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Approximation by matrix means on hexagonal domains
in the generalized Holder metric

Hatice Aslan?®

?Department of Mathematics, Faculty of Science, Firat University, Elazig, Tiirkiye

Abstract. In this paper the degree of approximation of the function f, which is periodic with respect
to the hexagon lattice by matrix means T,(f‘)( f) of its hexagonal Fourier series in the generalized Holder

metric, where A is a lower triangular infinite matrix of nonnegative real numbers with nonincreasing row
is estimated.

1. Introduction

Studying approximation properties of 2ri—periodic functions by trigonometric Fourier series on the real
line or on the unit circle, is an established field as illustrated in the classical treatise of Zygmund [24]. Much
progress was made by using prominent summability methods such as partial sums and means of Fourier
series (Cesaro, Abel-Poisson means, Riesz, Norlund, matrix means etc.) which are used in studies to deal

with approximation properties of functions. There are quite a number of excellent references on results of
these studies (see e.g. [1, 3, 10, 11, 18, 19, 21]).

Approximating of multivariable functions is also important in approximation theory. The degree of
approximation of bivariate functions by double means of double Fourier series and conjugate double
Fourier series has been obtained, for the first time by F. Moricz and X. L. Shi ([17]), who studied the rate of
uniform approximation of functions belonging to the Lipschitz class and for those belonging to the Zyg-
mund class, by rectangular double Cesaro means of the rectangular partial sums of double Fourier series.
These results have been generalized by F. Moricz and B. E. Rhoades (see [15]) obtaining the rate of uniform
approximation of functions belonging to the Lipschitz class and for those belonging to the Zygmund class,
using double Norlund means of the rectangular partial sums of double Fourier series. In these studies the
territory of classical (multiple) Fourier series for the simplest spectral sets, cubes in Euclidean space, which
is the tensor product case considered and they studied by assuming that the functions are 2n—periodic
in each of their variables (see e.g. [15-17, 21], and [23, 24]). In comparison to the usual Fourier series
for periodic functions in both variables on the plane, the periodicity of the Fourier series on a hexagonal
domain is defined in terms of the hexagon lattice which offers the densest packing of the plane with unit
circles. Because of the fact that the approximation quality on the hexagonal lattice is consistently better than
orthogonal lattices, when choosing lattices with the same sampling density (see in [2]), we wish to think of
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the case of non-tensor product domain in the Euclidean plane IR? where another definition of periodicity is
needed and thereby the functions that we consider are periodic under the translation of hexagonal lattice.

Now we first collect many of the known results about the the definition and basic properties of hexagonal
Fourier series, and functions periodic with respect to the hexagon lattice. The definitions of lattices,
generator matrices and spectral sets, and more detailed information about Fourier analysis on lattices can
be found in [13] and [22]. This will be a useful source of information on the subject and many of these results
are used in the later sections of this paper. Throughout this paper approximation properties of bivariate
functions will be studied. So it is enough to give basic information about hexagonal lattice and hexagonal
Fourier series in two dimension.

In this paper we will study in the Euclidean plane R?> and we will use hexagon lattice and regular
hexagon as the spectral set instead of the standart lattice Z* and rectangular domain [-3, ]*>. Hereby we
will generalize the approach beyond the box domain and increase the approximation quality. So we can
begin the work with choosing the generator matrix as

H:[@O].

-1 2

Now if one want to carry out the discrete analysis with lattice HZ? in a domain, this domain need to be
fixed the containing 0 and tiled with the lattice HZ? (see, for example [6,8]). Therefore the spectral set Qy
of the hexagonal lattice HZ? choosen as

3 1
Qy = {(xlfxz) eR?: -1 <x,, %xl * 5% < 1}.

For dealing with symmetry along the three direction, it is more convenient to use the 3-direction homo-
geneous coordinates (t1, f,t3) instead of the usual two coordinates and this coordinates need to satisfy
t; + tp + t3 = 0 for periodicity. Now if one define

x2  V3x X V3
tHHi=——F+ ——, th:= ty i= —— —
1 > 5 7 2 X2, 13 > 5

1
the hexagon Qp becomes basic hexagon (minimum periodic domain)

Q={(t, ) R : =1 <t~ <1, h+ b +15 =0,
which is the intersection of the plane #; + t, + t3 = 0 with the cube [-1, 1.

