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Deformed intermadiate and complete lifts of 1—forms
to the bundle of 2—jets

Seher Aslanci®

?Department of Mathematics Education, Faculty of Education, Alanya Alaaddin Keykubat University, 07425, Alanya, Turkey

Abstract. Using an algebraic approach to the lift problems, we introduce deformed lifts of 1-forms to the
bundle of 2—jets and investigate some properties of these lifts.

1. Introduction

1.1. Problems of lifts in the tangent bundles of 2—jets has been studied by Yano and Ishihara [1],[2] (see
also [3],[4]). The purpose of this paper is to study the deformed lift of 1-forms which is a generalization
already known lifts and appear in the context of algebraic approach to problems of lifts.

Let I = {(];)} ,a=1,..,mi,j=1,..nbea [I-structure on a smooth manifold M, [8]. If there exists
(04

a frame {d;},i = 1,...,n such that 0; ]’]? = 0, then the II-structure is said to be integrable. Let %, be an

44
associative, commutative and Frobenius algebra with the unit element e; = 1. An algebraic structure on M,
is an integrable [T—structure such that ]}” L=

7 Ji, i.e. if there exists an isomorphism %, < IT, where C”
ap’j p ap
(04

J

are structure constants of %,,,. An algebraic structure is said to be an r—regular I1-structure if the matrices
( 24

) of order n x n, @ = 1, ..., m simultaneously reduce to the form

C, -0
[] O G L as w1 )
“ 0 0 0 C,

with respect to the adapted frame {d;}, where C, = (CZ ﬁ) is the regular representation of %,, and r is anumber

of C,—blocks. We note that the r—regular II—structure is integrable if a structure-preserving connection
with free-torsion exists on M, [5].
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From (1) we easily see thatn = rm and the structure tensors ] have the components J' = J'¢ = §4C%,, u,v =
/ j T g T %o%ap
o o
1, ..., 7, where 0} is the Kronecker delta and ua = (1 — 1)m + o, vp = (v — 1)m + B.

An U-holomorphic manifold [6] X, (A) over algebra A, of dimension r is a Hausdorff space with
a fixed complete atlas compatible with a group of A-holomorphic transformations of space U;,, where

A, = Ay, X - - - X Ay, is the space of r—tuples of algebraic numbers (zl, z2,. .. ,zr) with z* = x*%¢, € A, ¥"* =
¥xeRi=1,...,mu=1,...,na=1,.,m.
Let now IT = { ] ¢ be an integrable r—regular structure on M,,,. The transformation z* = z*(z*) of local
[

coordinates on X,(%) is A-holomorphic if and only if the transformation x = x”(x") of local coordinates on
M,, is a structure-preserving transformation (an admissible transformation), i.e. [6]

ox/ .
=y =[5} 1-(1)

Thus the real smooth manifold M, with an integrable r—regular II-structure and with a structure-
preserving transformations of local coordinates is a real modeling of an A-holomorphic manifold X, ()
over algebra .

Let now [T = {]} be the integrable regular [T-structure on manifold M,,, and let w = wi(x!, ..., x™Mdx’ =

o
Wy (¥, ..., xX'™dx" be an 1-form on M,,,. An U - algebraic 1-form w = (cf)u) = (c:)me"‘), u=1,.,r¢e =
go“ﬁeﬁ (where ¢ are contravariant coordinates of Frobenius metric) on q-holomorphic manifold X, ()
corresponding to an 1-form w = (w;) = (Wua), i = 1,...,rm on M,,, is not A-holomorphic, in general. To

investigate a holomorphic algebraic 1-form «, we consider the Tachibana ®;—operators M,,, associated

with the IT —structure and applied to w [7]:

(@)X, Y) = (Ljxw - Lx(w o p)(Y),

where @;w is a tensor field of type (0, 2), Lx is the Lie derivations with respect to X. In terms of the coordinate

a
systems, we have

(@) = J10u0 = [P0~ wn@} O,

Theorem 1.1. ([8]) An algebraic 1—form w on A—holomorphic manifold X,() corresponding to an 1—form w on
M, is an W—holomorphic tensor field if and only if

