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Abstract. In the current work, we use the (M,N)-Lucas Polynomials to introduce a new family of holo-
morphic and bi-univalent functions which involve a linear combination between Bazilevi¢ functions and
B-pseudo-starlike function defined in the unit disk D and establish upper bounds for the second and third
coefficients of functions belongs to this new family. Also, we discuss Fekete-Szeg® problem in this new
family.

1. Introduction

The Lucas Polynomials plays an important role in a diversity of disciplines as the mathematical, statis-
tical, physical and engineering sciences (see, for example [10, 14, 38]).

Let A stands for the collection of functions f that are holomorphic in the unit disk D = {z € C : |z] < 1}
that have the form:

fz)=z+ Z a,z". 1
n=2
Further, let S indicate the sub-collection of the set A containing functions from D satisfying (1) which are

univalent in . According to the Koebe one-quarter theorem (see [9]), every function f € S has an inverse
f7! defined by f~1(f(2)) = z, (z € D) and f(f(w)) = w, (lw| < ro(f), ro(f) > 1), where

f_l(w) =w - ﬂ2w2 + (2&% - ll3) w3 - (50; - 5a2a3 + a4) w4 4o,

(2)
A function f € A is said to be bi-univalent in D if both f and f~! are univalent in D, let we name
by the notation X the set of bi-univalent functions in D satisfying (1). In fact, Srivastava et al. [28] have
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actually revived the study of holomorphic and bi-univalent functions in recent years, recalling the following
examples of functions in the class X:

1+ z)
1-z)
The Koebe function is not a member of the bi-univalent function class X, same as other common examples

of functions in S such as:
z2 z
TR 12

Their work was followed by such articles as those by Frasin and Aouf [11], Altinkaya and Yalgin [2],
Srivastava and Wanas [29], Srivastava et al. [26] and others (see, for example [8, 17, 18, 20-25, 30, 32-37]).

More pioneering work was made by Srivastava et al. in [27] where they studied coefficients of mero-
morphic bi-univalent functions.

Lewin [13] was the first to investigate the class of bi-univalent functions, showing that the first coefficient

of the Taylor series expansion of a bi-univalent function satisfies |a,| < 1.51.
Brannan and Clunie [6] conjectured that |a| < V2 for f € L and Netanyahu [16] showed that max |a,| = %.
The coefficient estimate problem for each of the coefficients |a,| (1 € N\ {1, 2}) is still an open problem.
A function f € A is called Bazilevi¢ function in D if (see [19])

<o {Zl‘“f'(z)

z 1
E, —log(l - Z), E log(

}>0, (zeD,a > 0).

(f@)"™
A function f € A is called p-pseudo-starlike function in I if (see [5])
’ p
Re{z(;%)))} >0, (zeD,p=1).

We use the definition of subordination between holomorphic functions: let the functions f and g be
holomorphic in D, we say that the function f is subordinate to g, if there exists a Schwarz function w
holomorphic in D with w(0) = 0 and |w(z)] < 1 (z € D) such that f(z) = g(w(z)). This subordination is
indicated by f < g or f(z) < g(z) (z € D) (see [15]).

For the polynomials M(x) and N(x) with real coefficients, the (M,N)-Lucas Polynomials Ly;x(x) are
defined by the following recurrence relation (see [12]):

Lyni(x) = M(x)Lynj-1(x) + N(x)Lynx—2(x) (k> 2),
with
Lyno(x) =2, Lynai(x) = M(x),

Luna(x) = MP(x) + 2N(x),  Lyns(x) = M>(x) + 3M(x)N(x). ©)
The generating function of the (M,N)-Lucas Polynomial Ly;x(x) (see [14]) is given by

2 — M(x)z

T . = L k — .
L (Mr N/ X, Z) Z M,N,k(x)z 1— M(X)Z _ N(X)Zz

k=2

Note that for particular values of M and N, the (M, N)-polynomial L,(x) leads to various polynomials,
among those, we list few cases here (see, for more details [3]):

(i) For M(x) = x and N(x) = 1, we obtain the Lucas polynomials L, (x).

(ii) For M(x) = 2x and N(x) = 1, we obtain the Pell-Lucas polynomials Q,,(x).

(iii) For M(x) = 1 and N(x) = 2x, we obtain the Jacobsthal-Lucas polynomials j,(x).