The plane of homogeneous coordinates t; + t, + t3 = 0, denoted by IR?J are written by using bold letters
t throughout the paper, that is

IRIB{ = {t: (tl,i’z,t:;) € ]R3 b+t = 0}
The Jacobian determinant of the change of variables in (1) gives that

243

X = (xl,xz) —t= (tl,tz, t3) is dxlde = T3df1dt2.
The periodicity with respect to the hexagonal lattice H for a function f is defined by
fle+HR) = f(x), (kez?).

In this case f can be also called H—periodic.
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Let define t = s (mod3) as
h—s1=tHh—-s=t3—s3 (mod3).

By using this definition we can give a periodicity state in homogeneous coordinates, as f is H—periodic if
and only if

f({)=f(t+s) whenever s=0( mod 3).

The equality

ff(t+8)dt=ff(t)dt, (seR}).
Q Q

follows from the definition of the periodicity ([22]).

Let |Q)| denote the area of (). The inner product defined by

1 _ 1 —
fPu= m!f (x1, x2) g (x1, x2)dx1dxy = @J;f (t) g (tdt, )

renders L?(Q2) becoming a Hilbert space.

Let Z3, denote Z N R}, and (j, t) is the Euclidean inner product of j and t, then the functions ¢; () are
H—periodic and the set

{05: 00 =¥, jeZ, te R}

is an orthonormal basis of L? (QQ) with respect to the inner product (2) (See in [4]).The completeness can be
seen by well known Stone theorem e.g. see ([3]).

The space defined for every natural number n by
H, = span{qbi ‘je ]I—In}, (neIN)

will be a finite dimensional space and the dimension of H, is #H, = 312 + 3n + 1. And the member of the
set are called the hexagonal trigonometric polynomials.

It should be noted here that the space H,’s indexes are choosen from the symmetric point subset of Z2,,
that is

Hn = {j = (j1/j2,j3) S Z?{ :—n < jl/j2lj3 < 7’1}.

which consists of all integer points inside the hexagon nQ so that one can ensure the symmetry of inner
product (2) on Q).

The Dirichlet kernel D, is defined by

Di(®:=) (0,

jeH,
and it has the compact formula

Du(t) =0, (t) - 0,1 (1), 3)
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where n > 1 and

i DGt o )t o ()t

S
0, 1) = 3 3 3 (t=(t,trt3) e R3 (4)
n sin (t1—3l‘2)7'l sin (fz—gts)ﬂ sin (t3_3tl)77 ( H)

which proved in [20].
Using the set-up above, the hexagonal Fourier series of an H—periodic function f € L! (Q) is defined by

FO~ Y fio5®, (5)

jez3,

where
-~ 1 _2mif; .
fi= @ff(t)e Fndt, (jez3).
Q

Therefore the nth partial sums of the series (5) are defined by

Su(N® =) figi®.

jeH,

The nth partial sum has the next integral representation.
1
Sa(f)(®) = @ff(t— s) D, (s)ds.
o}

Li, Sun and Xu are the first authors who considered discrete Fourier analysis on lattices in their study
([13]) of the Lagrange interpolation and cubature formulas by trigonometric functions on a regular hexagon
and on an equilateral triangle which is the case of hexagon lattice was used to deal with . Afterwards,
the theory of approximation is further extended by the author Xu by replacing domain and periodicity
and studying Cesaro and Abel summability of Fourier series over the regular hexagon, and proving that
the (C, 1) and Abel-Poisson means of hexagonal Fourier series of a continuous periodic function converge
uniformly to this function. So the construction above can be found in their paper [22], [20] and [13]. A good
deal of emphasis is on ideas related to the degree of approximation of H—periodic continuous functions
by Cesaro, Riesz, and Norlund means of their hexagonal Fourier series was investigated by the author in
uniform norm and in the Holder norm [5-9]. But, for our purposes the most important reference is [9],
who looked at the order of matrix means of functions belonging to the Holder class H* (5), 0<a<lin
particular, in the uniform norm and Hoélder norm |[|-|| 5/ where 0 < < a.

The aim of this paper is two-fold: 1) to estimate the order of approximation by matrix means of hexagonal
Fourier series of functions belong to the generalized Holder class H**(Q) and generalize the results of [9].
2) To give some special cases of matrix mean such as Norlund and Riesz means. As we shall show below,
many results resemble closely to those of Fourier analysis and approximation on 2n—periodic functions.

