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Abstract. In this article, we concentrate on common fixed points of a pair of generalized non-expansive
mappings, viz., generalized a-Reich-Suzuki non-expansive mappings. In this sequel, we introduce the three
step Abbas-Nazir iterative algorithm for a pair of mappings. Then we obtain some results related to weak
and strong convergence of sequences, satisfying this iterative algorithm, to obtain the common fixed points
of two generalized a-Reich-Suzuki non-expansive mappings. Finally, we compare the convergence rate of

our iteration technique to that of some well-known iteration techniques by some constructive numerical
examples.

1. Introduction and preliminaries

Throughout the last few decades, existence of fixed point of different types of non-expansive mappings
and convergence of iteration algorithms to the fixed point and their convergence rate (i.e., speed of the

iteration) have drawn attentions of many mathematicians. We first recollect two important classes of
non-expansive mappings.

Definition 1.1. Suppose that (E, ||.||) is a Banach space, and U be a non-empty subset of E. A mapping T : U — U
is said to be non-expansive if for all x,y € U,

ITx = Ty]| < [l - o]

Further, it is said to be quasi-nonexpansive if F(T) # 0 and

ITx = wl| < |lx — wl|,

forall x € U and for all w € F(T).

2020 Mathematics Subject Classification. Primary 47H10; Secondary 54H25
Keywords. Non-expansive mappings, common fixed points, uniformly convex Banach spaces, demiclosedness, weak convergence,
Opial’s property, Fréchet differential norm.

Received: 04 February 2022; Revised: 21 October 2022; Accepted: 29 October 2022
Communicated by Erdal Karapinar

Corresponding author: Ankush Chanda

Email addresses: beraashis.math@gmail.com (Ashis Bera), ankushchanda8@gmail.com (Ankush Chanda),
lakshmikdey@yahoo.co.in (Lakshmi Kanta Dey), hiran.garai24@gmail.com (Hiranmoy Garai), vrakoc@sbb.rs (Vladimir
Rakocevic)



A. Bera et al. / Filomat 37:4 (2023), 1187-1206 1188

If the Banach space E is uniformly convex and if U is closed, bounded, convex, then it is well-known
that the set of fixed points F(T) of a non-expansive mapping T : U — U is non-empty. Many authors
have studied the existence of fixed points of various non-expansive mappings and obtained a variety of
interesting results, see [1, 4, 6, 12, 16, 18, 21, 26, 28, 34, 35].

In an attempt to weaken the notion of non-expansive mappings, in 2008, Suzuki [33] introduced a
generalization of non-expansive mappings, usually known as mappings satisfying condition (C).

Definition 1.2. [33] Let T be a self~mapping defined on a subset U of a Banach space E. Then T is said to satisfy
Condition (C) if

1
sl =Tyl <l =il = [|7x - To]| < [l - o]

holds for all x,y € U. Also, if any mapping satisfies the Condition (C), then it is known as a Suzuki generalized
non-expansive mapping.

In their research article, Karapinar and Tas [17] generalized the notion of Condition (C) and obtained
some novel results. Thereupon, Dhompongsa et al. [8], Khan and Suzuki [13] obtained some fixed points
and weak convergence results for Suzuki generalized mappings. After this, many mathematicians have
generalized non-expansive mappings in different directions, some remarkable ones of these generalizations
are a-non-expansive mappings due to Aoyama and Kohsaka [5], generalized a-non-expansive mappings
due to Pant and Shukla [27], mappings satisfying condition (D,) due to Donghan et al. [9], Reich-Suzuki
non-expansive mappings due to Pandey et al. [24], Reich and Chatterjea type non-expansive mappings due
to Som et al. [30]. After all such generalizations, Pandey et al. [25] proposed a novel notion of extended
family of non-expansive mappings which properly contains both those of Reich-Suzuki non-expansive
mappings and generalized a-non-expansive mappings, and investigated for several interesting properties
involving these maps.

Definition 1.3. [25] A mapping T : U — U is said to be a generalized a-Reich-Suzuki non-expansive mapping if
there exists an o € [0, 1) such that for each x, y € U,

%llx - Txl| < |x-y|| = ||[Tx - Ty|| < max{P(x, ), Q(x, y)}

where
P(x,y) = a||Tx — x|| + oz”Ty - y“ +(1- 20z)||x - y”

and
Qx,y) = a”Tx - y” + oz”Ty - x” +(1- 2a)”x - yH

Similar to [26, Proposition 3.5], we can show that a generalized a-Reich-Suzuki non-expansive mapping is
quasi-nonexpansive also. If we go through the literature of all the above kinds of non-expansive mappings,
then we can observe that most of the above generalizations are concerned with fixed points of a single
mapping, and there are a few results concerning common fixed points of two or more mappings. Motivated
by these facts, in this article, our main objective is to enrich the theory of common fixed points of two or
more mappings of non-expansive mappings by investigating common fixed points and related results of
two or more non-expansive (type) mappings. To be precise, here we inquire into the existence of common
fixed points of two generalized a-Reich-Suzuki non-expansive mappings defined on a Banach space.

