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Four dimensional matrix mappings on double summable spaces

Mehmet Ali Sarigol®

®Department of Mathematics, Pamukkale University, Denizli 20007, Turkey

Abstract. In a previous paper [9], some classes of triangular matrix transformations between the series

spaces summable by the absolute weighted summability methods were characterized. In the present paper,
we extend these classes to four dimensional matrices and double summability methods.

1. Introduction

Consider an infinite single series Zx, of complex or real numbers with partial sums s, and let % denote
the n-th term of the Cesaro mean of order @ > —1 of the sequence (s,). The series Xx, is summable

|C, al, k = 1, in Flett’s notation (see [4]), if (nl‘l/ kAa‘,’,‘) € {, where ¢ is the set of absolutely k-summable
sequences. Further let ((j),,) be a sequence of positive numbers and (p,,) be a sequences of positive numbers
satisfying

P,=po+p1+..+p, > 00asn—oo, Py=p_1=0.

(1)
By T,, we denote the n- th term of weighted mean (N, pn) of the sequence of (s,), i.e.

n
T, = vasv/Pn-
v=0

The series Xx, is said to be summable |N, Prs P ' L,k > 1, if (see [15]) ( ,1[1/ k ATn) € €, which reduces to
the methods )N, p,,|k and [R, P”|k for ¢, = P,,/p, and ¢, = n (see [2] and [12], respectively).
For k > 1, the space ZTI:?

L the set of all series summable by the method W, P Pn
(see [9], [14]) according to the norm

.- is a Banach space

k 1/k

(e8]
k _
Il = (ol + 2 01
7l n=1

n

Pn
— ) P,
Pnpnfl le‘ v-1Xo
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is the same

, and the space ‘Klﬁ:‘
k k

|k iff a sequence x = (x,) € ‘Ni

and |Rp‘k for ¢, = P,,/p, and y,, = n, ( see [14] and [12], respectively).

Further, a series Yx, is summable W, P, Pn

A
We denote the set of all infinite triangular matrices which map a single sequence space X to another

sequence space Y by (X,Y). The following characterizations of matrix classes are well known (see [9]),

which include some known corollaries and applications for particular matrices (see [3, 5, 10-14, 16]).
Throughout the paper k* will denote the conjugate of k,i..e.,, 1/k + 1/k* =1 fork > 1,1/k* =0 fork = 1.
Theorem 1.1. Let (p,) and (g,) be positive sequences satisfying (1) . Further, let A = (a,,) be an infinite

Nj'k),forthe casel <k < o0,

as the spaces |ITT,,

7

triangular matrix and (qbn) be a sequence of positive numbers. Then, A € (Wﬁ

if and only if
Poiy 1
—— @,y = 0(1 2
peQs @ e
(e8] n k k
k-1 _ _ol(P
Z an Un Z Qr—l(arv ar,v+1) =0 {(Pv) } (3)
n=v+1 r=v
[e9) n k
Z ﬁbﬁ_l Un Z Qr—lar,v+1 =0 (1) . 4)
n=v+1 r=v+1
where
qn
n = Nt 5
H QnQn—l ( )
Theorem 1.2. Let (p,) and (g,) be positive sequences satisfying (1) . Further, let A = (a,,) be an infinite
triangular matrix and ((1),,) be a sequence of positive numbers. Then, A € (|Nj: L Nq ), forthecasel <k < oo,
if and only if
e
(o8] P_k* (o) n
Z b [Z Un Qr-1(Prayy — Prqayp41) J < oo, (6)
v=1 n=ov r=v

where p, is defined by (5).

In the present paper we establih Theorem 1.1 and Theorem 1.2 for four dimensional matrices and double
summability, which extend earlier factor and inclusion results on absolute weighted summability to double
summability.

