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Boundedness of Hardy—Cesaro operators on variable exponent
Morrey-Herz spaces

Kieu Huu Dung?, Do Lu Cong Minh?, Tran Thi Nang?

?Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam

Abstract. In this paper, we give the necessary and sufficient conditions for the boundedness of Hardy-
Cesaro operators on some weighted function spaces such as the weighted central Morrey, weighted local
central Morrey, weighted non-local central Morrey, weighted Herz and weighted Morrey-Herz type spaces
with variable exponent.

1. Introduction
Let f be a non-negative measurable function on R*, and one-dimensional Hardy operator be given by
1
H(f)(x) = p ff(t)dt, x> 0.
0
G. H. Hardy [16] obtained a famous integral inequality as follows.

q
Hlli®r)oLiRY) S ——,
IH||rs Ry -1 R*) 7-1
where g € (1, 00) and —qzl is the sharpest constant.

In 1984, C. Carton-Lebrun and M. Fosset [5] defined the weighted Hardy-Littlewood average operator
ULPI

1
Uy(f) = f () f(tx)dt, x € R",
0
where ¢ : [0, 1] — [0, o0) is a measurable function and f is a measurable function on R". It is clear to see that

if we choose n = 1 and ¢ = 1, the Hardy-Littlewood average operator Uy reduces to the classical Hardy
operator H. Next, J. Xiao [30] proved that Uy, is bounded on LP(IR") if and only if

1
A pp = j; tPY(bdt < oo.
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Moreover,
Uyl ®n-rrwey = Anpy-

On the other hand, J. Xiao also obtained the boundedness of this operator on the BMO spaces. In this view,
we consider the Hardy—Cesaro operator as follows.

Definition 1.1. Lef ¢ : [0,1] = [0,00), 5 : [0,1]Y — R be measurable functions. The Hardy—Cesaro operator is
defined by

Upea(H)00) = f WO FEO,
[0,1]4

for a measurable complex-valued function f on R".

In case d = 1, the Hardy—-Cesaro operator Uy s1 was researched by N. M. Chuong and H. D. Hung [10].
The authors gave the sufficient and necessary conditions for the boundedness of Uys1 on the weighted
Lebesgue and weighted BMO spaces. Note that, when we take d = 1 and s(t) = ¢, the Hardy-Cesaro
operator Uy, s s becomes to the Hardy-Littlewood average operator Uy.

It is well-known that the Hardy-Cesaro operators and their commutators have attracted much more
attention on real Euclidean spaces (see [8, 9, 14, 17, 25]).

The theory of function spaces with variable exponents is developed in the field of electronic fluid me-
chanics, elasticity, fluid dynamics, recovery of graphics, differential equations, harmonic analysis and partial
differential equations (see [6], [12], [13], [18]). In particular, the maximal operators, the Calderén-Zygmund
singular operators, the Kantorovich operators, the Hardy-type operators and their commutators have been
extensively studied on the Lebesgue, Herz, Morrey, and Morrey-Herz spaces with variable exponent (see,
e.g., [2], [3], [4], [7], [11], [15], [19], [21], [22], [23], [24], [26], [27], [28], [29] and others).

Motivated by above mentioned results, the goal of this paper is to establish the necessary and sufficient
conditions for the boundedness of Uy, on the weighted central Morrey, weighted local central Mor-
rey, weighted non-local central Morrey, weighted Herz and weighted Morrey-Herz spaces with variable
exponent. In each case, the estimates for operator norms are also discussed.

Our paper is organized as follows. In Section 2, we give the necessary preliminaries on weighted
Lebesgue spaces, central Morre spaces, Herz spaces and Morrey-Herz spaces with variable exponent. Our
main theorems are given and proved in Section 3.

2. Preliminaries

Let us give some basic facts and notations which will be used throughout this paper. The letter C denotes
a positive constant which is independent of the main parameters, but may be different from line to line.
For any a € R" and r > 0, let B(a, r) denote the ball centered at a with radius r. With a given measurable set
Q, let xq be a characteristic function, xx = xc,, Cx = B \ Bx-1 and By = {x eR": x| < 2"}, for all k € Z. Next,
we write 2 < b to mean that there is a positive constant C, independent of the main parameters, such that
a < Cb. The symbol f ~ g means that f is equivalent to g (i.e. C"' f < g < Cf). In this paper, as usual, we
will let w(-) represent a non-negative weighted function on IR".

