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Available at: http://www.pmf.ni.ac.rs/filomat

Deformed intermadiate and complete lifts of 1−forms
to the bundle of 2−jets
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Abstract. Using an algebraic approach to the lift problems, we introduce deformed lifts of 1−forms to the
bundle of 2−jets and investigate some properties of these lifts.

1. Introduction

1.1. Problems of lifts in the tangent bundles of 2−jets has been studied by Yano and Ishihara [1],[2] (see
also [3],[4]). The purpose of this paper is to study the deformed lift of 1−forms which is a generalization
already known lifts and appear in the context of algebraic approach to problems of lifts.

Let Π =


Ji

j
α


 , α = 1, ...,m; i, j = 1, ...,n be a Π−structure on a smooth manifold Mn [8]. If there exists

a frame {∂i} , i = 1, ...,n such that ∂i Jk
j
α

= 0, then the Π−structure is said to be integrable. Let Am be an

associative, commutative and Frobenius algebra with the unit element e1 = 1. An algebraic structure on Mn
is an integrable Π−structure such that Jm

j
α

Ji
m
β
= Cγαβ J

i
j
γ

, i.e. if there exists an isomorphism Am ↔ Π, where Cγαβ

are structure constants of Am. An algebraic structure is said to be an r−regular Π−structure if the matricesJi
j
α

 of order n × n, α = 1, ...,m simultaneously reduce to the form

Ji
j
α

 =


Cα 0 · · · 0
0 Cα · · · 0
· · · · · · · · · · · ·

0 0 0 Cα

 , α = 1, ...,m; i, j = 1, ...,n (1)

with respect to the adapted frame {∂i}, where Cα =
(
Cγαβ

)
is the regular representation ofAm and r is a number

of Cα−blocks. We note that the r−regular Π−structure is integrable if a structure-preserving connection
with free-torsion exists on Mn [5].
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From (1) we easily see that n = rm and the structure tensors J
σ

have the components Ji
j
σ

= Juα
vβ
σ

= δu
vCασβ,u, v =

1, ..., r, where δu
v is the Kronecker delta and uα = (u − 1)m + α, vβ = (v − 1)m + β.

An A−holomorphic manifold [6] Xr (A) over algebra Am of dimension r is a Hausdorff space with
a fixed complete atlas compatible with a group of A−holomorphic transformations of space Ar

m, where
Ar

m = Am × · · · × Am is the space of r−tuples of algebraic numbers
(
z1, z2, . . . , zr

)
with zu = xuαeα ∈ Am, xuα =

xi
∈ R, i = 1, . . . ,n; u = 1, . . . , r;α = 1, ...,m.

Let now Π =
{

J
σ

}
be an integrable r−regular structure on Mrm. The transformation zu′ = zu′ (zu) of local

coordinates on Xr(A) is A−holomorphic if and only if the transformation xi′ = xi′ (xi) of local coordinates on
Mrm is a structure-preserving transformation (an admissible transformation), i.e. [6]

J
α
A = AJ

α
, A =

(
∂x j

∂x j′

)
, J
α
=

Ji
j
α

 .
Thus the real smooth manifold Mrm with an integrable r−regular Π−structure and with a structure-

preserving transformations of local coordinates is a real modeling of an A−holomorphic manifold Xr(A)
over algebra Am.

Let now Π =
{

J
σ

}
be the integrable regular Π−structure on manifold Mrm and let ω = ωi(x1, ..., xrm)dxi =

ωuα(x1, ..., xrm)dxuα be an 1−form on Mrm. An A - algebraic 1−form
∗

ω = (
∗

ωu) = (
∗

ωuαeα), u = 1, ..., r, eα =
φαβeβ (where φαβ are contravariant coordinates of Frobenius metric) on A−holomorphic manifold Xr(A)
corresponding to an 1−form ω = (ωi) = (ωuα), i = 1, ..., rm on Mrm is not A−holomorphic, in general. To
investigate a holomorphic algebraic 1−form

∗

ω, we consider the Tachibana ΦJ
σ

−operators Mrm associated

with the Π −structure and applied to ω [7]:

(ΦJ
α

ω)(X,Y) = (LJ
σ
Xω − LX(ω ◦ J

σ
))(Y),

whereΦJ
α

ω is a tensor field of type (0, 2), LX is the Lie derivations with respect to X. In terms of the coordinate

systems, we have

(ΦJ
α

ω) ji = Jh
j
σ

∂hωi − Jm
i
σ
∂ jωm − ωm(∂ j Jm

i
σ
− ∂i Jm

j
σ

).