Jion@i = J}0jwm — wm@;J1" = 0iJ1) = 0, 0 = 1,...,m.
o g g I

1.2. Let R(¢%) be an algebra of order 3 with a canonical basis {e1, e, e3} = {1,¢,¢%}, €8 = 0. From

eaeg = C! g¢y follows that the (3 X 3) —matrices C; = (CV

55) ,0 =1,2,3 of regular representation of R(¢?) have

the following forms

100 000 000
G=(0o10|,c=]100/|c=|00 0]
00 1 010 100

Let z = x! + ex? + ¢2x®. Then the generalized Cauchy-Riemann conditions [8]

o ayﬁ = alacﬁ
Boxr — oxf
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for R(e?)-holomorphicity of function
w=w(z) = y'(x, 2, 0) + e (xh, 2, 0) + 2P (2, 20,
reduces to the following equations:

oyt oyt oy?

W5z = o™
- O—;yz ayl 3y3
W52 = o~ o
9% 9y
(iil)) == W - oA
From (i), (ii), (iii) we have
y'o= ye),
A
) = 22 ce,
dy' 1 d*yt dG
301 22 3\ _ .3 2)2 2 1
]/(xlxlx) - xdl ()(d1)+ d1+H(x)

where G = G(x!) and H = H(x') are arbitrary functions. Thus the R(&?) -holomorphic function w = w(z) has
the following expression

d2 1
2 y y dci +H(x1))

w(z):yl(x)+e(x @) +x T

dy'
Lr e+ 2wl + Sy

Similarly, if w(z?, ..., z") = y'(x!, ..., x") +ey?(x}, ..., X + 23 (x), ..., x"), where 2/ = X' +ex" +&2x2 i = 1, ...,
is a multi-variable R(&?) -holomorphic function, then the function w = w(z!, ..., z") has the following specific
form:

w(zl,..., z”) = yl (xl,. ”) ( ””&,-yl + G(xl,..., x”)) ()
+¢? (xz"“aazi + 2x”+’x”“% + x”+i§ +H (xl, ...,x”)).

From here if G(x!, ..., x") = H(x!, ..., x") = 0 and y*(x!, ..., x") = f(x!,...,x"), then the function

, of 1 ... Pf
1 ny — 1 n n+iy. 2 2n+i =t it
w(z', ..., 2") = f(x', ., x") + ex™oi f + e°(x o + F X 8xi8xf) 3)

is said to be natural extension of the real C*- functions f = f(x!, ..., x") to R(¢?).

1.3. Let now T?(M,) be the bundle of 2-jets, i.e. the tangent bundle of order 2 over C*—manifold
M,, dimT? (M,) = 3r and let
1d%x

dx 3 .
X==-—teRi=1,..,r

2r+1 _ -
(&, 20 = (277,20, = ), = a2 S5

be an induced local coordinates in T?(M,). It is clear that there exists an affinor field (a tensor field of type
(1,1)) y in T*(M,) which has components of the form

0 0 0
=100
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with respect to the natural frame {9;, d;, -} = {%, a%, % },i=1,..,r, where I denotes the r X r identity matrix.
1 X!
From here, we have

00 0
Y= 0 0 0y =0 ©)

I 00

i.e. T?(V,) has a natural integrable structure I = {I Nz )/2} , I = idr2,), which is an isomorphic representation

of the algebra R (82) , € =0. Using yd; = 95, y%0; = yd; = 8;7, we have {0;, d;, 8;7} = {0;,y9;,y9i}. Also, using

a frame
{81/ )/31, Vzall 82/ 7/82/ y282/ weey ar/ 7/&}'/ )/zar} = {alr af/ af/ a2/ ai/ ai/ s a}’/ 87, a;}

which is obtained from {d;, d;, 8;} = {d;,79;,7%d;} by changing of numbers of frame elements, we see that
structure affinors I, and y? have the following components

C; o .- 0 Co o --- 0 Cs o .- 0
I e P (O PP I R
0 0 0 G 0 0 0 G 0 0 0 Gy

with respect to the frame {d1, d;, 8? d2, 05, 85, wey Oy, 07, 8;}, where the block matrices C,,0 = 1,2,3 of order 3
are the regular representation of algebra IR(¢?). Thus the bundle T?(M,) has a natural integrable structure
Il = {I, Y, )/2}, which is an r—regular representation of R(&?).