(iv) For M(x) = 3x and N(x) = —2, we obtain the Fermat-Lucas polynomials f,(x).

(v) For M(x) = 2x and N(x) = -1, we have the Chebyshev polynomials T, (x) of the first kind.
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2. Main Results
We begin this section by defining the family .Zun(A, @, §; x) as follows:

Definition 2.1. For0< A <1, a > 0; 8 > 1 let Lun(A, a, B; x) denote the subclass of Z such that

1-a g7 ’ B
201 (@)

(1-2) o R T (M,N;x,z) — 1
and
W (Fw)  w((fe))
(1-21) @) +A ) <TL(M,N;x,w) -1,

where f~ is given by (2).

In particular, if we choose « = A = 0 or A = B = 1 in Definition 2.1, we have .Zyn(0,0,8;x) =
Zun(1, a,1;x) == P;(0;x) for the family of functions f € L given by (1) and satisfying the following
subordinations:

z2f'(2)
f@)

<T.(M,N;x,z)—1

and

w(fw)

i) <Ty(M,N;x,w) — 1.

2f'(2) ' 1
@ <T.(1,0;x,2)— 1= T

If M(x) = 2, N() = —1 then 2@ < T, 2x,~1ix,2) -1 = —
- - f(z LA T 1=2xz+22

Theorem 2.2. For0 <A <1, a>0andp > 1, let f belongs to the family Lun(A, @, B; x) and N(x) # 0;
let denote

If M(x) =1,N(x) = 0 then

QW a,B) = (1- A+ 1)+ A28 - 1), 4)
V2 M) IMG)]

E(A, a, B, M(x), N(x)) =
\/|[(1 - Ma+2)(a+1)+2A828 - 1) —2Q%(A, a, B)] M?(x) — 4Q%(A, a,ﬁ)N(x)(
and
F(A, a8, M(x)) = %;
then
las| < min {E(A, @, B, M(x), N(x)), F(A, @, B, M(x))}
and

i < M@ M)
TN ) A-A)@+2)+AGR-1)
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Proof. Suppose that f € Zyn(A, a, B; x). Then there exists two holomorphic functions ¢, ¢ : D — D given

by
P@)=rnz+n+r+--- (zeD)
and
Y(w) = s 1w+ 5w + 550+ (w e D),
$@2)] <1,

272 z(f @)
o e

with ¢(0) = 1(0) = 0,

1/z(w)) <1, z,w € D such that

1-2)

and
wl—a (f‘l(w)), 1 w ((f—l (w))/)‘6
(f1 @)™ fw
= =1+ Lyno(¥) + Lani ()9 (w) + Lyyn2 () (w) + - -+
Combining (5), (6), (7) and (8), yield

272 z(F )
(fz)"™ e

(1-4)

(1-4)

and

o (@) w((w))

ey T @)

=1+ LM,NJ(X)SlZU + [LM,N,l(X)Sz + LM/le(X)S%] w2 + e

(1-4)

It is quite well-known that if |qb(z)) <land |¢(w)| <1,z,weD, weget
|r]-‘ <1 and (sj| <1(jeN).
In the light of (9) and (10), after simplifying, we find that

[(1=A)a+1)+ A2 -] az = Luna(x)ry,

[(1 = A)a +2) + AGB - 1)]as + [%(1 )@+ @—1)+ A (2B —-2) + 1)] 2

= Lyn1(0)r2 + Lyna ()73,

—[1=M(a+1)+A2B—-1)]az = Lyni(x)s1

and

[(1- D)@ +2) + AGS — )] (262 - as) + [%(1 @+ @—1)+A(2BE-2) + 1)] 2

= Ly (x)s2 + Lyn2(x)s3.

= —1 + Lyno(x) + Lyni (0)(2) + Ly ()% (z) + -« -

=1+ Lyni(x)riz+ [LM,N,l (x)r2 + LM,N,z(x)T’ﬂ 4

(5)

(6)

(10)

(11)

(12)

(13)

(14)

(15)
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It follows from (12) and (14) that
r = -5
and
2[(1-Aa+1) + A2 -V a3 = L3, (1)} +52).
If we add (13) to (15), we obtain
(1= A)a+2)(a+1)+2A8(28 — 1)] a5 = Lyuni(x)(r2 + 52) + Lo (x)(1] + 7).