On the other hand, it is also well-known that in general the Picard iteration does not converge to the
fixed points of a non-expansive mapping even if it owns a fixed point. So in order to get the fixed points
of such mappings by convergence of iterations, many iterative algorithm have been originated. Some
impressive iterative algorithms are due to Mann [20], Ishikawa [15], Xu [36], Noor [22], Agarwal et al. [3],
Liu et al. [19], Abbas and Nazir [2], Hussain et al. [10, 11] and many others. Among all these, Abbas and
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Nazir iterative algorithm (three step algorithm) converges faster than that of Mann, Ishikawa, Xu, Noor
and also, S-iteration methods numerically. Here we recall Abbas and Nazir iterative algorithm:
x1=xelU
Xn+l = (1 - an)T]/n +a,Tzy,
Yn = (1 =b,)Tx, + b,Tz,,
zy = (1 = cp)xy, + ¢, Txy, (1.1)
for all n € N, where (a,), (b,) and (c,) are sequences in (0, 1).

It is to be mentioned that all the above algorithms are related to fixed points of a single mapping only,
and there are few iterative algorithms that are concerned with fixed points of two or more mappings.
Among such few algorithms, the commonly utilized one is Liu et al.’s iterative algorithm [19] where the
iterative sequence (x,) is generated from x; € U, and is defined as

Xn+l = (1 - an)Tlxn + ﬂnszm

Yn = (1 - bn)Tlxn + bnTan/ (12)
for all n € IN, where (a,) and (b,) are sequences in (0, 1). The other objective of this article is to approximate
the common fixed points of generalized a-Reich-Suzuki non-expansive mappings by some other iterative
algorithm which has a better rate of convergence than that of Liu et al. To fulfil such objective, we extend
Abbas-Nazir iterative process for single mapping to Abbas-Nazir iteration technique for two mappings. We
make use of such three-step iteration process to secure some weak and strong convergence results. Finally,
we furnish with some simulation (using MATLAB 2017a) results to authenticate our findings by constructing
a couple of numerical examples. In particular, we carry out the comparative study of convergence behaviour

of a few well-known iterative schemes with tabular and figurative demonstrations which suggests that the
newly proposed iterative scheme has a faster convergence rate.

2. Preliminaries

Throughout the article, we use the notation IN to mean the set of positive integers and R for the set of
real numbers. Also, F(T) stands for the set of all fixed points of a mapping T. In the following discourse,
we talk over a couple of requisite definitions, terminologies, notations and results. Firstly, a Banach space
E is said to be smooth if the subsequent limit

lim et + toll — llull (2.1)

t—0 t
exists for all u,v € Sg, where Sg = {x € E : ||x]| = 1} is the unit sphere in the corresponding Banach space.
The norm of E is Fréchet differentiable if for each u € E, the limit (2.1) is achieved uniformly for v € Sg. In

this case
1 1 1
SR+ G0, 1)) < b+ ull? < SR + G, JG) + gl 22)

for all x,u € E, where J(x) is the Fréchet derivative of the functional %II.Il2 at x € E and g is an increasing

t
function defined on [0, o) such that ltinol@ = 0. Besides, for each € satisfying 0 < € < 2, the modulus 0g(e€)

of convexity of a Banach space E is defined as

Se(e) = inf{l - ””zﬂ ull < 110l < 1, I — ol e}.

Also, E is uniformly convex if for every € > 0, 6g(e) > 0, and is strictly convex if luwtdll 1 for every u,v € Sg

2
with u # v.
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Definition 2.1. Let U be a non-empty subset of a Banach space E and also suppose that T1,T5,--+ , Ty : U — U are
self-mappings. An element x € U is said to be a common fixed point of these mappings if Tyx = x foralli=1,2,--- ,m.

Definition 2.2. [23] A Banach space E satisfies the Opial’s property if for each weakly convergent sequence (x,) in
E with weak limit x,

lim inf [lx, — || < lim inf [}x, — y]|
holds for all y € E where x # y.
Definition 2.3. Suppose that U is a non-empty closed and convex subset of a Banach space E and also assume that
(x4) is a bounded sequence in E. Then for any x € E, we define the following:

(a) asymptotic center of (x,) at x as
r(x, (xp)) = limsup ||x, — x|l
(b) asymptotic radius of (x,) relative to U as o
r(U, (x,)) = inf{r(x, x,) : x € U}.
(c) asymptotic centre of (x,) relative to U as

AU, (xp)) = {x € U : r(x, (xn)) = (U, (xn))}-

Here we must note that, for any uniformly convex Banach space, the set A(U, (x,)) consists exactly one

point. However, the ensuing lemma is playing a pivotal role in this article.

IA

Lemma 2.4. [31] Let E be a uniformly convex Banach space and (u,) is a sequence such that 0 < p < u, <

A

g < 1 for all n € IN. Consider (a,) and (b,) are two sequences such that lim suplla,|| < t, limsupl|b,|| < t and
n—o0 n—o00

lim|lupa, + (1 — uy)byll = t forany t > 0. Then,
n—oo
lim [la, — b,l|l = 0.
n—oo
Lemma 2.5. [25] Let U be a non-empty subset of a Banach space E and T : U — U be a generalized a-Reich-Suzuki
non-expansive mapping. Then for each x,y € U we have,

-1y < (322

1-«a

Jiie =t + [ - .