2. Main Results

As a prelude to the main results of this paper, we will introduce the generalized Holder classes of
continuous functions on the hexagonal domains and Guven'’s original idea which we will further extend.
The Banach space of H-periodic complex valued continuous functions on R?, which is equipped with the
uniform norm

Al = sup{lf @] : e Q).
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will be denoted by Cy ( ) And the subspace which consist of all functions f € Cy ( ) for which

F (O - £ )]
<

TI=sF , It = max {|t], |t2] , Itsl},
t#s -

is called the Holder space and denoted by H* ( ) O0O<a<l).
Let w : [0, 00) — [0, ) be a non-decreasing continuous function. If w satisfies the condition
w(0) =0, ot +t) <wt)+w(t),
then w is called a modulus of continuity. And any modulus of continuity satisfies
w(A0) < (1 + N)w (0) (6)
for A > 0. In addition to that the next inequality is an important for this paper, such that

w0 (02) _ ,wa (1)
02 01

(61 < 62), )
which is obtained from (6).

The generalized Holder class H” (ﬁ) is the set of functions f € Cy (5) for which

1f t)— f(s)|

AT )= sup=Tm gy <>

and the norm on H? ( ) given by

A1l == WAlley + 2 )

makes H® (5) a Banach space for any modulus of continuity w. Further if w (6) = 6,0 < a < 1, then we
write H* (Q) instead of H* ( )

A certain class of moduli of continuity introduced in [11] by L. Leindler:

Let M,, 0 < @ <1 denote the class of moduli of continuity w, having the following properties:
(i) for any o’ > « there exists a natural number u = u (a’) such that

289 g 227 > 2w, 27, n=1,2,..),
(ii) for every natural number v, there exists a natural number N (v) such that
2%, (27) < 20,27, (1> N (),

It is clear that w (6) = 6* € M,, but also w, (0) is an extension of w (6) = 6*. As a result, H*« (5) is larger

than H* (5) in general.
Additionally Leindler give an another fact, that is,

wy(t)
wp(t)

is non-decreasing function when 0 < g < a <1, wg € Mg and w, € M, in his another paper [12].

Y(t) = vap(t) =
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The A-transform of the sequence (S,(f)) of partial sums the series (5) is defined by

n

T () ® = Y auSc(N®  (1eN).

k=0

where A = (a,x)(n,k = 0,1,...) be a lower triangular infinite matrix of real numbers.
In this paper we assume that the conditions

=20 (n=0,1,.,0<k<n) 8)

Apg = aups1 1=0,1,.,0<k<n-1) 9)
and

Ya=1 1=01,.) (10)

k=0

are satisfied by the lower triangular matrix A = (a,x).
Also, we use the notations

k
Anki=Y ano (0<k<m), Ayw):=Auuy, au@)i=anp  (>0),
v=0

where [u] denotes the integer part of u.

In addition to that the relation x < y will mean that there exists an absolute constant ¢ > 0 such that x < cy
holds for quantities x and y throughout the paper.

Main results of this section are the following:

Theorem 2.1. Let0 < B <a <1, wp € Mg, wya € My and f € H? (ﬁ) If the conditions (8), (9), and (10) satisfied
by a lower triangular infinite matrix of real numbers A = (a, ) (n,k =0,1,...), then

) 1 (”+1)£7/(%)%, ifa<lorf>0
1 =T Pl < o 1og(_) S a1
fn0 (n+1)log(n+1)2y(,lc) 2, ifa=1landf=0
k=1

holds for n > 2.

Theorem 2.2. Let0< B <a <1, wp € Mg, wa € Myand f € H*= (5) If the conditions (8), (9), and (10) satisfied
by a lower triangular infinite matrix of real numbers A = (a, ) (n,k =0,1,...), then

1 (n+1)£)/(%)'%, ifa<lorp>0
I = (Pl,,, < anolog (_) i1 ! ) (12)
o) | (n+1)logn +1) y(%) =, ifa=1landp=0
k=1

holds for n > 2.

3. Proofs of main results

Proof. [Proof of Theorem 2.1] If one take f € H** (5), then it is clear that

[f ®) — £ (- w)| < ccwa (lull).
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Thus we get
_ 1 Y
Fo-1000 < 5 ! o 1 [} <D 6 o,
since
F®-TO () < |16|£|f(t)—f(t—u)| ;an,ka(u) du.