Now, we give some notations and definitions of Lebesgue, Herz and Morrey-Herz spaces with constant
parameters (see in [20]).

Definition 2.1. Let 1 < p < oo, we define the weighted Lebesgue space LP (w) of a measurable function f by

1l = ([ 0} @)’ <o
J
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Definition 2.2. Let a € R, 0 < g < o0, and 0 < p < oo. The weighted homogeneous Herz-type space K:'p(a)) is
defined by

K;‘J’(w) {f € Lloc(]R” 0}, w) : “f”Kw( ) }

1

o P
k
wherellfIIKnp() (k Zap“f)(k”Lq(w>) .

Definition 2.3. Let a € R, 0 < p < 00,0 < g < 00, A > 0. The homogeneous weighted Morrey-Herz type space
a,A . .
M K;,q (w) is defined by

- a,A
MK, (@) = { f LR\ (01,): Il o, < oo},

ko
where |Ifll,, o, = Sup 2-koh ( Zkal’llf)(kllm(w)) .

11( ) koeZ

k=—o00

Remark 1. It is helpful to note that K (]R”) =LP(R") for 0 < p < o0; K AP

anda € R. SlnceMqu(

Let us present the definition of the Lebesgue space with variable exponent. The reader may find in the
works [6], [12] and [13].

(R™) = LP(|x|*dx) for all0 < p < o0
R™) —Kq (]R”), it follows that the Herz space is a special case of Morrey-Herz space.

Definition 2.4. Let P,(IR") be the set of all measurable functions p(-) : R — [1, 00) such that
1<p_<p(x)<ps<co, forall xeR",

where p_ = essinf, g.p(x) and p, = esssup, g.p(x). For p(-) € Pp(R"), the variable exponent Lebesgue space
LPO(R™) is the set of all complex-valued measurable functions f defined on R" such that there exists constant 1 > 0

satisfying
FG1\™
Fp (f/r]) = f(f_
n
]Rn
The variable exponent Lebesgue space L')(IR") then becomes a normed space equipped with a norm given

by
Ay =int{n>0:5, () <1},

For p € P,(IR"), it is useful to remark that we have the following inequalities which are usually used in the
sequel.

[i] 1f Fy(f) < C, then |f],,, < max{CP,Ci], forall f € LFO(R?),
[ii] If Fy(f) > C, then |f,,,, > min{C?,Ci}, for all f € LPO(R?). )

The space P (R") is defined by the set of all measurable functions p(-) € P,(IR") and there exists a constant
P such that

Poo = |1|1m p(x).
For p(-) € P(R"), the weighted variable exponent Lebesgue space LZ(‘)(]R”) is the set of all complex-
valued measurable functions f such that fw belongs to the LPO(IR") space, and the norm of f is given

by H f ||Lp(.) = || fa)”m) The set L") (R™ \ {0}) consists of all measurable functions f on IR" \ {0} satisfying

w,loc
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fxk € LZf')(]I{”) for any compact set K ¢ R" \ {0}.
Let Cg’g (IR") denote the set of all log-Holder continuous functions a(-) satisfying at the origin

CD{
la(x) — a(0)] < —01, for all x € R”.
log (e + W)

Denote by C%(IR") the set of all log-Holder continuous functions a(:) satisfying at infinity

a

|0é(X) CYoo| < log(e—) for all x e R".

Next, we would like to give the definition of variable exponent weighted Herz spaces K", variable

q()w

exponent weighted Morrey-Herz spaces M K,

pq()m (see [21], [27] for more details) and variable exponent

weighted central Morrey spaces MO

Definition 2.5. Let 0 < p < 00,4q(-) € Py(R") and a(-) : R*" — R with a(-) € L*(R"). The variable exponent

weighted Herz space Kq( o P is defined by

- a()p
Ko = {F € L9, R\ (0 1l o < oo)

q()m

o0 Lp
with IIfII ap = ; ||2k“("ka||Zq<.>) :

Ky

Definition 2.6. Assume that 0 < A < 00,0 < p < 00,9(:) € Pp(R") and a(:) : R* = R with a(-) € L°(R"). The

variable exponent weighted Morrey-Herz space M K,, q)( ) I8 defined by
a(),A
MKM()(O = {f € an)(l)oc(an ||f|| Mz)\“ < 00}

1/p
where ||fll, a1 = sup2” kO"( Z ||2k"()f)(k||pq()) .