3. Convergence results for two generalized a-Reich-Suzuki non-expansive mappings

In this section, we introduce the three-step iterative algorithm due to Abbas-Nazir for two mappings
T1,T> : U — U, U being a non-empty subset of a Banach space E, which is as follows:
x1=x€l,
Xn1 = (1= an)T1yn + ayTozn,
Yn = (1= bw)T1xy + by Tozy,
Zy = (1 —cp)xy + ¢ T1xy (3.1)

for all n € IN, where (a,), (b,) and (c,) are sequences in (0,1). At first, we prove the following lemma

regarding the above iterative algorithm for two generalized a-Reich-Suzuki non-expansive mappings.
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Lemma 3.1. Let U be a non-empty closed and convex subset of a Banach space E and T1,T, : U — U be two
generalized a-Reich-Suzuki non-expansive mappings with F(T) = F(T1) N F(T,) # 0. Assume that q € F(T) and (x,)
is a sequence defined by (3.1). Then lim ||xn - q” exists for all g € F(T).

n—o0

Proof. Since T1,T, : U — U are two generalized a-Reich-Suzuki non-expansive mappings, we have
[y =gl < =gl andt s —g] < [ —l,
for each g € F(T). Using the iterative scheme (3.1), we obtain,

|[xner = ql| =[|(1 = )Ty + a5 Toz,, — g
=[|(x = a0 [T1ys = g1 + 4, [Toz, — g])|
<1 - e[y~ + Tz
<1 - 0y~ + o]
=(1- a,,)”(l —b,)Tx, + b, Tz, — q” + an”(l — )Xy + ¢y T1x, — qH
=(1- a,,)”(l —by) [T1x, — q] + by [Tozy — q]H + anH(l —cn) [xn —q] + cn [Tax, — q]”
== a) [ = bo)[va = gl + bz = all| + 2 [0 = en)lFva = gl + cull = g
=(1 =) [(1 = b)va = g + bullen = gll] + @]} —
=(1—ay) [(1 = by) || — q| + ba| @ = c)n + caTry — q||] + | [ — |
=1 -ay,) [(1 - b,,)”xn - q” + b,,“(l =) [xn — g] + cn [Taxn — q]H] + a,,“xn - q”
<(1 = an) [ = bo)lea = qll + b {0 = c)llxn = al| + e[ v = gll}] + 2 la = 4
<(1 = an) [(1 = b)xw = gl| + b {1 = e[| = g + cullra = all}] + anflxn — 4
=(1 =) [0 = bu)}n = g] + Bl = g|] + 2} — 4]
=(1 = ||, = gl + a[ls - g
Sl 62

The above implication infers that (”xn - qH) is a non-increasing sequence and also, bounded below for all
g € F(T). Therefore, lim Hxn - q” exists. [

Using the above lemma, we now derive a necessary and sufficient condition for the existence of common

fixed points of two generalized a-Reich-Suzuki non-expansive mappings.

Theorem 3.2. Let E be a uniformly convex Banach space and U be a non-empty closed convex subset of E. Consider

T1, T, : U — U be two generalized a-Reich-Suzuki non-expansive mappings. For any x; € U, we define the sequence

(xn) as the iteration scheme given by (3.1). Then F(T) = F(T1) N F(T2) # 0 if and only if lim|lx, — T1x,|| = 0 =
n—oo

&i_{go”xn = Toxyl|.
Proof. Let g € F(T). By Lemma 3.1, lim ||xn - qH exists and suppose
n—oo

lim ||x, — q|| = ¢. (3.3)

n—00
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Also, we have,
i =l =l =l
= limsup || T1x, — g|| < limsup ||x, — ]| < t,
and silacy,
lim sup || T2x, — q|| < lim sup |[x, — q|| < £.
Next, frlj(az), we have, o
t= lim [xnar = gf| = lim [[(1 = @) Try, +anTazo - q]|
< lim ||, -
“in =l
Then from (3.5), we get
Lim [[(1 = @) Try +anTaza — qf| = .
This leads to

lim sup “(1 = an)(T1yn = q) + an(T2zy — q)“ =t

n—o0

Also, making use of (3.1), we get
|z = al| =[|(1 = c)xn + cuTax — g
=@ = ) = 9) + cu(T12n = g)
<t = el = gl + e [Trvs g
<=l gl + el
[ = al|

As T, is a generalized a-Reich-Suzuki non-expansive mapping, we have

220 = al] <[}z 4l
=l

= limsup ||Tzzn - q” <limsup ”xn - q“ =t.
n—00 n—00

1192

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

Again, using the fact that T; is a generalized a-Reich-Suzuki non-expansive mapping and also using (3.8),

we get,
| T1yw = af) =[|T1 (@ = ) T1x + buTaz,) = g
<||@ - ) Tix + b, T2z, — g
<(1 = b)||Taxs = ql] + ba[| T2z, — g
<1 bl ] + bl ]
= =4l