2. Absolute double weighted summability

For any double sequence () and four dimentional sequence (Yunss) , we write for m, n,r,s 2 0,
A1xrs = Xps — Xp-1s AZxrs = Xrs — Xrg-1
Apxys = Ao(A1xrs), x-10=2x0-1 =0
A1]/‘rm1rs = Ymnrs — Ymnr-1s AZymnrs = Ymnrs — Ymn,rs—1

AlZ]/mnrs = AZ (Al]/mnrs)/ Ymn,~1,0 = Ymn0,-1 = O/

We use the notations Y.y and },'"" instead of Y2, Y22 and YL, YI_,, respectively, and also
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1/k*
ymO pm —
P P, n=0m=>1

, 1/k ’
i = é‘,’"Q?" m=0,n>1 )

K
Ymn_Pmn
oo m=1lnx=1l
m 1 Q”Qn—l ’ ’

Let ZS;:O Xrs be an infinite double series with partial sums s, i.e.,

mn

Smn = § Xrs

r,5=0

Let us denote the double weighted mean (N, p,,, p,,) of the double sequence (Syn) b
g Pm, P q y

Z PrqsSrs (8)

7,5=0

Tm n

m QTI

we shall say that the series Zf’;zo x,s is called summable |N, Prms Gns Yimnly. k>1,if

Z Vo |82 T )k < co. &)

m,mn=0

It may be noticed this method reduces to the methods W, Pms Gl IR, pm,qn|k and |C, 1, 1| for yp, =
P Qu/pmn, Ymn = mn and p, = q, = 1, respectively, [8], [6-7].

Now, by |N pq‘ , we introduce the set of all double series summable by the method )IT], Py Gns Ymn |k . Then,

the double series Zr,s:O Xys is summable |N, Py qn;ymn|k if and only if a double sequence x = (x,s) € |Nz)q

Further, since, for m,n > 0

Kk’

mn

1
= o Yoras = S pa Yo

1,5=0 o,u=0 7,5

mn mn

1
= PO Zxrs Z Polu

1,5=0 O,U=t,$8

- 1@ Y (P~ P (@1 - 0
m<n 1,5=0
mn P, .
= ;}X,S(l— Pml)(l_%)/

it is easily seen that A1Toy = AxToo = Ax1Too = xo0 and, for m,n > 1,

ATy = P Pm ) ZPr 1Xr0
ALY I 0 an ) Z Qs-1X0s (10)
n<n—
Pmﬂn
AT =
214 mn P Pm 1QnQn 1 Z PI 1Qs 1Xrs-

rs=1,1
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Define the following space which plays an impotant role in this paper

Y

e ‘N;’/‘?’k = {x = (x5) € ’N"q‘k 1 X0 = Xos = 0 forv,s > 0}

Hence it is routine to verify that |N;q| and |N;/q
k

- 1/k
= ( Y Vet |A21Tmn|k] . (11)
k

m,n=0

'k are a Banach space according to the norm

[l

N
NW

Also, there is a close relationship between the spaces |NZ‘7'1< and Ly, ie., (x55) € |N;/q|k
1/k

(an Alem,n) € Ly, where Ly is the set of all double sequences (x,s) of complex numbers such that

if and only if

Zf;zo [x,s/f < oo, the case k = 1 of which reduces to the space L, studied by Zeltser [18]. The space
L), 1 <k < o0, is a Banach space [1] according to the natural norm

o 1/k
k
Il = [Z bty ]

r,s=0

and the space L., of all bounded double sequences is also a Banach space with the norm ||x]|, = sup, [2ys] -

Let x = (x/s) be a double sequence. If for every ¢ > 0 there exists a natural interger #y(¢) and real number
I such that |x,s — | < € for all ,5 > ny(¢e), then, the double sequence x = (x;;) is said to be convergent in
the Peringsheim'’s sense. Also, a double series ) ._ X;s is convergent if and only if the double sequence of
partial sums of series is convergent.