Let set ©_;1(u) := 0, by (3) we have

f wa (1l du = f wa (lul)

Q Q

n

Zﬂn,ka (w)

k=0

n

Yk (€, (W) = O, (W)

k=0

du.

Since the function

n

Y 0k ©c () — O (1)

k=0

t— wq (Il

4

is a symmetric function of t, t5, f3 it is sufficient to consider the integral over one triangle of the six equilateral
triangles in Q.
A o= {t: (h,ta, 1) €RS -0 < by, by, —13 < 1}
= {(ti,t2) 11120, 620, t; +1, <1},
By considering formula (4), we get

f e (It

n

Y 0k @) - O (v)|t,

A k=0
sin (k+1)(t31 —ty)n sin (k+1)(t32—t3)n sin (k+1)(tg—t1)n

. 3
() () L (-h)n
sin s sm

- f wq (b + o) 2 Ak o) Ko K dt.
s 3 sin 3‘ sin ‘3
A k=0 -

(1) . (pta)m . (t3-t
in (1 3z)" sin (2 33)" sin 3 31)”

By using the change of variables

_tl—t3_2t1+t2
-3 3

5 1= thy —t3 _ t1 + 2t (13)

o1 3 3

the integral becomes

3[(4)0( (51 + 52)

n sin((k+1)(s1—s2)7) sin((k+1)sy7t) sin((k+1)(—s1 7))
[ ] dSldSZ,

Z o sin((s1—s2)7) sin(s,7) sin((—s177))

__sin(k(s1—s2)70) sin(ksp ) sin(k(—s1 7))
k=0 sin((s1—s2)7) sin(s27) sin((—s1)7)

where A is the image of A in the plane, that is

A= {(s1,82) : 0 <51 <25y, 0<8p <251, 81 +5p < 1}.
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Since the integrated function is symmetric with respect to s; and sy, it is sufficient to estimate the integral
over the triangle

A" = {(sl,sz) € Z 151 < Sz} ={(s1,82) : 51 < $p <251, 51+, < 1}.
which is the half of A. Again by using the change of variables
up — up Uy + up

S1 = T, Sy = T (14)

one can transform the triangle A* to another triangle

rIZ{(ul,uz)ZOSLQS%,Oﬁulﬁl}.

So now our necessity is estimating the integral

m=ijm>

r

n

Zan,kD; (u1,u2)

k=0

dulduz,

where
sin ((k + 1) (u2) ) sin (k + 1) (42 77) sin ((k + 1) “52 1)
sin ((12) 1) sin ( i n) sin (”12"2 71)
sin (k (u2) 77) sin (kmn) sin (k%n)

. . Up+uy Uui—uy
sin ((up) ) sin ( 5 n) sm( > T()

D]i (ull u2) =

We obtain
Dj (1, 143) = D}y (1, 43) + D (ur, 1) + D} 5 (111, 115) (15)

where
b )i (1) 22 )i (1) 252

+ . -
sin (up70) sin (”12”2 71) sin ( e n)

oy sin(
D,’;l (u1, 1) := 2 cos ((k + 5) uzn) X

sin ((kuy) ) sin 1 l¢1+uz sin ((k + 1) k2 u =y uz
Dy , (u1,u2) :=2cos((k+ 1) “ Zuzn)x ( ) ( )

2 sin (up7) sin ("] — 7'() sin (” L n)

and

1) Uy — Uy )x sin ((kuz) ) sin (k””"z )sm(l ulzuzn)

D; 5 (u1,uz) := 2 cos ((k t5
k3 2 2 sin (up70) sin (”12”2 77) sin ( HF ”)

by elementary trigonometric identities.
Let divide the triangle into partsasI'as I' = I'1 UI', UT3, where

1
Iy ={(u1,u2)el“:u1£m},
l"'—(uu)l"L<uu<—
2 . - 1, 42 1— 1, 2_3(7’l+1) 7

1 1
T, : = I <y, — <t
3 {(ul,uz)e S 31 _uz}
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Thus I, = I,1 + L2 + I3, where

I = f wa (1)

T

n

Zﬂn,kDZ (u1,u2)

k=0

dulduz, (] = 1,2,3)