= limsup ||T1]/n - qH <limsup ”xn - ‘7H =

(3.9)
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Using (3.8), (3.9) and (3.6) on Lemma 2.4, we obtain,
lim | T1yn = Toza|| = 0.
Again using Abbas-Nazir iterative scheme (3.1) and (3.10),

5im [par = Tozall = Hm [|(1 = @) Tayn + 2, Tozy = Toz
= &glgo H(l —ay) Ty, — (1 - an)T2Zn||
= lim (1~ )| Tryn = oz
=0

= lim [lxys1 = Tozall = 0.
Using triangle inequality and the fact that T is quasi-nonexpansive, we have

|lne1 = g < ltwer = Tozall + || T2z — 4|

< 1Pne1 = Tozall + ||z — -
From (3.3) and (3.11), we obtain
t< linnlglszn —q]|
Taking lim sup as 1 — oo on (3.7),
limsup ||z — gl <t.
Taking (3.12) and (3.13) together,
tim [~ ] =

Further letting n — oo on (3.7) and using (3.14), we deduce

£ = Tim |20 — q]| = lim |1 = )t — 9) + cu(Trxs — )|

n—-o0o n—oo

< lim Hx,, - q”

n—oo

<t,
which implies that
lim (1 = ) (x, = ) + (T, — )| =

Employing Lemma 2.4 and (3.4) in (3.15), we get

lim ||x,, — T1x,|| =0.
n—oo

1193

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Now using Abbas-Nazir iteration (3.1) and (3.10), we derive
Xn+1 = (1 - un)len + anTZZn
= T1yn + an(T2zn — T1yn)

= “er—l - Tl]/n” = |an|”TZZn - Tl]/n”

= lim “x,,+1 - len” = lim a,,”Tzz,, - len”

n—oo n—oo

= lim ||x, — T1y.| = 0. (3.17)
Also, using triangle inequality and (3.1), we get

I T2y = Xull < IT2%n = Tozall + || Tazn = Tayu| + || Tivn = x|
< = zull + || Tozn = Tayal| + || Tryn — x|
= lxn = (1= ) = cuTaxull + || Tozw = Tatn| + || T — x4
= cullt — Taxall + || Tozu = Taya]| + || Trym — x| (3.18)

Letting n — oo and employing (3.10), (3.16) and (3.17) on (3.18), this implies that
lim ||T7x,, — x,]| = 0.

Hence we are done.

Conversely, let lim ||x, — T1x,|| = 0 = lim [|x,, — T>x,||. Now, by triangle inequality we have,
n—oo n—oo

T2 = x| < || T2q = Toxa| + (T2 — 24l

Since 3||T1x; — xul| = 0 < ||xn -q ’, then

[ T1g — T1xa|| < max {P(g, x,), Q(g, %)},

where

P(q,x,) = allTix, — x|l + oz”qu - q” +(1- 2oc)||xn - qH
and

Qg, xy) = a”T1xn - q” + a”qu - x,,H +(1- 2a)||xn - q”

Then, employing Lemma 2.5 and putting x = x, and y = g for the mapping T, we have,

3+a
1

2 = Tl + [ — g} 3.19)

o =i <
Considering lim sup as n — oo on (3.19) and using Definition 2.3, we have
r(Taq, () =limsup [|x, — g = (g, (x2)) = (U, (),

which implies that T1q € A(U, (x,)). Since E is a uniformly convex Banach space, A(U, (x,)) has exactly one
element and therefore, T14 = 4. In a similar manner, we can prove that T>g = g. This leads to the conclusion
that F(T) is non-empty and the converse is also proved. O
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The subsequent lemma deals with the demiclosedness principle of generalized a-Reich-Suzuki non-

expansive mappings at zero.

Lemma 3.3. Let E be a Banach space with the Opial’s property and U be a non-empty closed convex subset of E. Let
S : U — U be a generalized a-Reich-Suzuki non-expansive mapping. Then I — S is demiclosed at zero.

Proof. Let (x,) be a sequence in U such that (x,) converges weakly to/ € U and (I — S)x, — 6 as n — oo.
Then by Lemma 2.5, we have

3+a
1-«a

o = Toll = (5 ) = Tl + [ =

Letting lim inf as n# — oo on both sides of the above inequality, we get
lilrgigfllxn =TI < 1i£§glf||xn —1|I.
If I # TI, then by the Opial’s property of E, we have
linrrl)gfllxn -1l < limglf||xn - TIj,

which is a contradiction. So we must have ! = Tl, i.e., (I — S)I = 6. This concludes that [ — S is demiclosed at

zero. [

Our upcoming two results deal with the weak convergence of the iterative scheme (3.1) to obtain some
common fixed points of T; and T5.