PAOS  feZ,

Note that, when p(-), 4(-) and a(-) are constant, it is obvious to see that

- a,A
L., = D), Kyous = Ky (@) and MKy = MK, (@).

P, w”q
Theorem 2.7 (Proposition 3.8 in [1]). If p € (0,0), 4(-) € Py(R") and a € L(R") N C¥(R") N CE(R"), then

we have
1 1/p )
1flleon [Z 2k kan’;,(.,] * [Z 2k kan;(.)]
k=—c0 “ k=0

1/p

q(),@

Theorem 2.8 (Proposition 2.5 in [21]). If A € [0,0), p € (0,0), g(-) € Pp(R") and a € L*(R") N Céog(]R") N
log (o H
C.o(IR"), then we obtain

Ilf ||M1<;<q~xm ~ max{ sup My, sup (Mz,ko + M3,k0)}-

ko<0,koeZ ko>0,koeZ.
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Here
ko 1/p -1 1/p
Mg, = 2~k ( Z zka(O)P“ ka”Z”"’] , Moy, = 9-koA [ Z zka(O)P” f)(k”iq(.)] ,
= =
ko p
M3,k0 = kol (Z zkaoop”ka”fﬂ(.)] .
k=0 “©

From the definition of weighted Morrey-Herz spaces with variable exponent and Proposition 2.5 in [21],
we have the following result.

Lemma 2.9. Let a(:) € L*(R"), q(-) € Ppy(R"), p € (0, 0) and A € [0, 00). If a(-) is log-Holder continuous both at
the origin and at infinity, then

|| foHLQE‘> < C.zf(A—a(O))” f”MKp(,,Z)A' forall je Z;

”fX]Hsz) < C.zj(/\_a”)”f||M[.<:/(’%zi,)’.’m, fOl’ all ] e IN.
Proof. The proof of this lemma is found in [27]. [

Definition 2.10. Assume that « > 0,4q(-) € P,(IR"). The variable exponent weighted central Morrey space Mf,’q(') is
defined by

MZ)(.),K - :f c Lq() (an) . ”f”MZ)()k < OO},

w,loc

— 1
where ||fllyaox = sup o 10 s,y-

Definition 2.11. Let « > 0,4q(-) € Pp(R"). The variable exponent weighted local central Morrey space BZ)(I)O’Z is
defined by

w,loc w,loc

B1% — (el RY): ||f||Bq<.1>,x < oo},
where [Ifllgox = sup gyl Il mor):
w,loc 0<R<1 h ’

q0)% -

Definition 2.12. Let k > 0,4(-) € Pp(R"). The variable exponent weighted non-local central Morrey space Bg,”" is

defined by
BZS'),K — {f c Lq() (R”) . “f”BZ)(M < OO},

w,loc

— 1
where || fllgox = sup Zaomye Il mo.):
! Rx1 o

3. Main results and their proofs

Let us introduce some notations which will be used throughout this section. Assume that p € (1, ),

g € Pp(R"), a € L°(R") N Cg)g (R N ng (R") and w be a weighted function. For simplicity of notation, we
put

w(s”!(H)z)

w(s71(t)z)
w(z)

w(z)
Ko, (1) = Osp(t).ax{ls(B)]7, 5()]7~ } and Ki g, (£) = O (H)-min{ (O], Is(t)] .