Theorem 1.1. ([8]) An algebraic 1−form
∗

ω on A−holomorphic manifold Xr(A) corresponding to an 1−form ω on
Mrm is an A−holomorphic tensor field if and only if

Jh
j
σ

∂hωi − Jm
i
σ
∂ jωm − ωm(∂ j Jm

i
σ
− ∂i Jm

j
σ

) = 0, σ = 1, ...,m.

1.2. Let R(ε2) be an algebra of order 3 with a canonical basis {e1, e2, e3} = {1, ε, ε2
}, ε3 = 0. From

eαeβ = Cγαβeγ follows that the (3 × 3) −matrices Cσ =
(
Cγσβ

)
, σ = 1, 2, 3 of regular representation of R(ε2) have

the following forms

C1 =

 1 0 0
0 1 0
0 0 1

 ,C2 =

 0 0 0
1 0 0
0 1 0

 ,C3 =

 0 0 0
0 0 0
1 0 0

 .
Let z = x1 + εx2 + ε2x3. Then the generalized Cauchy-Riemann conditions [8]

Cασβ
∂yβ

∂xγ
=
∂yα

∂xβ
Cβσγ
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for R(ε2)-holomorphicity of function

w = w(z) = y1(x1, x2, x3) + εy2(x1, x2, x3) + ε2y3(x1, x2, x3),

reduces to the following equations:

(i)
∂y1

∂x2 =
∂y1

∂x3 =
∂y2

∂x3 = 0,

(ii)
∂y2

∂x2 =
∂y1

∂x1 =
∂y3

∂x3 ,

(iii)
∂y3

∂x2 =
∂y2

∂x1 .

From (i), (ii), (iii) we have

y1 = y1(x1),
y2 = y2(x1, x2),

y2(x1, x2) = x2 dy1

dx1 + G(x1),

y3(x1, x2, x3) = x3 dy1

dx1 +
1
2

(x2)2 d2y1

(dx1)2 + x2 dG
dx1 +H(x1),

where G = G(x1) and H = H(x1) are arbitrary functions. Thus the R(ε2) -holomorphic function w = w(z) has
the following expression

w(z) = y1(x1) + ε(x2 dy1

dx1 + G(x1)) + ε2(x3 dy1

dx1 +
1
2

(x2)2 d2y1

(dx1)2 + x2 dG
dx1 +H(x1)).

Similarly, if w(z1, ..., zn) = y1(x1, ..., xn)+εy2(x1, ..., xn)+ε2y3(x1, ..., xn),where zi = xi+εxn+i+ε2x2n+i, i = 1, ...,n,
is a multi-variable R(ε2) -holomorphic function, then the function w = w(z1, ..., zn) has the following specific
form:

w
(
z1, ..., zn

)
= y1

(
x1, ..., xn

)
+ ε

(
xn+i∂iy1 + G

(
x1, ..., xn

))
(2)

+ε2

(
x2n+i ∂y1

∂xi +
1
2

xn+ixn+ j ∂
2y1

∂xi∂x j + xn+i ∂G
∂xi +H

(
x1, ..., xn

))
.

From here if G(x1, ..., xn) = H(x1, ..., xn) = 0 and y1(x1, ..., xn) = f (x1, ..., xn), then the function

w(z1, ..., zn) = f (x1, ..., xn) + εxn+i∂i f + ε2(x2n+i ∂ f
∂xi +

1
2

xn+ixn+ j ∂
2 f

∂xi∂x j ) (3)

is said to be natural extension of the real C∞- functions f = f (x1, ..., xn) to R(ε2).
1.3. Let now T2(Mr) be the bundle of 2-jets, i.e. the tangent bundle of order 2 over C∞−manifold