Theorem 3.4. Let E be a uniformly convex Banach space and U be any non-empty closed convex subset of E. Suppose
that E satisfies the Opial’s property. Let T1, T, : U — U be two generalized a-Reich-Suzuki non-expansive mappings
with F(T) = F(T1) N F(T,) # 0. For any x, € U, we define the sequence (x,,) as the iteration scheme given by (3.1).
Then (x,) converges weakly to an element of F(T).

Proof. Since F(T) # 0 and Ty, T, : U — U are two generalized a-Reich-Suzuki non-expansive mappings,
then by Theorem 3.2 we have,
r}i_{gollxn —Tixy||=0= Ai_r)gollxn = Toxyl|.
Consider that E satisfies Opial’s property and let /; and I, be two weak subsequential limits of (x,). Suppose
that (x,,) weakly converges to I; and (x,,/) weakly converges to I,. We want to show that 1,1, € F(T). By
Lemma 3.3, we have I — T; is demiclosed at zero. Then we have (I — T1)l; = 0. This implies that T1/; = I;.
Following similar arguments, we can conclude that Ty = [;. Therefore /; € F(T). Similarly one can prove
that, [, € F(T). Now we want to show [; = I,. Let if possible, I; # I,. Then we obtain,
lim ||x, — L] = liminf||x,, — h||
n—oo i—o00
<liminf ”xn‘. - 12”
1—00
= lim ||x, — Ll
n—oo
= ligrlionf ||xn], - 12”
<liminf ||xn}. - 11”
j—00

= lim |lx, — 4|
n—oo
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which leads to a contradiction. Therefore /; = I; and this implies that (x,,) converges weakly to an element
of F(T). O

One can note that, there are classes of uniformly convex Banach spaces where the Opial’s property does
not hold. Therefore the previously discussed result is not true for such structures. As an alternative way

of proof, in the next result, we assume the existence of Fréchet differential norm instead of the Opial’s

property.

Theorem 3.5. In Theorem 3.4, we replace the Opial’s property by the assumption that E has a Fréchet differential
norm, and also consider that lim ||tx, + (1 — t)u — v|| exists for all u,v € F(T). Additionally, suppose that I — T and
n—oo

I — T, are demiclosed at zero. Then (x,) converges weakly to a common fixed point of T1 and T).

Proof. Our aim is to show that (x,,) has exactly one limit point. Suppose that (x,,) weakly converges to /; and

(xn;) weakly converges to I,. Since F(T) # 0, from Theorem 3.2 we get, lim |[x,, — T1x,|| = 0 = lim [|x,, — Tox,]|.
n—00 n—oo

Also, since I — T7 and I — T, are demiclosed at zero, this further leads to the fact that I;,I, € F(T). Putting

u — v and #(x, — u) instead of x and u respectively in (2.2), we have
1 2 1 2
Sl =2l + Haxn = u, J(u—v)) <5 lltxn + (1= Hu — ol
1
<5l =0l + 1, = u, J(u =) + g(tlpe, = ul).

Using the given condition, we get

1 1
Sl = ol + tlim sup(x, — u, J(u — v)) <5 lim ltx, + (1= t)u = olf?
n—oo

n—oo

1
gzuu —o|? + tliminf(x, — u, J(u — v)) + O().

Thus,
, . o)
lim sup(x, — u, J(u — v)) < liminf(x, —u, J(u —v)) + 5

Taking t+ — 0%, we get lim(x, — u, J(u — v)) exists. Now, we have (I; — u, J(u — v)) = d (say) and also,
(b —u, J(u—2v))=d. So,{l; — I, J(u —v)) =0 for all u,v € F(T). From this we obtain,

= Bl = (= I, J(h = 1)) = 0
which is impossible, unless /; = I,. Then (x,) converges weakly to a common fixed point of T1 and T,. [

Next, we recall the concept of Condition (A’) originally brought about by Chidume and Ali [7]. Two
mappings T1, T, : U — U, where U is a non-empty subset of a Banach space E, are said to satisfy Condition
(A’) if there is any non-decreasing function f : [0, 00) — [0, co) with f(0) = 0 and f(r) > 0 for all r € (0, o)
such that either ||T1x — x|| > f(d(x, F)) or ||T>x — x|| > f(d(x, F)) for each x € U. Here, we must mention that
this criteria is the extension of Condition (A) which is applicable for a single mapping and introduced by
Senter and Dotson [32]. Now, we modify the previous assumption slightly and come up with the following

notion which is prerequisite for the imminent strong convergence result.
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The mappings T;, T, : U — U with F(T) # 0 satisfy Condition (B) if there exists a non-decreasing
function f : [0,00) — [0,00) with f(0) = 0 and f(r) > O for all r € (0,00) such that for all x € U,
max{lITyx — x|, IT2x — x|} > f(d(xu, F)), where d(xy, F) = inf{llx -z}

ze

Next, we state the following simple result as a lemma.

Lemma 3.6. Suppose that (a,) and (b,) are two sequences of non-negative real numbers such that a,.1 < a, + b, for

alln > 1. If ., b, converges, then lim a,, exists.
n—oo

Using the above lemma and the notion of Condition (B), we now prove the following strong convergence
result of the iterative scheme (3.1).