Let U and V be double sequence spaces and A = (a,nss) be a four dimensional infinite matrix of complex
(or, real) numbers. Then, A defines a matrix transformation from U to V, written A € (U, V), if for every
sequence x = (x5) € U, the A-transform A (x) = (Ayun(x)) of x is well defined and belongs to V, where

o)

Apn(x) = Z AmnrsXrs

r,5=0
provided the double series in the right hand side converges for m,n > 0.
The transpose A’ = (asmn) of the matrix A = (@) is defined by

(e8]

t —
A (x) = Z AnrsXmn for m,n > 0.

m,n=0

The B-dual UP of the space U is the set of all double sequences (b,s) such that 22:0 bysx,s converges for
allx e U
An infinite four dimensional matrix A = (@) is called triangular if a,,s = 0 for r > mors > n.

We require the following lemmas for the proof of our theorems.

Lemma 2.1. ([18]). If T is a linear mapping from a Banach space X into a Banach space Y, then T is
continuous if and only if it is bounded, i.e., there exists a constant L such that

IT()ly < L|lxllx forallx € X

Lemma?2.2. Letl <k <ooand A= (amm-j) be an infinite four dimentional matrix. Define Wi(A) and wy(A)
by

o0 o0 k
Wi(A) = Z [ Z |amnrs|] ’

1,5=0 \m,n=0
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Z amm’s

(mn)eMXN

k

wi(A) = sup i

MXN ;520

where the supremum is taken through all finite subsets M and N of the natural numbers. Then, the following
statements are equivalent:

(i) Wi(A) <oo (i) Ae(L, L)
(i) A'€ (Lo, Lr)  (i0) we(A) < .

Proof. To prove the lemma, it is enough to show that (i) = (ii) = (iii) = (iv) = (7).
(i) = (ii) . Assume (i) holds. Then, for all x € Ly, it follows from Holder’s inequality that

(e8] (9] (o) (o)
||A(X)||£ = Z Zamm’sxrs < Z Z [~
m,n=0 [r,s=0 r,5=0 m,n=0
- - e\ Lk
< Z Z |amnrs|] ||x||Lk
1,5=0 \m,n=0

IA

(Wi (ANYE [Ixllz, < o0,

which gives (ii) .

(i) = (iii) . Suppose A € (Ly, L) . Then, since Ly is a Banach space for k > 1, by Lemma 2.1, there exists
a constant L such that

ANz = Y Y G| < Ll (12)
m,n=0 [r,s=0

for all x € L. Also, it is observed by putting x,:591a,,n,s instead of x,; that

(o] (o]
Z Z |amnrsxrs| < L ”x“Lk

m,n=0r,s=0

Now, let u € L, be given. Then, by (12),

(e8] (e8] (e8] (e8]
Z Zumnamnrsxrs ”M”Loc Z Z |amnrsxrs (13)

m,n=0r,s=0 m,n=0r,s=0

Lifull ¢, 1xll £,

IA

IA

In (13), taking x,s = 1 for (r,s) = (i, j),, and zero otherwise, it is easily seen that

(o] (o]
Z ApnrsUmn| < Z @ mnrstmn| < L “””Lm ’
m,n=0 m,n=0

which gives that Af(u) is defined for all ,s > 0, where the double sequence A’(u) = (Al,(u)) is given by

o]

Ais(u) = Z ApnrsUmn = M, 1 2> 0 (14)

m,n=0
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Again, it follows by considering (13) that

i Ais (1)xrs

1,5=0

< Llull goo 1Xll £, (15)

which implies that the series in the left side hand of (14) converges. Therefore, since the dual of space L is
the space L (see [1]), we obtain A’ (1) € Ly, i.e., Al € (Lo, Li).

(iii) = (iv) . If A" € (Lo, L), then, by Lemma 2.1, there exists a constant K such that ||At(x)|| L < KlIxll ¢,
forallx € Lo, 1i.e.,

5

1,5=0

1/k*

.
] < KWl - (16)

(o)

§ amnrsxmn

m,n=0

Let M and N be any finite subsets of all nature numbers. Take a sequence x = (x,,) as X, = 1 for
(r,s) € MXN, and zero otherwise. Then, (16) is reduced to.

b

1,5=0

1/k

.
] <

which proves wy-(A) < o0.