Osup(t) = esssupp,p» and Oi¢(t) = essinf,cre

Now, we are ready to state our first main result in this paper.
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Theorem 3.1. Let q(s™(t):) = q(-) for almost everywhere t € supp(y), A > 0 and a(0) — a > 0.
(i) If

Cran= [ $OFea, Omax IO, (Ot < o,

(01}

. a(),A .
then Uy, 4 is bounded from MKZ,(q)(,),m to ztself(.) )
- a),

(i1) Suppose that Uy, q4 is bounded from MK

pa(w L0 itself, and either A = a(0) or q. = g-. We have

Crint = f PO Ko, (OISOt < oo,

[0,13

Moreover,

Ciinf < |)Ll¢,5,d|) MO AN -

Kp 0,0 MK g00,0

Proof. Now, we will prove for the case (i). By the Minkowski inequality, we have

[tpatimlss < [ vl @l )

(0,1}

For n > 0and t € [0,1]" such that |s(f)| # 0, we estimate

|f<s<t)x)|xk<x>w<x>)q<x> f @ (D) a6 02,
( dx= | (——) ls7()[dz
]R[ n S(t)[k n
PN f@|0@) ws(#)z)aE" 02
= 51| J ( ] ) dz
5,0 O IF k1) + [ FDline Do) )
< 7 dz,
IRH

where £ = {(t) € Z such that 271 < |s(t)| < 2¢. Thus

||f(s(t)')7(k”q§'> < 7(s,esw(t)-<||f)(k+£—1”q§~> + ||ka+€||LZ)(-))-

From this, by (2), we have

[ sa (x| oo < f P0G, 0, O-([| 20kl oo + [ Fisell oo )t 3)

[01
Next, by applying Lemma 2.9 and |s(t)| = 2/, we get

”ka"'f—l”LZf') < zmax[(k+£’—1)(A—a(0)),(k+€71)(/\7aoo)}“f”MK;;ZQM
— max{z({’fl)(/\fa(O)), 2(571)(2\7&&)}.Zmax{k(Afa(O)),k(Afam)}”f“ s
MKp,’i('),m

< max {ls(t)|/\—a(0), |S(t)|/\—az00 }'zmax{k()\—nc(O)),k(/\—ozm)}||f||]VH_<Z(K%Z";\m .
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By estimating as above, we also have

| Fcisell o < max{Is) @, Is(e) = | 2mex kA ORI [ ]|

rq)w

From these above, by (3), it is clear to see that
”ul,bsd(f))(k”Lq() <C sup- _pmaxtk(A-a(0)) k(A=) ” ” (M . 4)

By Theorem 2.8, we infer

)1u¢sd(f)H o1 < max{ sup Ty, sup (T>+ T3)}, 5)
ko<0,kocZ ko>0,koeZ
where .
0 -1 1
Ty =270 () 2O uy (] m) T2 =274 ) 2Oy caHel )
k=—o00 k=—o00
ko N
T3 = 2_k0A( Z 2ka°°p||u1p,s,d(f))(k||izf-))p .
k=0

By using the inequality (4) with ky < 0 and ko € Z, we will estimate T; as follows.

T, < Cl,sup'z_k()/\( i zka(O)p'zmax{k(/\—a(O))p,k(A—am)p})IliH f|| o

MK
ke—oo pac)w

_ —koA max{k(/\—a(O))p+ka(O)p,k(A—am)p+ka(0)p})P

- Cl,sup'2 ( Z 2 || ”MKM%‘M
e oo PAC)

k() 1
= Clau .z—ko/\( Z 2kp.m1n[/\,/\—aoo+a(0)])P won
- Al

k=—00

Consequently, by min{A, A — @ + @(0)} > 0 and a(0) — ae 2 0, kg < 0 and ko € Z, one has
ko(min{A, A—creo +a(0)}—A) ko.min{0,— oo +a(0)}
T; < Cisup-2 o(min{A,A—ae +a(0) ”f”M Z; = Cisup-2 0.-min{0,~ e +a(0)} ”f” ()\

=C up - A 6
1,sup ||fHM[< (: ( )
By evaluating as T1, we also have

T, <Clsup2 ol ”f” . (7)

P”l()

Next step, we obtain

Ts < C; up2 9—koA Z‘Zkamp pmax{k(A-a(0))p, k(A~ am)p}) ”fH

p MKS
k k

=C sup- 2—kg/\ i 2kp max{A-a(0)+acw), )\}) ”f“ M =C sup- z—kg/\ i zkpA ”fH (M
k=0