Theorem 3.7. Let E be a uniformly convex Banach space and U be any non-empty closed convex subset of E. Let
T1, T, : U — U be two generalized a-Reich-Suzuki non-expansive mappings with F(T) = F(T1) N F(Ty) # 0. For
any x1 € U, we define the sequence (x,) as Abbas-Nazir iteration scheme (3.1). Suppose T1, T, satisfy the Condition

(B). Then (x,) converges strongly to some common fixed point of T1 and T».

Proof. Let g € F(T). Then by the Theorem 3.1, lim ||xn - q“ exists for all g € F(T). Also

e = all < Jlx: -4l

for all n € IN. Then, d(x+1, F) < d(xy, F). Therefore by Lemma 3.6, ;}1_130 d(x,, F) exists. Again from Theorem
3.2 we have, 1i_r& [lx, = Tix,]] = 0 = 31_1}1010 lx, = Toxyll. Since T; and T, satisfy the Condition (B), we have
Eﬂf@@mﬂfzOWMdnmﬂmsmmkgﬁ@mH:O.

Then, we can choose a subsequence (x;,) of (x,) and some sequence (px) in F(T) such that ”xnk - pk” <5

for all k € N. Next, we want to show that (x,) is a Cauchy sequence. Now, for all nn,m > k, we have

14 — Xl S”xnﬂn - pk” + ”xn - pk“
<t = pel| + [l =

Jherem-z = pil + [l =

<2ps =
<Ypr, =
<€.

Thus (x,) is a Cauchy sequence in U. Since U is a closed subset of E, lim x, = x for some x € U. Now we
n—-o00

have to show that x € F(T). Since F(T) is closed and lim d(x,, F) = 0, we can conclude that x € F(T). Hence
n—-oo

the theorem follows. [

Remark 3.8. Our findings extend, complement and unify those of Khatoon et al. [29], Pandey et al. [25] and
Khatoon et al. [14] which deal with the convergence results and a few fixed point results concerning a generalized

a-Reich Suzuki non-expansive mapping.
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4. Numerical Examples

In this section, we illustrate a couple of numerical examples to endorse our achieved results. Addition-
ally, we vindicate the conclusions drawn out from these examples with the help of effective tabular and
figurative documentations. Here, we can note that the newly introduced algorithm gives better convergence
rate than those of Mann, Ishikawa, Agarwal iterations and we confirm this by changing the parameters.
For this simulation, we make use of MATLAB 2017a software. Throughout this section, we use the notation
F for the set F(T).

Example 4.1. Let E = R? and C = {x = (x1, x2)|(x1, x2) € [0, ) X [0, 00)} be a subset of E equipped with the norm
[lx]| = |%1| + |x2|. Define two self-mappings T1, T» on C by

(32,52, when (x1,x2) € [0, 1] % [0, 0);

(12}(1/ %), when (x1,x;) € (%,oo) % [0, o0),

T1(x1,%2) = {

and

To(s, x3) = { EZ—Q, Z—éj), when (x1,x7) € [0, %] X [0, 00);
=, T), when (x1,x7) € (3,00) X [0, o).
Here, we can verify that Ty and T, are not non-expansive but generalized a-Reich Suzuki non-expansive mappings.
Take x = (3,0) and y = (305,0), then Ty(x) = (3, =) and T1(y) = (595, 1)- Now, ||T1(x) — Tl(y)” = o >
o0 = < =l

Again, consider x = (3,0) and y = (3358, 0), then T»(x) = (3, ), Ta(y) = (£5, 3). Now

901 1 ”

(T2 - Ta(w)|| = 23000 > 9000 ~ ¥~ vl

Therefore, our claim that T1 and T, are not non-expansive is validated. Now we assume that x,y € C be arbitrary.
Then we have the following cases.
Case-I: When x,y € [0, 1] x [0, o). Then,

[T1() - Ta(w)|| =

(x1 - Xz-]/z)

16 ~ 16
1 —_
- {5 e
< Sx-y
-2

1
< ol =yl + gl =T + 5 lly - T
= allx — T1(x)|| + Dc”]/ - Tl(]/)H +(1- Za)”x - 3/”
< maX{P(x/ y)r Q(X, y)}r

witha = 1.
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Case-II: When x,y € (,00) X [0, o). Then,

Im@ - nwl = (252 252

_1{9(1—
T4

3

n

+ |2 — y2|}

< llv-4l

< -yl + }Lnx - Ti(®)ll + }Llly - Ty

= ally = Ty @)l + ally = Ty + (1 = 20)x -
< max({P(x,y), Q(x, )},

with o = Z
Case-III: When x € [0, 3] X [0,00)and y € ( o0) X [0, 00). Then,

T - ( -4y +1 x2—4y2+1 H

16
1 (|x1—4y; +1
:1_6{_
1

3

4

+ |xo — 4]/2 + 1|}

113 -1| 1 1
= ey — o] + —Bys — 1
16 3 ‘+16|x y2|+16|3y2 |
33(1

3

-
3
X1 — W1
3
3]/2—1
+E‘ 3

=}lllx—yll+—ux Tl + =y - 1)

