +9¢° — 5!
0.14 y T T
= == FError for m=30
= = Error for m=20
0.12 L
= = Error form=15 ;‘A' 1
Y] A i
0.1 i & A #
A It ¥
i ; v Iy \\ i
7 \ [
S0088 ;T L 2 Y
< v I Al F
= a i 11 AN S
W 0.06 PN\ Jpoll ™ iy
] 3 r ¥
! Vi s AL ] ¥i v h
it AL vy
0.04 ] it Wy iy
i/ \n "f iy
[!,; W o i
002 |t w5 L
“y
s
0 k] 2
0 02 0.4 0.6 0.8 1
y

Figure 2: Absolute Error while Approximating to o(x) by €

o)tora =2,0(x)=—-6x" +9x° — 5zx and m = 15,20, 30.
m,a(0) f 2,0(x) = —6x° + 9x2 — §x and m = 15,20,30

o Error(m = 20) | Error(m = 30) | Error(m = 40)
1.00000 0.06392 0.04687 0.03703
1.50000 0.06417 0.04704 0.03716
2.00000 0.06456 0.04732 0.03737
2.50000 0.06495 0.04759 0.03759
3.00000 0.06530 0.04784 0.03778
3.50000 0.06561 0.04806 0.03795
4.00000 0.06587 0.04825 0.03810
4.50000 0.06610 0.04841 0.03823
5.00000 0.06631 0.04856 0.03834
5.50000 0.06648 0.04869 0.03844
6.00000 0.06664 0.04880 0.03853

Table : Error of approximation

Conclusion

Data Availability

We do not have any data supporting our results.

10455

Many researchers have studied different variants of Bernstein-Kantorovich operators, but in this study,
we took the Bernstein basis based on Beta functions which were constructed in [7]. We study different kinds
of approximation properties associated with these operators, e.g. we prove direct approximation results
and approximation in weighted spaces as well. A Voronovskaya-type formula is also established. Finally,
we provide a couple of numerical and graphical experiments to show the approximation properties of the
newly defined operator. In the future, one can study the shape-preserving properties of these operators.
Also, these bases can be used in computer-aided geometric design and approximate numerical solutions of
differential and integral equations as well.
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a(y) =1 —cos(§ —wy) and g, | (o,y) for m =25, 70, 40

Figure 3: €}, ,(0) preserves the convexity of o(y) = 1 - cos(my — 7) on [0, 1], where a = %, m = 25,40, 70.
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