On the other hand, the transformation of induced coordinates (x/, x’T, x;) in T>(M,) is given by
o= o (xi) )

7 dx’  ox"dx'  ox"

1

YT T T odat T o
G e Do
2 d? 2dt\ oxt dt
_ 1ox" dPx N 1 Px' dxl dx/
2 0xt dt? 2 0xigxJ dt dt
ox' i 1 Px' ;-

x'x/

—X t ==
v " 29x9x
and its Jacobian matrix by

o o

oxod oy % 0 0
o ol ol | 29 s o’
A= ox! oxi o - 8x’)¢;x5 X ﬁ 0 ' (6)
P2 5, P 57 P 5 o
% :9;(7 [Zx—: axiaxsx + ax"ax"&x’x X 8x‘8x5x oxt
xl

From (4), (5) and (6) follows that A~'yA = y,A™'y?A = y? i.e. the transformation of local coordinates

(o, X, x') in T2(M,) is a structure-preserving transformation. Then the transition functions

’ ’

o 5 o, ox’ - ox’ i 1
@) =2 +ex' + 2% =2 () +e=—x + A (=—x' + s ——x
i ox'! 2 dxidxl

dx
of charts on X,(R(e?)) are R(¢?) -holomorphic functions by virtue of (3), i.e. we have the bundle T>(M,) is a
real modeling of R(¢?) -holomorphic manifold X,(R(&?)).

ix])
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1.4. Since the bundle T?(M,) is a real modeling of X,(R(¢?)) and any holomorphic function
w(z,...,2") = fl(xl,...,x’) +efr (., x) + 82f3(x1, v X,

on X,(R(e2)), where z' = x + ex™ + ¢2x2* i = 1, .., 1, is expressed by (see (2))

w(zl,...,zr) = f(xl,...,x’)+ (”’9f+g( 1 xr))

2
+€2(x2r+1af 4 1xr+z r+j 2 af Ty &g +h< r))’

ox! Ixiox oxi
fo= 1
in the bundle of 2—jets we introduce the following three functions:
'f = f&
If:xr+ia‘f+g 1 r), (7)
d 9 d
Cf - 27+z f + xr+1xr+] f +x r+i g + h(x )

2 Oxidx oxi
where f,g and h are any functions on M,. These functions " f,!f and C f are called respectively the vertical,
intermediate and complete lifts of f in M, to T>(M,) [1]. If g = h = 0, then we have the 0—th f°, 1-th f! and
2—th f2 lifts of f [7], [8], i.e. the lifts [ f and Cf of f to T?(M,) are respectively the deformed lifts of 1-th and
2—th lifts of f.

Thus we have

Vf=f0,1f=f1+go,cf=f2+gl+h0- (8)
2. Deformed complete lifts of 1-forms

Let @ = widx! = @idx' + @,idx™ + @yidx?+ be an 1—form in T?(M,), and IT = {I, Y, )/2} , I=idpgy)bea
[T —structure naturally existing in T*(M,). We would like to find local expression of w = (wy) in T?(M,) which
is corresponding to the R(ez)—holomorphic 1—form @ = (a;u) = (c:)uae“), er = (p"‘ﬂeﬁ,u =1,.,na,=1,23
in X,(R(&2)).
Using Theorem 1.1, we obtain
(D)1 =y} ouwr -y djwn = 0,(Pp@)y = ()] Ouwr — () 9jwn = 0.
From here, after straightforward calculations (see Section 1), we find the following covector field