+ S|y — +—
|x2 2l 6

1
+ 1—6|3x2 - l|

1
1

'+ By -1

1
<sle=vll+ 1“" - Th@)ll + z“y - Tu(y)|
=allx — T1(x)|| + aHy - T1(y)|| +(1- Za)“x - y”
SmaX{P(x/ y)/ Q(xl y)}/
where o = 411'

Case-1V: When x,y € [0, %] X [0, 00). Then,

X1—=Y1 X2V
|20 = T2y = ( 11() - 210 2)

_l{xl_yl
10

3
1
< 3l -l

+ 2 - ]/2|}

1 1 1
< Sl =yl + Zle - T2+ Zlly - T2
= allx — Tr(x)|| + Dc”]/ - Tz(]/)H +(1- ZW)HX - ]/”
< max{P(x, y), Q(x, y)},

1199
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where a = }.
Case-V:  When x, € (3,00) X [0, ). Then,

(xl - xz—yz)

70 - )| = |(—— =

-4

1
< 3lx =l

X1 — W
3

+ |x2 — }/2|}

1 1 1
< sle=yll+ gl = 2@+ 4y - T2
= allx - @)l + ally - Ta@)|| + @ - 20)|]x - 3
< max{P(x, y), Q(x, )},

where a = ;.
Case-VI: When x € [0, 1] X [0, 00) and y € (3, 00) X [0, ). Then,

7x1=10y1 +1 7x, =10y, + 1
70 ! 70

|Mm—mﬂh‘

L1 (|70 - 10y +1
_%{f'+|73@—10y2+1|}
1 |x1—w 1 '3y1—1' 1 1
< _ ey — _ _
=707 3 70| 3 | T e T vl gy =1l
1

< oolbe= ol + 52 lly - T2l + 5l - T

< sllv =l + 5l - Tl + 7l - 20

= allx - ()l + ally - To)|| + (1 = 2a)|]x - y

7

where a = %. Then we can conclude that Ty and T, both are generalized a-Reich Suzuki non-expansive mappings
for a = 1. Again we have F(Ty) = {(3,3)} and F(T,) = {(3, %)} and this implies that F(T) # 0. We consider a
non-decreasing map f(x) = x which satisfies f(0) = 0 and f(r) > 0 when r € (0, 00). Now, we discuss the following
two cases.

Case-I: When x € [0, 1] X [0, 00). Then we derive that,

d(xy, F) =inf ||lx — z||
zeF

. 11
=inf (xl,xz)—(g,g)”
=inf (x1 - 1,362 - 1)H
3 3
:inf{ 3.’)(1—]. 3XZ—1‘}
9 ! 3
:%inf{ 3x13_ 1|,|3x2 - 1|}

5.
=18 inf||T1x — x|].
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Also we have,

5+x 5+x
Ty = x| ‘( 1 )

16 16
_‘(5 155, 5 15x2)

_ 15x1 ‘5 15XQ

a 16

5 3x1 -1

_16{ - ‘+|3x2 1|}.

Then it is very much obvious that,
max{[|Tyx — x[|, [I'T2x = xll} = f(d(x, F)).

Case-II: When x € (%, 00) X [0, 00). Then we have

Ty = ] =‘ (2w, 2 )
_ 1—33(1 1—33(2
_‘( 4 7 4 )
_3X1—1 3X2—1
B 12‘ 4 ’
:}1{3’”3 1'+|3x2—1|}.

From here also, one can easily affirm that,
max{[|Tyx — x|, [I'T2x = xll} = f(d(xx, F)).

So, both the mappings Ty and T, satisfy Condition (B) and therefore all the assumptions of Theorem 3.7. Hence, they

own a common fixed point which is (%, 1

Example 4.2. Let us consider the Banach space E = R with the usual norm and C = [-3, c0) be a non-empty closed

convex subset of E. We define the following two self-mappings

I whenxe[-3,1];
= 5’ ’ 3 ’
T1(x) { %, elsewhere,
and
I whenxe[-3,1];
= 6’ ’ 3 ’
Ta(x) { X, elsewhere.

Here both of the mappings Ty and Ty are not non-expansive. This is clear from the fact that T1 and T, both are

discontinuous at x = . Also by proceeding in a similar manner to that of the previous examples, one can easily check

that the mappings Ty and T, are generalized a-Reich-Suzuki non-expansive mappings with a = %
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Iteration No. | x; =5 x1=196 | vy =01 | xy=-096 | x; =-25
1 5.000000 | 1.960000 | 0.100000 | -0.960000 | -2.500000
2 0.125526 | 0.059365 | 0.004062 | -0.038997 | -0.101555
3 0.005969 | 0.002823 | 0.000193 | -0.001854 | -0.004830
5 0.000017 | 0.000008 | 0.000000 | -0.000005 | -0.000013
6 0.000001 | 0.000000 | : 0.000000 | -0.000001
7 0.000000 | : : : 0.000000

Table 1: The values of (x,) for different initial values

Initial Mann Ishikawa | Agarwal Liu Abbas
values iteration iteration iteration iteration iteration