< Craup 27 104(201 4 1)) e
PAL)@
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Thus, by (5)-(7), it follows that
IULy,sqll MK?;E)AH < Crsupllf ||M a()A

Ky 00

which gives the proof of case (i) of Theorem 3.1 is finished. Next, let us consider for case (ii). We choose
fol) = WO w0,

It is obvious to see that

”fo” aoa > 0.
MK g0

On the other hand, we calculate

2k
Fq(fO'(U-Xk) = f |x|(Afa(0))~q(x)*ndx= f f AA-a0).q(rx)-1 do(x')dr szmax{k(/\fa(o»qh k(A-a(0))q-}
Ck

k-1 Gn-1
Combining this with the inequality (1), we get
||f0Xk||Lq(-> < max{zmaX[k(A—a(O)), k(/\—a(O))-Q—/%}, omax{k(A-a(0))-q+/9-, k(A—a(O))}}

= pmax{k(A-a(0))-q4-/q.+, k(A~a(0)).4+/9-} (8)
Besides, by Theorem 2.8, we estimate

”f()”MKa(-),/\ Smax{ sup Gi, sup (G2+G3)}. 9)
PAC© ko<0k€Z  ko>0ko€Z

Here

RSTEN

ko 1 =
G, = 2—ko/\( Z 2407 1, Xk’|igf->)p' G, = 2—ko/\< Z 2k foXkHZ;jf'>) ,
k=—00 k=—eo

ko 1
p

Gs = Z—koA(Z Zkaml’”foxkuzzf,)) .

k=0

By either a(0) = A > 0 or g4 = g_, we infer
a(0) + min{(A — a(0)).4- /s, (A — a(0)).q4: /g-} = A = 0.
Hence, by (8), one has

ko
G < 2—koA( Z 2ka(0)p'2max{k(/\—a(0)).q7/q+,k(/\—a(O)).%/q,}p)

k=—c0

RSTEN

ko . 1
< 2—k0/\( Z 2kp(a(0)+m1n{(/\—a(0)).q, /9+, (A=a(0)).q+ /q,}))p

k=—00

< Dko(a(0)+min{(A-a(0))q-/q+, (A-a(0)-4:/9-}-1) _ 1. (10)

By estimating as (10) above, we also have

G, < 2~ FAp~(@O)+minl(A-a(0)4-/g., \=aO)q./9-) < p~Fod, (11)
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By applying the inequality (8) again, we deduce

Gs < 2—koA(Z zkp(aoo+ma><l(/\—a(O))-qf/qw(A—H(O))-%/q—l))*’

k=1

Z‘ko"(ké/p +1), if ae + max{(A — @(0)).9-/q+, (A — a(0)).9+/q9-} =0,
<
ko 4 D koA -a-maxl(1-a(0).q4-/9., (1-a(0)4+/9-)  otherwise.

< 2R KP4 1) 4 2 R0l maxX(A=a@)g- /g2, (1-a(O) g /5D, (12)
By the assumptions A = a(0) > 0 or g, = q_, we get
C= A = e — max{(A — a(0))4-/qs, (A - a(0)).q:/q-} = 0.
From this, by (9)-(12), we derive

”fOHMK‘*"”" smax{ sup 1, sup (Z‘ko"(k(l)/p +2)+2_k°C)}<oo.
PaC)w ko<0,ko€Z  ko>0koeZ

In addition, we get

—a(0)— 2 w(X —a(0)= - _
Uysa(fo)) = ( f QNG "(’”M’ﬁt))x)dt)"x' O (@)™ 2 Crintfol).
[01}
This leads to
Cl,inf < ||u¢,s,d” MK“('M —>MI'<H(')”\ < 00,

pAC)@ P.AC)@

Therefore, the proof of this theorem is completed. [

Next, we obtain the boundedness for the Hardy—Cesaro operators on the weighted Herz spaces with
variable exponent as follows.