— 1 i
w = (a)I) = (xz”haha),- + Ex”hx”’”aimwi + Xh+l8hG,‘ + H;, XHh&hwi +G;, a)z-), (9)

where G = (Gi (xl, .y x’)) , H = (Hi(x!,...,x") any covector fields in M,. In fact, by means of (13), we easily

see that @ = (w;) determine 1—form in T?(M,) which are called the deformed complete lifts of @ from M, to
T%(M;,) and denoted by ‘@ = (Cwy).
From (9), we have

w=aw*+G +H°, (10)
where
HO = (Hil 01 O)/ Gl = (xr+hahGi/ Gil 0)/
1
0)2 — (x2r+hahwj + zxr+hxr+maimwi’ x”h&hwi, wi)

are respectively the 0—th (vertical) , 1-th and 2—th (complete) lifts of H, G and w [7]. Itis clear that the deformed
complete lift “‘w = (‘w;) is deformation of 2—th lift of w.
Thus we have
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Theorem 2.1. Let w = w;dx' be an 1—form on M,. The deformed complete lift “@ of w to the bundle of 2—jets T*(M,)
have the following expression

w=w?+G' +H",

where H°, G! and w? are respectively the 0—th , 1—th and 2—th lifts of any 1—forms H, G and w.

3. Deformed intermediate lifts of 1—forms
Putting @ = G in (10), we see that
o' + H® = ‘0 — o? = 9wy, + Hy, wp, 0) (11)

determine a new 1—form in T?(M,), which are called the deformed intermediate lift of 1—form w from M,
to T>(M,) and denoted by 'w = w' + H’. We note that the deformed intermediate lift ‘w of w to T?(M,) is
deformation of 1—th lift of w.

Thus we have

Vo = o, lw=w'+H°, ‘0 = 0® + G + H, (12)
where
Vo = (wp, 0, 0). (13)

Thus we have

Theorem 3.1. Let w = w;idx' be an 1—form on M,. The deformed intermediate lift 'w of w to the bundle of 2—jets
T?(M,) have the following expression

lo =o' +H,
where HO is the 0—th lift of 1—form H.
From (9), (11) and (13) we have

Theorem 3.2. Deformed complete lifts satisfies the following matrix formulas

oy =aw'+Gwy? =’ =V,
where y and y* are matrices in the form (4) and (5), respectively.
Let now w = dx’, G=dx/, H=dx*, i,j,k=1,..,r. Then from (11), (12) and (13) we have

Theorem 3.3. Deformed complete, intermediate and vertical lifts of differentials dx' has the following linear combi-
nation of differentials in T*(M,) :

v (dxi) =dx', l(dx') = dx'™ + dx* C(dx) = da® ™+ dx™ + dxk.

Let now X be a vector field in M,. It is well known that the vertical and deformed lifts !X, €X of X has
the following expressions (see [4])

0 0 0 0
X=X'=[ 0 [[/X=X"+Y'=| X' |+]| 0 |= X" ,
Xh xr+iaixh Yh xr+iaixh + Yh
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Xh
caviaso| e
x2r+1aixh + %xr+1xr+]alzjxh
Xh
x’*"aiXh + Yh
x2r+iaixh + %XHixHj&iszh + x”iaiYh + 7"

X

|

0 0
Y +| 0
X+ i ai Yh Zh

for any vector fields Y, Z in M,. Using the last formulas and also (7), (8), (11), (12), (13) we have

Theorem 3.4. Let X, w and f are respectively any vector field, 1— form and function in M,. Then

"(fw) = f0a°, '(fw) = flo® + fPo' + G, “(fw) = (f + )’ + flo' + G' + H’,

'o("X) =0, "o('X) =0, "w(“X) = (@(X))",

'w("X) =0, 'o('X) = (0(X))°, '0(“X) = (@X)" + @(}V)’ + (H(X))",

“o("X) = (@(X))’, “@(X) = (@X)' + @Y’ + (G(X))’,

“o(“X) = (X)) + (@) + (@(2))° +(GX))' +(G(Y))" + (H(X))".