Amnrs
(mmn)eMXN

(iif) = (iv) . Suppose (iii) is satisfied and a,,,,s are real numbers. Then, for every finite subsets M and N
of nature numbers,

o)

),

7,5=0

< wp(A).

Amnrs
(m,n)eMXN

Let H* = {(m,n) € MXN : aypys > 0} and H™ = {(m, n) € MXN : a5 < 0}. Then, by considering the inequal-
ity |a + blk* <2k (lalk» + |b|k*), where 2 and b are complex numbers, we have

o] o ke
Wed) = Y [ Y |amm|]

7,5=0 \m,n=0
(o) (o8] (o) k”
= Z Z Amnrs + Z —Amnrs
1,5=0 \(m,n)eH* (m,n)eH~
Kk k
(o) (e8] (e8]
K
< 2 Z Z Amnrs + Z —mnrs
1,5=0 | \ (m,n)eH* (m,n)eH~

< 2y (A).
If aynys is complex number for m, n,7,s > 0, it is easily seen that Wi-(A) < 2243 (A) < oo, which implies
(iv).
This step ends the proof.
3. Main Results

In this section we prove the following theorems.
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Theorem 3.1. Let (p,),(9.),(p;) and (g,,) be sequences of positive numbers satisfying (1) . Further, let
¥ = (yrs) be a double sequence of positive numbers and A = (ayrs) be a four dimensional triangle matrix
and define the matrix B by

mn
Y, P.Q. aiws,1<r<m,1<s<n
bmnrs = i,j=r,s S ’ (17)

0, r>m, ors > n.

Then, A € (qu

—y . .
LT ‘Np,q,‘k), 1 <k < o0, if and only if

Z |[J:nnbmn,r+l,s+l|k = O(l) (18)
mn=r,s
- k
m;/g xurlnnAzbmn,Hl,s-%—l‘k =0 (&) (19)
- k
Z |[’1:nnA1bmn,r+1,s+1’k =0 {(%) } (20)
mm=r,s r
— k
m—Z,n‘—s mSrabn | = O{(l;rr_(;:) } (21)

where 1}, is defined by (7).
Proof. Necessity. Let A € (WM

are Banach spaces, it is seen

, T |Nz,q/|k). Then, since WWI| and 7 |Np’q’|k

from Lemma 2.1 that A : |Np,q| -7 NZ’WL(]( defined by
mmn
Apmn(x) = Z‘ AmnrsXrs (22)
7,5=0

is a bounded linear operator. So, there exists a constant M such that

A, <Ml (23)
P

B [N

for all x = (x,5) € |Np,q| .Put t,, = Ay Ty for m,n > 0, where Ay Ty is defined by (9). Then, t = (ty,) € L.
Also, A(x¥) = (An(¥) € 7 ‘Kl;’,q, ifand only if L'(x) = (I, (x) € Ly, e,

mn

- 1/k
7 ’ k
A, | =L (x)||£k=[Z Lmn<x>|] <o (24)
Tl mmn=1
where
L) = i 3 Py Qg Ar(x). (25)

rs=1
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Choose a sequence x = (x;j) € |Nplq| such that x,s = 1, x;; = 0 for i # r,j # s. Then, using (9), we have, for

m,n>1,
; 0, m<r,n<s ; 1
= _ o X = =
mn PpngnirQl% 11,771 >rn>s I |||NM| I ”,C

Also, it is easily seen that

0, m<rn<s
Amn(X) = { Ay, M > 1,11 > S
which gives, by (24),

L' ()= 0, m<r,n<s
mn UpOmnrs, M > 1,10 > 5.

and so

4@,

- 1/k
, k
R = [ Z |Nmnbmnrs| ] .

mN=r,s

Now, it follows by applying (26) and (27) to the inequality (23) that, for r,s > 1,

— k
Z |[J;nnbmnvu| SMk

mun=r,s

which is equivalent to (18).