Theorem 3.2. Let a(0) = oo and the assumptions of Theorem 3.1 hold.
@) If
Cosup = f P(t). K., (1) Odt < oo,
(01}

then Uy, 4 is a bounded operator from KZ((Z);Z to itself.
- a()p

(1) If Uys,q4 is a bounded operator from K

q(_'),w to itself, and either as = 0 0r q4 = q—, then

Cojinf = f 1]l)(t).‘](s,9inf(t).ls(t)l_"‘(o)dt < o0,

(0,1}

Moreover,

Coint < |IU aOp a0 -
2,inf ” gb,s,d” K;()/Z_} ;(-),Z

Proof. First, we will consider the proof for the case (7). By Theorem 2.7 and the relation a(0) = a, we infer

(]

”U:,b,s,d(f )“Kw < ( Z Zk“(o)”||U¢,s,d(f )Xk”igg-))% =U. (13)

q()

=—00
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By having the inequality (3) and using the Minkowski inequality, we deduce

Us f IP(t)-(Ks,esup(t){ Z 2ka(0)p( ||f)(k+f—1”LZ§~> + ”ka”“L‘Zf" )p};dt

01y k=—co
ke 1 s 1
< f P(H-Ks,,, () [{ Y 2O el + (Y 29 el ) |t (14)
(0,1} k=—oc0 k=—00
On the other hand, by [s(t)| = 2/®, we derive
ks 1 R 1
(k_Z_oo zka(O)prXk%*”’L]Zf'))p _ (FZ_OO 2(7—[+1)a(0)p“erHfZ?u(_))V < Z_M(O)”fllkj((f;ﬁ < |S(t)|_a(0)||f||i<:((_';f,'

By making as above, we also have

o 1
( Z 2k fXWHZZW)p < s O “K;'((j;;;’;

k=—oco
From these, by (13) and (14), it is clear to see that
IUysa(A)l g s Casup |/l Ko
Therefore, the proof of this case is achieved.
Now, let us prove the case (ii). For any ¢ > 0, we choose the functions f. as follows
0, if x| <1,
(x) = n_,
fe®) {le_a""_ﬂ(x)_éw(x)l, otherwise.
This leads to
Ifell av» > 0, foralle > 0.

K(]('),[A)
For ¢ small enough, we get

2k
Fq(fg.a).)(k):flxl(_“m“')q(")‘”dx:ffr(_“m_f)q(""')_lda(x’)dr.
Ck

2k-1 gn-1

This gives
2min{—k(am+s)q,,—k(aoo+£)q+} < Fq(fs-w-)(k) < Zmax[—k(aw+6)q,,—k(am+e)q+].

Hence, by the inequality (1), we derive

Zmin{—k(amﬂ)qf/qﬂ—k(am+e)q+/q7} < ”fs)(k” o < Zmaxl—k(amﬂ)q,/m,—k(am+e)q+/q,}
~ Ly ™~ )

Now, we put
Ce = Qoo — min{(aoo + é‘)ﬂ—/ﬂw (aoo + €)L]+/L]—} andﬁe = Qoo — max{(aoo + é’)ﬂ—/ﬂw (aoo + E)Q+/Q—}~
By applying the conditions a. = 0 or g+ = -, we get C,, B < 0. Furthermore, it follows that

8. 1, ifgy =¢q-,

lim (, =0, lim 8, = 0and lim — = (15)
e—0* e—0" e—-0* Cs 2,02 -
q:/9%, ifae = 0.
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As a consequence, by Theorem 2.7, for each r € Z*, we obtain

00 1/p 0 1/p
katoo 4 kpC, 2t
O
00 1/p 0 1/p o
and {Z 2ot ||fska’£.,<.>} 2 {Z 2@/38} > —— (16)
k=r ¢ k=r (1 — 2/347)
By setting
VS ={te[0,1]9:|s(t).x] = 1}and U2 = {t € [0,1]% : |s(t)| = &).
This gives

Ut c V8, forallx € B°(0, e71).