The inequalities

smnfl (16)
sint
and
sint > 2t (O<t<E), (17)
=7 \U=r=73

is needed for our proofs to estimate the integrals I, 1, 1,,» and I, 3. By (16), we have

by = [0 )Y D} )| dundi 5 [ ) [Z (k+17 an,k] ditsdi
T, k=0 T, k=0
D 1/3(n+1)
1 1
<(n+1)7° f fa)a (1) durduy < (n +1)* Wy (m) f (m - 3u2)du2
0 3up 0
1 1 1
v ) )
(n+1)yw n+1/6(n+1)> Y+

Sy(n-li-l)wﬁ(n-li-l)Sy(n-li-l)wﬁ(l)Sy(n-li-l)'

Let divide I'; into two parts

’ an,0

r, : = T: < .
) {(ulfuz) el u < 30+ 1)},
" an,0

r, : :{(ul,uz)el": uzzﬁ},

for estimate I, 5.

And let consider the Lemma 1 of [6] we have

1 .

fgua(t) gt < ny(%), ‘1fa<1orﬁ>0 )
Pawg (t) ny(%)logn, ifa=1andp=0.

1/n

for every natural number n > 2.
Therefore by (17),(15) and (18),

n,0 3,0

" 3D 1 30t) 1
f wq (1) Zan,kD,il (u1, uz)| durduy < f f %;ﬂdulduz < f wg (1) f Mdmduz
e ’ uj wpg (ul)u1
T 0 o 0 T
a0 (n+1)y nl?), ifa<lorf>0
T3+ | (n+1)y(7y)logn+1), ifa=landp=0

<o, y(ﬁ), ifa<lorp>0
s y(nl?)log(n+1), ifa=1and B =0.
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By (16),(17) and (18) we obtain
n,0
n 3m+1) 1 1
a
[ ) [Y0a o) iy < [ [ iy s [,
’ k=0 1 1 1
I 0 )
1 1
< an,ofwa (M1)du1 S An0wp (DIM‘M
u1 ujwg (u1)
n-lf-l ﬁ
- (n+l))/(+) ifa<lorf>0
< ay,
(n+1)y(51)log ifa=1and g =0.
for j =2,3.
Also the expression
Dy (u1,u2) = Hy (u1, u2) + Hyp (u1, u2) + Hiz (u1, u2) (19)
where
1 cos 2k + Dupm
Hk,l (u1,u2) = 2 u1+u§ ) :1 —1p
sm( > )sm( 5 n)
1 Cos ((Zk +1)5= )
Hy (u1,u2) = 3 i
sin (1) sm( > n)
1 cos ((2k+ 1)=52 )
Hys (1, u2) = 3 o
sin (1) sm( 5 7'()
can be considered because of the well known equality
sin2x + sin2y + sin2z = —4 sinxsin ysinz
forx+y+z=0.
We get
Zn“a cos 2k + )| < A (1)+a (1)L 0 <t<m) 20)
i >\E) TP sint
and
. 1 i
an cos 2k + 1)t| < Ay (?) O<t< E). (21)
k=0
by the method used in ([14], p.179).
We obtain
- 1 1
Y niHes (1) < — Au (=) (22)
u TtUp
k=0 1
and
- 1 3
niHi (1,1)| 5 —— A, (=) (23)
=0 Uiy Tt
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by (21) for (uy, u;) € T'; UT3. Also, the fact

sin(ul—n) < sin —(u1 + U
2]~ 2

and the relation (20) yield

gLAn(i),

Ujis

n

Zﬂn,ka,z (11, u2)

k=0

for by (u1,up) € Fg U I's. We can compute the integral below by considering (17) and (18), that is

’3(n+1) 1

fwa (u1) Zankal (u1, u)| durduy = ffwa (ul) duydus
k=0 n,0
rZ 3(n+1) n+1
3(n1+l) 1 1 1
< [apw [ g0, < ( ~ o ) f @i () g,
. ) ujwg (u1) 3(n+ 1) u? Twg (u1)
3<:3:]1) n+ n+1
(+1) ife<lorf>0
s (Ll)l og(n+1), ifa=1landp=0.