Mr, dimT2 (Mr) = 3r and let

(xi, xi, xi) = (xi, xr+i, x2r+i), xi = xi(t), xi =
dxi

dt
, xi =

1
2

d2xi

dt2 , t ∈ R,i = 1, ..., r

be an induced local coordinates in T2(Mr). It is clear that there exists an affinor field (a tensor field of type
(1, 1)) γ in T2(Mr) which has components of the form

γ =

 0 0 0
I 0 0
0 I 0

 (4)
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with respect to the natural frame {∂i, ∂i, ∂i
} = { ∂∂xi ,

∂
∂xi
, ∂
∂xi
}, i = 1, ..., r, where I denotes the r× r identity matrix.

From here, we have

γ2 =

 0 0 0
0 0 0
I 0 0

 , γ3 = 0, (5)

i.e. T2(Vr) has a natural integrable structureΠ =
{
I, γ, γ2

}
, I = idT2(Mr), which is an isomorphic representation

of the algebra R
(
ε2

)
, ε3 = 0. Using γ∂i = ∂i, γ

2∂i = γ∂i = ∂i
, we have {∂i, ∂i, ∂i

} = {∂i, γ∂i, γ2∂i}. Also, using
a frame

{∂1, γ∂1, γ
2∂1, ∂2, γ∂2, γ

2∂2, ..., ∂r, γ∂r, γ
2∂r} = {∂1, ∂1, ∂1

, ∂2, ∂2, ∂2
, ..., ∂r, ∂r, ∂r}

which is obtained from {∂i, ∂i, ∂i
} = {∂i, γ∂i, γ2∂i} by changing of numbers of frame elements, we see that

structure affinors I, γ and γ2 have the following components

I =


C1 0 · · · 0
0 C1 · · · 0
· · · · · · · · · · · ·

0 0 0 C1

 , γ =


C2 0 · · · 0
0 C2 · · · 0
· · · · · · · · · · · ·

0 0 0 C2

 , γ2 =


C3 0 · · · 0
0 C3 · · · 0
· · · · · · · · · · · ·

0 0 0 C3


with respect to the frame {∂1, ∂1, ∂1

, ∂2, ∂2, ∂2
, ..., ∂r, ∂r, ∂r}, where the block matrices Cσ, σ = 1, 2, 3 of order 3

are the regular representation of algebra R(ε2). Thus the bundle T2(Mr) has a natural integrable structure
Π =

{
I, γ, γ2

}
, which is an r−regular representation of R(ε2).

On the other hand, the transformation of induced coordinates (xi, xi, xi) in T2(Mr) is given by

xi′ = xi′
(
xi
)
,

xi
′

=
dxi′

dt
=
∂xi′

∂xi

dxi

dt
=
∂xi′

∂xi xi,

xi
′

=
1
2

d2xi′

dt2 =
1
2

d
dt

(
∂xi′

∂xi

dxi

dt

)
=

1
2
∂xi′

∂xi

d2xi

dt2 +
1
2
∂2xi′

∂xi∂x j

dxi

dt
dx j

dt

=
∂xi′

∂xi xi +
1
2
∂2xi′

∂xi∂x j xix j

and its Jacobian matrix by

A =


∂xi′

∂xi
∂xi′

∂xi
∂xi′

∂xi

∂xi′

∂xi
∂xi′

∂xi
∂xi′

∂xi

∂xi
′

∂xi
∂xi
′

∂xi
∂xi
′

∂xi

 =


∂xi′

∂xi 0 0
∂2xi′

∂xi∂xs xs ∂xi′

∂xi 0
∂2xi′

∂xi∂xs xs + ∂3xi′

∂xi∂xs∂xt xsxt ∂2xi′

∂xi∂xs xs ∂xi′

∂xi

 . (6)

From (4), (5) and (6) follows that A−1γA = γ,A−1γ2A = γ2, i.e. the transformation of local coordinates