-0.8 35 170 25 21 13

-0.6 35 169 25 21 13

-0.3 34 165 24 20 12

0.1 33 160 23 20 12

0.4 34 167 24 20 12

0.9 35 171 25 21 13

Table 2: Influence of initial points on different iteration schemes and number of iterations required to attain the common fixed point

Further, we have, F(T1) = {0} and F(T,) = {0} and this implies that F(T) # 0. We consider a non-decreasing map
f(x) = 3 which satisfies f(0) = 0 and f(r) > 0 when r € (0, ). Now,

d(xy,, F) =inf ||x — z||
zeF
=inf||x — 0]|

=inf||x]|

_ 0/ l:fx € [_3/ %]/
| 4, elsewhere.
From the previous calculation, we have

0, ifxel[-3,1];
L, elsewhere.

f(d(xn/ F)) = {

Now, we discuss the subsequent cases.
Case-I: When x € [-3, 1]. Then we have,

I = |5 - = |2,
and also
X 5x
I Tox — x|| = ”6 —x“ - 1=
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Table 3: Influence of initial points: comparison of various iteration schemes

n—1

n+2

— — n —_
In = 3317 9n = 3517 S = 30
Iterations Initial values
-08|-06|-03]011|04]| 09
Mann 42 42 41 40 | 41 42
Ishikawa | 112 | 111 | 109 | 106 | 110 | 112
Agarwal 31 31 30 29 31 31
Liu 20 20 20 19 | 20 | 20
Abbas 13 13 13 13 13 13
4. — 50md9 - 21n+30 — 3021
n = 101n+100/ Y ~ T01n+100/ “" ~ T01n+100
Iterations Initial values
08 |-06|-03|01]|04]|09
Mann 67 66 65 | 63 | 66 | 67
Ishikawa | 67 67 65 | 63 | 66 | 67
Agarwal | 56 | 55 | 54 | 53 | 55 | 56
Liu 18 18 17 | 17 | 17 | 18
Abbas 16 16 16 15 | 16 | 16
4 = Pn=100 " 550 . _ 50n=49
n = 200n-199/ “n T 200n-199’/ ‘7" T 300n-199
Iterations Initial values
-08|-06|-03|01]|04]|09
Mann 67 67 65 | 63 | 66 | 67
Ishikawa | 66 66 65 | 63 | 65 | 67
Agarwal 56 56 55 | 53 | 55 | 56
Liu 18 18 17 17 | 17 | 18
Abbas 16 16 16 15 | 16 | 16

Then obviously one can verify that for this case,

max{||Tyx — x||, IT2x — xII} = f(d(xy, F)).

Case-1I: When x € (%, o0). Here we have,

X
ITax—xil = | 2
and again
X
IT2x =il = | 5

Now in this case also,

—x =

~o|=

5x
6 4

8x

5|

max {||Tyx — x|, [ T2x = x|l} = f(d(xn, F)).

1203

Hence, both the mappings T and T, satisfy Condition (B) and therefore all the hypotheses of Theorem 3.7. So, they

possess a common fixed point which is 0.



A. Bera et al. / Filomat 37:4 (2023), 1187-1206 1204

_-_-.xT=5
g xt=1‘96 .
......... x1=0,1
_-_-.x1=-0.96 -
xt=-2.5
} = -
=
3 L ) L
0 5 10 16 20 25

N

Figure 1: Convergence behaviour of Abbas-Nazir iterative scheme (3.1) for different initial values, where N= number of iterations and
X, = initial values

By means of MATLAB 2017a software, we can verify that the sequence generated by Abbas-Nazir iterative scheme
(8.1) conwverges to O, which is exhibited in Table 1 and Figure 1. For that, we pick the control sequences (a,), (b,) and

(cu) given by a, = 3%11, by = 547 and ¢, = 3’1;11 from (0,1) and initial values as x; = 5,1.96, 0.1, —=0.96, —2.5.

Additionally, in Table 2, we enquire for the impact of initial guesses on the Mann, Ishikawa, Agarwal, Liu and

Abbas-Nazir iteration schemes using the control sequences (a,), (bn) and (c,) given by a, = 9211”:13(), b, = 93;_*1% and

Cp = 9‘111”:13() from (0,1).

Moreover, in Table 3, we correlate the convergence behaviour of aforementioned notable iterative algorithms for

Example 4.2. We choose distinct sequences (a,), (by) and (c,) from (0,1) and fix ||x, — x|| < 107 as our rounding off
criteria, where x is a common fixed point of the considered mappings. However, in Figure 1, we show the convergence
behaviour of the newly proposed iterative method (3.1) for a particular choice of control sequence set and different

choice of initial guesses.

Remark 4.3. From the above discussion and tables, we take a note of the fact that for distinct selection of parameters
and initial values, the three-step Abbas-Nazir iterative scheme involving two mappings satisfying Condition (B)

converges faster than the other comparable iterative algorithms.

Acknowledgement: The authors are indebted to the referees for their constructive comments and sugges-

tions which have been useful for the refinement of the paper.
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