Now take x5 =1, x,541 = —1, and zero, otherwise. Then, by (10), we get
0, m<r,n<s )
pmqur—l — %
tn = PuP 405 mzrn=s ||x|||ﬁw| =, = 6
Pmqntr-—19s S
_Pum—lQnQn—l ’ m Z r’ n > 5

Further, we obtain

mn
Amn(x) = Z Qi Xij = 0, n<sm<r
i _A2amnr,s+1/7’l >s,mz2r
1,]=1,8
which implies, by (25),

Uowe| 0 m<nns<s
" _H‘:nnAmem’,s+1/ n=s,mz2tvr

and

A,

. 1/k
, k
X = Z |.umnA2bmnr,s+1| .

mmn=r,s

(26)

(27)

(28)

(29)

So, using (28) and (29), we have from (23) that (19) holds. Also, by taking x,s = 1, x,41, = —1, and zero,

otherwise, then, similarly, (20) holds.



M. A. Sarigol / Filomat 37:4 (2023), 1277-1290

1285
Finally, put x5 = 1, %541 = =1, Xp415 = =1, X,41641 = 1, and zero, otherwise. Then,
0, m<rn<s
Prgs _ —
P:s’ n=sm=r dpra
Prings _ rYs
tin = _p,%n o n>sm=r ”x”|ﬁ | = (30)
rPmls _ < PVQS
- ,n=s,m>r
Pt
mYnprys
PumJ Qnan] 4 n > S, m > r
and
A _ ) Aadmprarsa,r<ms<n
mn(x) -
0, r>m,s > n.
This verifies
I/ _ ) i Ai2bunriasa, r <m,s <n
mn(x) -
0, r>m,s>n
and
- 1/k
k
’
W, = | D dzburssal | (31)
mmn=r,s

Therefore, considering (30) and (31), it follows from (23) that (21) holds.

Sufficiency. Given x = (x,s) € WWI‘ .Then, t = (t,;;u) € L, where t,;;;, = A1 T, for m,n > 0, as above. Now,
we should show that A(x) = (A;s(x)) € t |ITIM/

1€

(e8]

Y

mn=1

L) < o0

where L’(x) = (L;,,(x)) is defined by (25). To achieve this, by solving (10) for x,,, , we obtain, for m,n > 1,
Xmn = Pan byn — Pm—ZQn tm—l,n
men Pm—lq;'t

P P, -0,
_Qn 2 mtm,n—l + m ZQn Zt

m—1,n-1-
qn-1Pm Pm-19n-1

(32)

Hence, since B is a triangular matrix, a few calculations reveal that

mn
’ _ ’ ’ ’
Lmn(x) = Hun Z Pi—le—lAij(x)
ij=1
m,n mn mn
= H;ﬂn Z Xrs Z P,/‘_l Q;‘_laijrs = ,U;,nn Z bmnrsxrs
r,s=1 i,j=1,5

rs=1
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mn
_ ’ ; PrQS Pr—ZQs
- [’lmn VSZ_l bmnrs (Mtrs - pr—l% tr—l,s

_PrQs—Zt + Pr—ZQs—Z tr—],s—l)