(xi, xi, xi) in T2(Mr) is a structure-preserving transformation. Then the transition functions

zi′ (zi) = xi′ + εxi
′

+ ε2xi
′

= xi′ (xi) + ε
∂xi′

∂xi xi + ε2(
∂xi′

∂xi xi +
1
2
∂2xi′

∂xi∂x j xix j)

of charts on Xr(R(ε2)) are R(ε2) -holomorphic functions by virtue of (3), i.e. we have the bundle T2(Mr) is a
real modeling of R(ε2) -holomorphic manifold Xr(R(ε2)).
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1.4. Since the bundle T2(Mr) is a real modeling of Xr(R(ε2)) and any holomorphic function

w(z1, ..., zr) = f 1(x1, ..., xr) + ε f 2(x1, ..., xr) + ε2 f 3(x1, ..., xr),

on Xr(R(ε2)), where zi = xi + εxr+i + ε2x2r+i, i = 1, ..., r, is expressed by (see (2))

w
(
z1, ..., zr

)
= f

(
x1, ..., xr

)
+ ε

(
xr+i∂i f + 1

(
x1, ..., xr

))
+ε2

(
x2r+i ∂ f
∂xi +

1
2

xr+ixr+ j ∂
2 f

∂xi∂x j + xr+i ∂1

∂xi + h
(
x1, ..., xr

))
,

f = f 1,

in the bundle of 2−jets we introduce the following three functions:
V f = f (x1, ..., xr),
I f = xr+i∂i f + 1(x1, ..., xr), (7)

C f = x2r+i ∂ f
∂xi +

1
2

xr+ixr+ j ∂
2 f

∂xi∂x j + xr+i ∂1

∂xi + h(x1, ..., xr),

where f , 1 and h are any functions on Mr. These functions V f , I f and C f are called respectively the vertical,
intermediate and complete lifts of f in Mr to T2(Mr) [1]. If 1 = h = 0, then we have the 0−th f 0, 1−th f 1 and
2−th f 2 lifts of f [7], [8], i.e. the lifts I f and C f of f to T2(Mr) are respectively the deformed lifts of 1−th and
2−th lifts of f .

Thus we have
V f = f 0, I f = f 1 + 10, C f = f 2 + 11 + h0. (8)

2. Deformed complete lifts of 1−forms

Let ω̃ = ω̃IdxI = ω̃idxi + ω̃r+idxr+i + ω̃2r+idx2r+i be an 1−form in T2(Mr), andΠ =
{
I, γ, γ2

}
, I = idT2(Mr) be a

Π−structure naturally existing in T2(Mr). We would like to find local expression of ω̃ = (ω̃I) in T2(Mr) which
is corresponding to the R(ε2)−holomorphic 1−form

∗

ω = (
∗

ωu) = (
∗

ωuαeα), eα = φαβeβ,u = 1, ..., r;α, β = 1, 2, 3
in Xr(R(ε2)).

Using Theorem 1.1, we obtain

(Φγω̃)JI = γ
H
J ∂Hω̃I − γ

H
I ∂Jω̃H = 0, (Φγ2ω̃)JI = (γ2)H

J ∂Hω̃I − (γ2)H
I ∂Jω̃H = 0.

From here, after straightforward calculations (see Section 1), we find the following covector field

ω̃ = (ω̃I) = (x2r+h∂hωi +
1
2

xr+hxr+m∂2
hmωi + xh+i∂hGi +Hi, xr+h∂hωi + Gi, ωi), (9)

where G =
(
Gi

(
x1, ..., xr

))
, H = (Hi(x1, ..., xr)) any covector fields in Mr. In fact, by means of (13), we easily

see that ω̃ = (ω̃I) determine 1−form in T2(Mr) which are called the deformed complete lifts of ω from Mr to
T2(Mr) and denoted by Cω = (CωI).

From (9), we have
Cω = ω2 + G1 +H0, (10)

where

H0 = (Hi, 0, 0),G1 = (xr+h∂hGi,Gi, 0),

ω2 = (x2r+h∂hωi +
1
2

xr+hxr+m∂2
hmωi, xr+h∂hωi, ωi)

are respectively the 0−th (vertical) , 1−th and 2−th (complete) lifts of H,G andω [7]. It is clear that the deformed
complete lift Cω = (CωI) is deformation of 2−th lift of ω.