For j = 2,3 (23) and (24) give

WD 1
- wy (U 3
fwa (u1) Zan,ka,j (u1, up)| durduy = f ” (ul)An (J)dulduz
- ~ J oo il 1
2 3ut1) n+l
1 3 (n+1) 3
Wy prt
an,0 U U, an,0 t
n+l I
3 (k+1) 3 1
1\ <& Wa | 77 1 \ v @alx
ZIOg(a_)Z f E t)An (t)dtslog(a—) k(k)An (%(k+1))
EA= "0/ =1
n 1 n 1
1 Wo | ¢ Wo | ¢
<log( ) (k)A,,kH slog( ) (k)Ank
ano) =k ano) =k

Therefore the estimate can be given as

ano(n+ 1)y (Ll) + log(a:—o) i ma,E%)An,k, ifa<lorp>0
0/ =

—_

—~
N

n2

a,0(n + 1)( (4)+ Y “’“,E”An,k) log (-)log(n+1), ifa=1andp=0.
k=1 "

1301

(24)
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By considering (22) and (7), we obtain

f wa (1)

I3

dulduz f fwa (ul) 71142 )dulduz

3(n+1) Suz

Zan kHi1 (11, u2)

k=0

1

3
ffwa (3u2) )dulduz — 2 f Mlog(i)z‘ln (L)dw
Uiy Up 3 U 3Ll2 TtUp

1
3(V1+1 3(n+1)
1

3 ;(n+1)w (l)
<tog(n+1) [ L a, (S Yy ~tog 1) [ A, 00
3

Uz

1
30i+T)

3 (k+1) (i) " wa<%) 3
log(n+l)Zf )4 (f) dt = 10g(n+1)z - (;(k+1))

Sl

Also for j = 2,3, we have

fwa (1)

I3

oy
3
1/[1112 U

r1+1 3(rz+1)

Zan ka] (11, uz)

k=1

i jwau(ul)l osr+ D ) s < log(n+ 1) fwa () , (n_ul) s

.
n+1 n+1

2 (n+1) 2 (k+1)

—log(n+1)f A(t)dt log(n+1)2f

;
log(n+1)z kk)

by (23) and (24). Therefore, we have the inequality

A (t)dt

i),

( (k+1))<log(n+1)z p

An k

Ins <log(n+1)):a)a( ) .

We can write the inequality below, that is

1 1 NWa (%) - 1 An,n - 1 A”,
o (i) 2 o) = 5 = Yo (3) 522 = Yo () F

and

1302
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A . .
since the sequence ,’(’k is non-increasing with respect to k.

The proof finishes by considering (11) and the last estimate. [J

Proof. [Proof of Theorem 2.2.] Let e,(t) := f(t) — T;A)( £)(t). Therefore we can write

1f =T Pl = I1f = T2 Dl @ + A Cen)- (25)

Now we need to estimate the integral

b= [0 ft-w=5©+f6-w) an;)an,ka ()| du. 26)
) -

since

len(t) = e®)l < 15 f fO-ft-—w)-f6)+f(s-w) gan,ka (w)|du. (27)
If f € H**(Q), then

O = f (- ) = F(5) + f (s - w)] < ca (It - sl) 22 E”““; 8)
which is proved in [6].
Thus, by (28) we get

o = f!f(t) W)+ fs—u) ZankDmo du

du

N

@, (lull) |y
g (IIt —sll f ay D (u)
) | i | P
As in proof of Theorem 2.1, it is sufficient to compute the last integral over the triangle A. We obtain
we (It fwa (W) [y
|,Md = 3 an Dy (11, 12)
[mutn)' ) J s XD (i

(IR e

n
Zan,sz (er u2)
I, I, I3 =

dulduz

dulduz.

by transformations (13) and (14). Also by considering (16),

fwa (1) ZankD (ur, wo)| durdun < (n + 1) fw“ (ul)dulduz
wp () |-
Iy
3(n+1) ,,+1 3("”) n+1
= (n+ 1) f f Wa (1) dulduz—(n+1) f f Da EZi))dul dity
3y 3uy “e

3(Vl+l

< (n+1)2y(ﬁ) fduz < (n+1)y(ﬁ).