r,s—1

Prds—1 Pr-14s-1

= [Jmn{z byunrs—— rQs Zl mnr+1s Pr- 1Qs trs

Prqs
r,s=1

m,n—1

—1n
P P, 1Q,-
- Z bmn 7,5+1 QS 1 Z mn,r+1,s+1 rpl?s 1trs}

s
r,s=1

mn
’ - Pr s Pr— s
= [’lmn Z (bmnrspr_i - bmn,r+1,s P:JSQ -

P,Qs- P,1Qs-
rQs ! + bmn,r+1,s+1 - 1Qs 1)trs
quS prQS

mn

’
= /“lmng Cinnrstrss

r,s=1

r,s=1

bmn,r,s+1

where

P P,_
Cmnrs = (bmnrs_r - bmn,Hl,sr_l) %
r pr ] 4s

P
- (bmn,r,s+l — -
p

r

Qs-1
gs

b Pr—l
mnr+1,5+1—
pr

P,Qs P,
= A12bmn,r+1,s+1 - _Albmn,r+l,s+1
Prqs r

Qs
_q_Amen r+1,5+1 + bmn,r+1,s+1-
s

Also, since

lemnrsl* < 3k{
'QS

_Amen,r+1,s+1
s

k k

PrQs

rYs

r
+ _Al bmn,r+1,s+1
r

k
+ |bmn,r+1,s+1‘ }/

we get by Minkowski’s inequality and the hypohese that

00 ‘ 1/k ) mn
[ L;ﬂ}’l(x)| ] = Z [Z |[J;ﬂncmnrstrs’]
mmn=1 mmn=1

rs=1

00,00 00,00 1/k
Z |trs|[ Z |[’llmncmnrs)kJ

r,5=1 m,n=r,s

O(1) Y Itl < o0

rs=1

A1217111;1 r+1,5+1

+

o 1k

A

IA

which completes the proof of the sufficiency.

1286

(33)
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Now, it is obvious that A(x) = (A;s(x)) € |NZW

an ie.,
io L) = i) L) +i Lo, + il L) < oo (34)

if and c,)nly if |

i L) < oo,i Lo, <o, oio L@ <,

= = e
where

L) = y;noi;P;lAro(x)

) = 4 Y0 A0

Lyu(®) = u;mmZ'iP;_ng_lArxx).

So, if we define the matrices A;, A, and Az by

A= (amOVO)/ Ay = (aOrtOs)/ Az = (amm's) for mmn>1 (35)

J

By identifying A1 = (@mor0) = (@mr), A2 = (douos) = (ans), the main theorem is immediately deduced by
Theorem 1.1 and Theorem 2.1 as follows.

Theorem 3.2. Let the sequences (p,), (4), (P)), (4,), (Vmn), and the matrices A, B be as in Theorem
3.1. Then, A € (WM , ﬁZ’q”k)’ k > 1, if and only if conditions (18) — (21) and the following conditions are
satisfied:

Pl e
prPy Vo

—

—y . . — | | —
, N”""|k) if and only if A; € ((Np‘, Np, k), A, € (|Nq Nq/
where A = (@yrs) is a triangle matrix for m,n > 0, y1 = (Ymo) and y2 = (Yon) -

N

then, A € (|Np,q v

k) and A; € (|Nw

7

, Tt

ayor0 = O (1)

k

(o]

¥

n=r+1

n
’ /
oo E P, A1ay0,41,0

o=r

k

00

¥

n=r+1

n
’ /
o Z Py 400,410

v=r+1
Qo 1k
FoQ%, Yoo

(o]
n=v+1
(e8]

)3

n=v+1

Ago00 = O (1)

n

o Z Q.1 MA2ag10,041)

r=v

~o(z])

=0(1)

k

n
’ ’
Hon Z Qr_1a0,r,0,v+1

r=v+1
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where p  and ), are defined by (7). Now we qualify the converse of the matrix class in Theorem 3.2,
which, althout is similar to the previous one, has a very different character.

Theorem 3.3. Let (p,),(gn), (v}), (7,) and (V) be as in Theorem 3.1. Further, let A = (4,,5) be a four
dimensional triangle matrix and define the matrix B by (17) for m,n > 1, and

n
L Q) ja0jes, 1Ss<m, m=0
j=

bmnrs = m

Y P;_lajOrO/ 1<r<m, n=0
j=r

—y
Np,q,

Then, A € (qu »

),1 <k < o0, if and only if

(e8]

1 /
% Z tuOn %Azbono,Hl - b0n0,5+1
5 \n=s s

)
]<w (36)

gk

Il
—_

s
© (& /
Zy_r() ;lumo

r=1
(e8]