Thus we have
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Theorem 2.1. Letω = ωidxi be an 1−form on Mr. The deformed complete lift Cω ofω to the bundle of 2−jets T2(Mr)
have the following expression

Cω = ω2 + G1 +H0,

where H0,G1 and ω2 are respectively the 0−th , 1−th and 2−th lifts of any 1−forms H,G and ω.

3. Deformed intermediate lifts of 1−forms

Putting ω = G in (10), we see that

ω1 +H0 = Cω − ω2 = (xr+i∂iωh +Hh, ωh, 0) (11)

determine a new 1−form in T2(Mr), which are called the deformed intermediate lift of 1−form ω from Mr
to T2(Mr) and denoted by Iω = ω1 + H0. We note that the deformed intermediate lift Iω of ω to T2(Mr) is
deformation of 1−th lift of ω.

Thus we have

Vω = ω0, Iω = ω1 +H0, Cω = ω2 + G1 +H0, (12)

where

Vω = (ωh, 0, 0). (13)

Thus we have

Theorem 3.1. Let ω = ωidxi be an 1−form on Mr. The deformed intermediate lift Iω of ω to the bundle of 2−jets
T2(Mr) have the following expression

Iω = ω1 +H0,

where H0 is the 0−th lift of 1−form H.

From (9), (11) and (13) we have

Theorem 3.2. Deformed complete lifts satisfies the following matrix formulas

Cωγ = ω1 + G0, Cωγ2 = ω0 = Vω,

where γ and γ2 are matrices in the form (4) and (5), respectively.

Let now ω = dxi, G = dx j, H = dxk, i, j, k = 1, ..., r. Then from (11), (12) and (13) we have

Theorem 3.3. Deformed complete, intermediate and vertical lifts of differentials dxi has the following linear combi-
nation of differentials in T2(Mr) :

V
(
dxi

)
= dxi, I(dxi) = dxr+i + dxk,C(dxi) = dx2r+i + dxr+ j + dxk.

Let now X be a vector field in Mr. It is well known that the vertical and deformed lifts IX, CX of X has
the following expressions (see [4])

VX = X0 =

 0
0

Xh

 , IX = X1 + Y0 =

 0
Xh

xr+i∂iXh

 +
 0

0
Yh

 =
 0

Xh

xr+i∂iXh + Yh

 ,
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CX = X2 + Y1 + Z0 =


Xh

xr+i∂iXh

x2r+i∂iXh + 1
2 xr+ixr+ j∂2

i jX
h

 +
 0

Yh

xr+i∂iYh

 +
 0

0
Zh


=


Xh

xr+i∂iXh + Yh

x2r+i∂iXh + 1
2 xr+ixr+ j∂2

i jX
h + xr+i∂iYh + Zh


for any vector fields Y,Z in Mr. Using the last formulas and also (7), (8), (11), (12), (13) we have

Theorem 3.4. Let X, ω and f are respectively any vector field, 1− form and function in Mr. Then

V( fω) = f 0ω0, I( fω) = f 1ω0 + f 0ω1 + G0, C( fω) = ( f 2 + f 0)ω0 + f 1ω1 + G1 +H0,

Vω(VX) = 0, Vω(IX) = 0, Vω(CX) = (ω(X))0,

Iω(VX) = 0, Iω(IX) = (ω(X))0, Iω(CX) = (ω(X))1 + (ω(Y))0 + (H(X))0,

Cω(VX) = (ω(X))0, Cω(IX) = (ω(X))1 + (ω(Y))0 + (G(X))0,

Cω(CX) = (ω(X))2 + (ω(Y))1 + (ω(Z))0 + (G(X))1 + (G(Y))0 + (H(X))0.