4. Exterior differentials of deformed complete and intermediate lifts

Let now Q2 be a tensor field of type (0,2) in M,. We define an 1-form yyQ by

Q)X = Q(X,Y)

for any vector fields X and Y. If Q has local components (2;;, then yy(2 has local components Q;;Y/.

1129

It is well known that the deformed intermediate and complete lifts of (2 has respectively components

Jt

(see [3])
x’”BSQﬁ + Tji .ij 0
IQ = Q]‘i 0 0 |= Ql + 7'10,
0 0 O
xz”sas!)ﬁ + %x”tst&?sQﬁ + st&sQﬁ + Tji xr+5<95.Qﬁ + .Q]‘,' Q]'j
CQ = XHSasti + jS i
ji

= Q*+0Q'+7,

<

A

Il

=)

A

Il
—_——
A
o o O

o O O
~—_—————

0 0
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is the vertical lift of any tensor field 7 of type (0,2). Using the expression of lifts V7,/Q,“Q and (9), (11),
(13) we have

yszQ
re'Q

Q;;X7,0,0) = (7xQ);,0,0)="(yx ),
(X290 + i) X! + Qi(x" 9, X7), QX 0)
X005 (yx Q)i + (yxm)i, (yxQ)i, 0)

yxQ)' + (rxm) =l (yxQ),

1 .
)/XzC.Q = ((x27+585.Q,‘j + ExHerHasthi]‘ + xr+sa5Q,’j + Hij)Xj

o~ o~ o~ o~

+H(x9s Qi + Qij)x 19, X
+0Q;(x¥ 9, X + %x”sx’”afth, (20,04 + Q)X
+Qx"™19, X7, 24 X7)

= (2O x O+ 3R () + X Oy x )

+(yxm)i, X 0s(yx Q)i + (yxQ)i, (yxQ):)
= (yxQ)7 + (yxQ)' + (yx0)’=C(yxQ).

Thus we have
Theorem 4.1. Let Q be a tensor field of type (0,2) in M,. Then

re'Q = (yxQ)°="(yxQ),
re'Q = (xQ)' + (rxm)’=(rxQ),
e = (rxQP + (rxQ)' + (rx)° = (rxQ).
We shall now study the deformed lifts of exterior differentials of 1-forms w = widx’, i =1,...,r. Using

[X?,Y?] = [X, Y]* and linearity of mappings X — X°, X — X!, X — X?, from Theorem 3.4 and Theorem
4.1 we have

2(d'w)(X%, Y?) X*(o(Y?) - Y2(w(X?) - w([X?, Y*])

= XX () + (H(Y)") = Y (w(X))"
+H(X))") - (X, Y]

= Xw)' +XHY)) - Yo(X))' - (YH(X))°
—(w(X, YI)' = (H(X, Y])°

= (Xo(Y) - Yo(X) - (X, Y])'
+(XH(Y) = YH(X) — H([X, Y]))!

= 2([@dw)(X, Y)! + 2((dH)(X, )

= 2(y[@dw)(X)' + 20y (dH)(X))°

= 2(yy(dw)) (X?) + 2(yy(dH)) (X?)

= 2(yy(dw))(X?) + 2(yy2(dH)*)(X?)

= 2((dw)! + (dH)°)(X?, Y?).

By similar devices, we have
2(dw)(X?,Y?) = 2((dw)? + (dG)! + (dH)°)(X?, Y?).

Since the any tensor field Q of type (0,2) in T?(M,) is completely determined by its action on lifts X2, Y*

(see [2, p.324]), i.e. if Q(X?,Y?) = Q(X?, Y?) for any X, Y, then Q = Q, we have
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Theorem 4.2. Let w, G and H be 1-forms in M, . Then the exterior differentials of deformed intermediate and
complete lifts of w to T*(M,) satisfies the following formulas:

dow = (dw)+ dH),
d“w = (dw)*+ (dG)' + (dH)".
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