(o] k»
Y ! Y IM;mcmnrsl] <o (38)

rs
rs=1 v mmn=r,s

p,
— A1by0,r41,0 = bino,r41,0

i
0 37
o ] < (37)

where p},,, and ¢y are given by (7) with k = 1 and (21), respectively.
Proof. Assume that x = (x;5) € Wi’r'?‘k and A(x) is A-transform sequence of x. Let ty0 = A1Tmo, ton =
ATy, and ty, = Ao Ty for myn > 1, where ATy, ATy, and ATy, are defined by (10). Further, put

U = y},fg*tmo, Uy = yéi K ton and iy, = y,lyf,ic*tmn. Then, u = (uy) € Ly, or, equivalently, (i1,0), (on) € € and
(1tnn) € Ly.Also, A(x) € [Nyg|, iff L' (x) = (L}, (x)) € L, or, equivalently, as in (34), (L}, (v), (L,,(x)) € £, and
(L,,,,(x)) € L, where

n

Lo =, ), Qs A(x)

s=1

m
Lho®) = o), Py
r=1

L) = i ), Qg QL Ar(x)

rs=1
It follows by solving (10) for x;,0 and xp, that

P m P m-2 n anz
Xmo = —tmo — tm—l,O/ Xon = —ton —
m m—1 n n—-1

ton-1 (39)

Since A and B are triangular matrix and Py = Q_1 = 0, it is easily written from (39) and (32) that, for
m,n>1,

n n
Ly, (x) Hon Z Qq_1A0s(x) = g, Z bonojxoj
s=1 j=0

n

Qj e
Ho Z (_AZbOnO,j+1 = bono,j+1 Vo,‘/ Uoj,
=0 q;
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m m
’ _ ’ 4 —— . .
LmO(x) = Hmo Z Pr—lAO"(x) = Hmo Z me]Ox]O
r=1 j=0
m
PA
_ ’ ] -1/k*
= U Z (fAlbnzo,j+1,0 = bimo,j+10 Vio Hjo
=0 Pj
mn mn ij
’ _ ’ / ’ 7 / ’
Lmn(x) = Hmn Z Pi_lQ]'_lAij(x) = Wun Z Pi—l j-1 Z AijrsXrs
i,j=1 i,j=1 rs=1
mmn mmn mn
= f’l;nn Z Xrs Z P,/'_l Q;‘_laijrs = ‘Ll;ml Z bmnrsxrs
r,s=1 i,j=t,5 r,s=1
mn
_ ’ PrQs Pr—ZQs PrQs—Z Pr—ZQs—Z
- Umn bmnrs trs - tr—l,s - tr,s—l + —tr—l,s—l
roml Prqs Pr-19s pr%—l Pr-1qs-1
mn
_ ’ b PrQs Pr—le b PrQs—l b Pr—lQS—l Uyps
= Hmn mnrs = bunre1s “Omnpsil™—— T Ompritsil— Tk
pyc Prqs Pras pras Pris ) v
mn
=~ (P,Qs b, Qs Ups
= H;nn Z ( A1217mn,r+1,s-+-1 - _Albmn,r+l,s+1 - _Amen,r+l,s+l + bmn,r+1,s+1 W
rom \ Pris Pr ds 1
mn
= H;nn Z CrnrsUrs.
r,s5=1

Hence, it can be expressed that

m,n
L:nn(u) = Z nrsUrs

1,5=0
where
0 (%Azbow,m - bOnO,s+1)V(;sl/k*rO <s<nm=r=0
dyre = o (%Alme,Hl,O - me,r+1,0) v, 0<r<mn=s=0
p’mncmmy;sl/k*, 1<r<m,1<s<n
0, otherwise.

This gives that A € ('NZ,C, o

conclusion of the theorem is valid if and only if Wi (A) < o0, or, equivalently,

o /oo r o o ©
Z (Z‘ |d0n05|] < 0, Z‘ [Z |dmOrO|] <

s=0 \n=s r=0 \m=r

and

oo co K
Z [ Z |dmnrs|] < 0o,

r,s=1,1 \m,n=r,;s

which gives (36), (37) and (38).
This completes the proof.

1289

ﬁpqu )) if and only if D € (£, £) . Therefore, it follows from Lemma 2.2 that the
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