4. Exterior differentials of deformed complete and intermediate lifts

Let nowΩ be a tensor field of type (0, 2) in Mr. We define an 1−form γYΩ by

(γYΩ)X = Ω(X,Y)

for any vector fields X and Y. IfΩ has local componentsΩi j, then γYΩ has local componentsΩi jY j.
It is well known that the deformed intermediate and complete lifts of Ω has respectively components

(see [3])

IΩ =

 xr+s∂sΩ ji + π ji Ω ji 0
Ω ji 0 0
0 0 0

 = Ω1 + π0,

CΩ =

 x2r+s∂sΩ ji +
1
2 xr+txr+s∂2

tsΩ ji + xr+s∂sΩ ji + π ji xr+s∂sΩ ji +Ω ji Ω ji
xr+s∂sΩ ji +Ω ji Ω ji 0

Ω ji 0 0


= Ω2 +Ω1 + π0,

where

Vπ = 0π =

 π ji 0 0
0 0 0
0 0 0


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is the vertical lift of any tensor field π of type (0, 2). Using the expression of lifts Vπ, IΩ, CΩ and (9), (11),
(13) we have

γX2
VΩ = (Ωi jX j, 0, 0) = ((γXΩ)i, 0, 0)=V(γXΩ),

γX2
IΩ = ((xr+s∂sΩi j + πi j)X j +Ωi j(xr+s∂sX j),Ωi jX j, 0)

= (xr+s∂s(γXΩ)i + (γXπ)i, (γXΩ)i, 0)
= (γXΩ)1 + (γXπ)0=I(γXΩ),

γX2
CΩ = ((x2r+s∂sΩi j +

1
2

xr+sxr+t∂2
stΩi j + xr+s∂sΩi j + πi j)X j

+(xr+s∂sΩi j +Ωi j)xr+t∂tX j

+Ωi j(x2r+s∂sX j +
1
2

xr+sxr+t∂2
stX

j, (xr+s∂sΩi j +Ωi j)X j

+Ωi jxr+t∂tX j,Ωi jX j)

= (x2r+s∂s(γXΩ)i +
1
2

xr+sxr+t∂2
st(γXΩ)i + xr+s∂s(γXΩ)i

+(γXπ)i, xr+s∂s(γXΩ)i + (γXΩ)i, (γXΩ)i)
= (γXΩ)2 + (γXΩ)1 + (γXπ)0=C(γXΩ).

Thus we have

Theorem 4.1. LetΩ be a tensor field of type (0, 2) in Mr. Then

γX2
VΩ = (γXΩ)0=V(γXΩ),

γX2
IΩ = (γXΩ)1 + (γXπ)0=I(γXΩ),

γX2
CΩ = (γXΩ)2 + (γXΩ)1 + (γXπ)0=C(γXΩ).

We shall now study the deformed lifts of exterior differentials of 1−forms ω = ωidxi, i = 1, ..., r. Using
[X2,Y2] = [X,Y]2 and linearity of mappings X → X0, X → X1, X → X2, from Theorem 3.4 and Theorem
4.1 we have

2(dIω)(X2,Y2) = X2(Iω(Y2)) − Y2(Iω(X2)) − Iω([X2,Y2])
= X2((ω(Y))1 + (H(Y))0) − Y2((ω(X))1

+(H(X))0) − Iω([X,Y]2)
= (Xω(Y))1 + (XH(Y))0

− (Yω(X))1
− (YH(X))0

−(ω([X,Y]))1
− (H([X,Y]))0

= (Xω(Y) − Yω(X) − ω([X,Y]))1

+(XH(Y) − YH(X) −H([X,Y]))1

= 2((dω)(X,Y))1 + 2((dH)(X,Y))0

= 2(γY(dω)(X))1 + 2(γY(dH)(X))0

= 2(γY(dω))1(X2) + 2(γY(dH))0(X2)
= 2(γY2 (dω)1)(X2) + 2(γY2 (dH)0)(X2)
= 2((dω)1 + (dH)0)(X2,Y2).

By similar devices, we have

2(dCω)(X2,Y2) = 2((dω)2 + (dG)1 + (dH)0)(X2,Y2).

Since the any tensor fieldΩ of type (0, 2) in T2(Mr) is completely determined by its action on lifts X2, Y2

(see [2, p.324]), i.e. ifΩ(X2,Y2) = Ω̃(X2,Y2) for any X,Y, thenΩ = Ω̃, we have
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Theorem 4.2. Let ω, G and H be 1-forms in Mr . Then the exterior differentials of deformed intermediate and
complete lifts of ω to T2(Mr) satisfies the following formulas:

dIω = (dω)1 + (dH)0,

dCω = (dω)2 + (dG)1 + (dH)0.
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