Instantly, for 0 < ¢ <1, we get

Uy,s.a(f)(x) 2 . Y(E)Is(Bx ™ w(s(t)x) Nt

w(x)

> ( f P()Is(t)| T 60D dt )™= ()™ K 0,e-1) (¥)
bt

> ([ 90T, OO )0 t500,0),
J

Hence, by using Theorem 2.7 again and (16) with ky is the smallest integer number so that 2/ > ¢71 > 1,
we infer

(o)

1/
o 2 ( f PO, OIsOIO<at)( Y 2| forfo)
o

k=ko

|ty 5.a(F)

(1 = 25P)l/p 2kob:
>

- —a(0) -1.\¢
2 Tt f PUOTC 0, OISO OO ) Al
us

(1 = 25P)1p =P e -a(0) -1.y¢
2 g ([ V0K, OO OGO Al W
i

On the other hand, by (15) and lim,_,o+ &P =1, we deduce
. (1 _ 2C5P)1/P.6_ﬁ{ ) 1/ lf q+ = q—/
5351 (1 — 2BP)L/p 20 €

(@ /9*)VP, if ae = 0.

From this, by (17) and the dominated convergence theorem of Lebesgue, it is clear to see that

Coinf < H Uy,s,d

a(p abp < OO,
Ky0 ™Koo

Thus, the proof for this case is finished. [

Now, we state the boundedness of Hardy—Cesaro operators on weighted central Morrey spaces.
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Theorem 3.3. Let q(s™(t):) = q(-) for almost everywhere t € supp(y), x > 0 and w(x) = |x| with y > —n.
@) If

Camax = | 9O max{ist)[F, 1s(H]7 Jdt < oo,
[01

then the operator Uy, 4 is bounded from M to itself.
(ii) If Uy, s,q is bounded from M9 to itself and g, = q_, we have

6= [ vt <o
(0,13
Moreover,
”Uw’s’d”MyHM;'” ~ C3_
Proof. (i) By the same arguments as (3) above, one has
[ty sy 5 [ 90K, O,
[0/1]‘1

where ¢ = {(t) € Z such that 2! < |s(t)| < 2. Accordingly, we infer

WU ys.a(Hllypea0 = sup B ),\||U¢,sd(f)|| 10(8,)
ssup(_ [ 90K, 02 Al i
(011
Here
w(s7'(H)z)

(]<S,95up (t) = eSS SUpPpP, g W.max{ls(t)ﬁ, |S(t)|f%} = |S(t)|_ymaX{|S(t)|ﬁ, |S(t)|ﬂ;:1 }

And by [s(t)] = 2¢, we have
W (Bry) 2000+
w(By) 2k

= [s()"*".
From these, by (18), we obtain

||u4/,s,d (f )” MZ,’”(') < C3,max'|| f ” MZ;"(')'
This gives the proof of the case (i) is ended.

(ii) Suppose that Uy 4 is a bounded operator from qu(') to itself and g+ = g-. Let us choose
ho(x) = 7107 ).

It is not hard to see that
llhollys g,y = (f|x|v<(n+y).q—ndx)1/q ~ k(1))
By
Thus

Whollyya = sup ————llholl7 5,y = 1.
i AT (B e Ol o =

Besides, we deduce

Uy a(ho) () = ( ﬁ) " P ISOI T A T () = Ca o ().
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Instanly, we obtain
Cs < Uy, allyper g < 0.

Hence, we achieve the proof of this case. [

Finally, we present the boundedness for the Hardy-Cesaro operators on weighted local central Morrey
spaces and weighted non-local central Morrey spaces with variable exponent as follows.

Theorem 3.4. Let q(s™(t):) = q(-) for almost everywhere t € supp(y)), x > 0 and w(x) = |x| with y > —n.
(i) If C3,max in Theorem 3.3 is finite, then the operator Uy, 4 is bounded from BZ)(l)O'; to itself.
(i) If Uy,s,q is bounded from B0 1 itself, we then have

w,loc

Camin = f YOI+ min {s(H)]7, |s(t)| - } dt < oo.
01

Furthermore,
C3min < [[Uy,s4ll B g0
w,l0C w,l0C

Proof. By estimating as in the proof of Theorem 3.3(i), we immediately have
1Wysall: gy  Cama
Hence, we accomplish the proof of case (i). Next, let us prove the case (ii). For any m € IN*, we set
In(x) = x| 7 07 (),
with u,, = (1 + %)Z—f Thus, it is easy to see that
[1gmll B0 >0, for anym € IN".