0
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Thus we get

Jug < (n+1)wa(||f—5||)7/(ﬁ)'

When I'; is divided into two parts as in the proof of Theorem 2.1, by considering (15)

’ Ay 0
I, . = I: < —0
2 {(ulruz) € uz — 3(7’[ + 1)}/
” an0
I, : = I: > .
) {(Ulfuz) el u > 30+ 1)},

we get [, = ];,2 + ];,2, where

Jia=wait=sl) [ % y
1_; k=0

duldu2

Ak Dy (u1, u2)

i (D1 (1, w)| + Dy, (11, u2)| + D 5 (11, 102)|) dundlu,

and

dulduz

anx Dy (u1, u2)
0

= oule-si) [ 2y
r,

An (’Hk,l (M1,u2)| + ‘Hk,2 (u1, M2)| + |Hk,3 (1, M2)|) duydily.

By considering (17) and (18), we obtain

n,0

3mn+1) 1
Wy (ul) Wy (Ll1
kD (1, )| durdu < dind
fwﬁ ) Zﬂ KD} 1 (ua, uz)| dunduy < ffu 2a0p (1) urduy
FZ n+1
an n+1)y( +1) ifae<lorf>0
T3m+1) | (n+1)y(;i)logn+1), ifa=1andp=0.

<ang Y +) ifa<lorp>0
" ) og(n+1), ifa=1landp=0.
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Also we get

4,0

3m+) 1
Wy (ul) Wy (ul)
nikD , )| durduy < durd
[wﬁ(ul) kZa KDy, ; (uy, up)| durduy < nffulwﬂ T
T, n+1

1

1
an,0 w, (1) duy <a Of w, (1) duy
— n,

3(1’1 + 1) g ulwﬁ (ul) J u%wﬁ (Ml)
. (n+1y (), ifa<lorf>0
a
- (n+1)y (nl?)log(n +1), ifa=1landB=0.

for j = 2,3. These last two estimates gives

ife<lorf>0

, 7/(+)
t— n 1)
Jiz % @plt=slharo(n + { Jlog(n+1), ifa=1andf=0.

v (7

Now we need to compute the integral

o= oplie=sh) [S2r
ry

n
= wp (It - sl f o EZS;M (1FEa G, 102)] + [l G, 12)] + [Fls (g, 1)) iy i

2

an kD (u1, uo)| durdus

If we consider (17) and (18), we get

3(n+1)
fwa (1) Zﬂnkal(Ml/Mz) durduy = ff @a (11) durduy
, ©B (u1) =0 wiwg (uy)
T

2 3(n+1) n+1

1

1- a0 Wy (ul) y(
S (3(n " 1))fu§a)ﬁ (ul)dmduz b { (#

n+l

+) ifae<lorf>0
) og(n+1), ifa=1landpB=0.
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(23) and (24) give

3(n+1

fa)a (w1) Zanka](uerZ )| durduy = ff Wa (1) (i)dulduz
wp () |- uipwg (1) \ 1y
, n,0 1

’
rz 3(n+1)

1 ;(n+1)w (l)
3 (k+1) a i 2 (k+1)
(ano)szf : Ay (t) dt<log( )Z f ac)t;a((ll/g)k (k+1))

3(‘)l3

71

3 = (k+1)

wa (1/K) 1\ v wa (1/k) Ang
Q%@sz?www”““%@J;mmWT

for j = 2,3. Thus, we obtain

) (7/(#)+ Z)/(%)A;k)IOg(ﬂ:,o)' ifa<lorp>0
Jup S wp (It =sll) S .

()/ ﬁ)+k§y %) %")log(ﬁo)log(n+1), ifa=Tand =0

Thus we get
ano(n+1)(y(nl?)+ iy(%)%)log(t) ifa<lorp>0

Tz < wp (It = sl) o

ano(n+1)(y ﬁ)+ Yy %)%")1 g( )log(n+1) ifa=1landf=0

k=1

Now we need to compute the integral

Tna = g (It - wfww”

= wp (IIt = sl)) IZZ E:Z;;an,k (|Hia (1, u2)| + [Hiz (11, 12)| + |His (1, 102)]) durdy.

du1du2

Zan kD (ul/ uz)

k=0

1306
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By considering (22) and (7), we have

Wy (ul)
rf“)ﬁ ) ;ﬂn kHi1 (u, uz)

Wa ul) 1 )
duldu2 ffu wﬁ (ul) ﬂuz dulduz

3( n+1)

1

wa (Bit2) ( 1 ) 2] wa (Bit2) ( 1 ) ( 1 )
durdu, < = —1 — A, | — |dud
- 3 ffuluza)ﬁ (31/[2) TtUp that 3 Mza)ﬁ (3112) 08 3112 TtUp theth