On the other hand, for any R € (0, 1) and m € IN*, we have

B

R
. B _ pmk(nty)q-
< f rmm{ymx(nw)m 1 pmr(n+y)q- 1} dr = R )
0 k(1 +7)q-

R
Fy(gn-0.B(0,R)) = f M) g = f f L COR PR N
(O,R) 0 Jgr

Consequently, by using the inequality (1), we get

{ Rymx(nﬂ/) RHmK(”*')/)q—/‘% }
[mkc(n +)g- 10" [pprc(n + y)g -1
< N REHM-19: for all R € (0,1) and m € N,

1gnll g0 50,5y S TaX

Here n, = max {[nx(n +)g-17V, [rc(n +y)q_171/7}..
Thus, for any m € IN*, we obtain

gmll prox = sup ———=—|19wmll, 0 = sup REEpnrity)q-/4+-1] — < o0,
m BZ,JOC 0<RI<)1 CU(B(O, R))k G le(B(O,R)) nm0<RI<)1 "

Besides, one has

Uy a(gm)@) = f[ | P(O)-IsOIF 7T ) g (%) 2 Co i G (0)-
0,1]4
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Here

Cs mmin = f P(B)IsOF D min ls(8)| = Is(t)| - } dt.
[o11
From this, by Uy, is a bounded operator from Bz)(l)o’z to itself, we infer

C3,m,min < “ulp,s,d ”B‘l(’l)ﬁc NEIO% < 00.
wloc

w,loc

By applying r}gr;o Um = Z—j and the dominated convergence theorem of Lebesque, we get

Csmin < IUy,s all g g < oo

w,loc

Hence, the proof for this case is solved. O

Theorem 3.5. Let q(s™(t):) = q(-) for almost everywhere t € supp(y), k > 0 and w(x) = |x|’ with y > —n.
(i) If C3,max in Theorem 3.3 is finite, then the operator Uy, 4 is bounded from BZ,(')’K to itself.
(i) If Uy o is bounded from BL™ to itself, we then have

Cimin= | W@/ min {|s() 5B | dt < oo.
! [0,1}¢
Moreover,

"
CS,min < ||uzp,s,d ”Bzf')m’ HBZfV)'K'

Proof. From Theorem 3.3(i), let us obtain the proof of case (i). Now, we will prove case (ii). By choosing the
functions g, as in Theorem 3.4 with p,, = (1 - %)Z—; , we also have

1gmllgnox > O, for anym € N*.

On the other hand, for any R > 1 and m € IN*, we infer

R
Fy(gm-@-B(O,R)) = f f P KA g5 () dy
O Srl—l

1 R
= f f phn K0 g5 (N dr + f f Pl KA1 g5 () dy
0 Jsrt 1 gn-1
1

R
sf r”"‘K(”+V)‘7‘1dr+f (7)1 4,
0 1

R}lmk(n"')/)%

=+,
Pk (1 +y)q+ o

1 _ 1
pmk(n+y)- pmk(n+y)q.

” “ ( RHH:K(nJrV)‘%- )‘l1+ ( R/”VWK(H+)’)’7+ )'71‘
o S maxy|—————+v N TV
Gl 30 B0,R)) (1 + )+ m UmK(1 + V)q m

Rumx(n+y) Rimx(n+y)qs/q-
1/q.4. 1/g-
T e Tt Vm
[m(n + )] [umrc(n + y)g. ]V
< r”]mR“'"K(””’)"*/"’ + Uy, forany R > 1 and m € IN".

where v,, = > 0. Thus, by applying the inequality (1) again, we deduce

< max

~
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with 7}, = max {[ymk(n +)q: 175 [pmc(n + y)qu]‘l/'?*} and 7,, = max {v;/q*,v,l,,/q’}.

Hence, from the definition of non-local central Morrey spaces, one has

1
||!]m||BZ§->x = SRUg) W“gm”qg-)(moﬁ»

< supR™ ") (ﬁm . REmk(+))3:/q- 17m)
R>1
= sup {ﬁm - RE 191 4 55 R*K(Hﬂ’)}
R>1
S Tl + P < 00, for any m € IN".
By the same arguments as in the final section of the proof of Theorem 3.4(ii) and nlllggo Um = Zf, we also

obtain
C;,min < ||u¢»,s,d ||BZf')'“—>BZf')'K < .

Therefore, we accomplish the proof of this case. [J
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