3(n+1) 3(n+1)
1 3 (n+1) s
a) —_—
<tog(n+1) [y (s <togu1) [ (&),
Upwp (Bup) TtUp wg ( 3 )
BT :
7(k+1) 3(k+1)

log(n+1)z f ( ) t)dt<log(n+1)z f w“(gl/;{k) (k 1))
3 (k+1)

a2 )5

k=1

For (23) and (24), we have

fwa (u1)
wp (u1)

T3

T1
Zﬂn kHi,j (u1, up)| durduy = ff @a (1) (i)dulduz
urtpwg (ur)” " \ 1y

n+1 3(n+1)

1
= M Wy (U1) i
- fulwﬁ s log (n+ D) A, ( )du1 <log(n+1)fulwﬁ Ay ( )du1

n+l n+1

2 (n+1) 3
log(n+1)f wa(ul) n )du1 log ((n + 1)) f a)a( )

(Ml Uy Tty

n+1

2 (k+1) ( ) 2 (k+1)
Tt

:log(n+l)Zf ¥ )A (t)dt<log(n+1Zf (k+1))

k+1)
a(t)

1 n
X 1\ Ak
<log<n+1>Z f e e Lo (F) 5
3

k k=1

Tz

for j = 2,3. Thus, we get

S (1) A
Ju3 Swﬁ(||t—5||)10g(7’l+1)2)/(%) kk
=1
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Thus we get
e (9 =2 S)] _ ano(n +1) (V(ﬁ) * éj(%) %)bg(ﬁ), ifa<lorf>0
wg (It =sll) ano(n + 1)(7/(%) + fy( ) nk)log( )log(n +1), ifa=1andp=0.
k=1

where t # s which gives A“. The proof is finished by combining (11) and (25). O

4. Norlund and Riesz means

We close this paper by displaying some special cases of matrix mean such as Nérlund and Riesz means
which we conclude from Theorem 2.1 and Theorem 2.2. We will not mention exactly the proofs but the
interested reader can easily fill in the details.

Case1: Let p = (pr) be nonincreasing sequence of positive real numbers. If we take

n
where P, := ) px, then A = (a,,;) satisfies (8), (9) and (10), and T,(qA) becomes the Riesz mean
k=0

Ru(pif) = o Y pisi(h:
" k=0

Theorem 2.1 gives

(n+1)5 longZ)/(%)% ifa<lorf>0
If = Ratw3 Allc, i 1+ )2 og (1 + Do (2 )kéV(%) B ifa=1andpoo0 (29)
and Theorem 2.2 yields
(n+1)5 log (£ )Z)/(%)%, ifa<lorp>0
If - Ruti D], < (30)

n+1)k log(n+1)log( )éﬂ/(%)%, ifa=1landp=0

for f € H*(Q).
Case II: Let p = (px) be nondecreasing sequence of positive real numbers. In this case the matrix A = (a,,)
with entries

Puk
=l B 0<k<n
’ 0, k> n.

where P, := ), pi, then A = (a, ) satisfies (8), (9) and (10), and Tff‘) becomes the Norlund mean
k=0

Nu(p; f) = PLZPn—kSk(f)
" k=0
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Theorem 2.1 gives

(n+1)p”log( ")Zy( )%, ifa<lorp>0

=

k
_Nn( ; ) o S n (31)
”f pf“CH(Q) (n +1)p” log(n+1)log< )Zy(}()%, ifa=1land =0
k=1
and Theorem 2.2 yields
n+1)k log( )Zy(%)%, ifa<lorf>0
|f = Nutwi P, < " g (32)
(n+ D log(n+1)log (72) Ly (}) %, ifa=1landf=0
k=1

for f € H*= (Q) where Qui == i Po-
v=n-k
Case 1II: If we take px = 1(k = 0,1,...), Ru(p; f) and N,,(p; f) become (C, 1) means S.(f) and both of (29)
and (31) reduce to

1 log(n+1)i)/(%), ife<lorf>0
k=1

=S S 757 -
”f f||CH(Q) n+1 (log(ﬂ+1))227(%)/ ife=landp=0
k=1

for f € H**(Q) and both of (30) and (32) yields

sl < BRI fa<torpzo
" Yn < =
@7+ (log(n+ P Ly (1), ifa=landp=0
k=1

for f € H% (Q) which proved in [6].
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