Substituting the value of rf + sf from (17) in the right hand side of (18), we deduce that

2LpN2(x)

Q*(A\, a, B)| a5 = L (x)(r2 + 52),
le\/I,N,l(x)

[(1 “ M a+2)(@+1)+2A8(28-1) -

where Q(A, a, B) is given by (4).
Moreover computations using (3), (11) and (19), we find that

V2 IM@)| M)

laz| <

From (12) and (14) we can also obtain

|Lain1 ()] M)
las]| < < .
IT-MDa+D)+A2-1) " 1-Ma+1D)+A2-1)
Next, if we subtract (15) from (13), we can easily see that
2[(1 = A) @ +2) + ABB - 1)] (a3 — 33) = Lyn1(x)(r2 = 52) + Lyn2(x)(r = s7).
In view of (16) and (17), we get from (21)

3 Ly ()
T 202(A, a, B)

Ly (x) (ra —
2[1=M)(@+2)+AGBB-1] °

as (] +57) + 52)-

Thus applying (3), we conclude that

M?(x) M)l
|as| < + .
Q*(A, o, B) A=A)a+2)+ABL-1)
O
Putting A = f = 1 in Theorem 2.2, we conclude the following result:

Corollary 2.3. If f belongs to the family P, (0; x), then

M(x)
2N(x)

a2] < M) ‘

and

las| < M2(x) + 'MZ(")' .

\/1[(1 — )@ +2)(@ + 1) +2AB(2B — 1) — 2Q2(A, v, B)] M2(x) — 4Q2(A, a, ﬁ)N(x)|'

1041

(16)

(17)

(18)

(19)

(20)

(21)
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The previous result was obtained in Corollary 1 from [3].

Remark 2.4. The class Zyun(A, a, B; x) is a generalization of many classes considered earlier:

(i) Ifa =0,A = 0 then £un(0,0, B;x) = Py(0; x) from [3].

(it) If A = 0 then Zyn(0, a, B; x) = BE(1,0) from [4].

(iii) If « = 0,A = 0,M(x) = x,N(x) = 1 and from article [1] a = 2,b = 1,p = 1,q = 1,A = 0 then
gMN(O, O, ﬁ,’ X) = S;(O, X).

(iv)Ifa =0,A =1then Lyun(1, a, B;x) = Gz (B, P(0); x) from [31].

W Ifa=0A=0Mx) =2x,Nx) =-1lorp =174 =1M(x) = 2x,N(x) = -1 then Lun(0,0,8;x) =
ZLun(l, o, 1;x) = BL(, t) from [7].

(i) If f € LA, a,B;x) then f € Tx(A, a, B;1) from [30].

From Theorem 2.2, in particular cases, one can reobtain the same type of results for the classes mentioned above.

Remark 2.5. In the estimation of |ay|, the minimum depends on M(x) and N(x).
z-f'(z
In the case M(x) = 1,N(x) =0, a = A =0 or (A = B = 1) we obtain for f(z) = I iz then fj(czg ) =7 iz 50
f € %un(0,0,8;x) = Lun(1,a, 1;x), but f(z) =z-(1+z+2*+...) = z+ 2> + 2> + ... is Koebe's convex function
which E(0,0,8,1,0) = oo, F(0,0,B,1) = 1, hence |ay| < 1 and this is the best estimation.

In the next theorem, we discuss ”the Fekete-Szeg6 Problem” for the family Zyn(A, a, B; x).

Theorem 2.6. For0<A<1,a>0,>1and 6 R, let f € A belongs to the family Lyun(A, a, B;x). Then

M@l _ 1
T @+ +AGF 1)’ for 1B =11 < s ¢

402(\a,B)N(x)

x|(1 = A)(@ +2)(a +1) + 2A(2p - 1) - 20%(A, o, f) - LB

2AME)PI6-1] .
[[(1=A)(@+2)(a+1)+2AB(2p-1)-2Q2 (A, ) | M2 (x)-4Q2 (A, H)N(x)|

|a3 — o3| <

for |6 -

1
1= 2[(1—A)(a+2)+/\(3ﬁ—1)]x

402 (M, a,p)N(x)
M2 (X) 7

X |(1=A)a+2)(a+ 1)+ 2AB(2B — 1) — 2Q%(A, a, B) —
where Q(A, a, B) is given by (4).
Proof. By making use of (19) and (21), we conclude that

L%,N,l(x)(f’z +53)
[ —A)a+2)(a+1)+2A8(28 - 1)] LIZVI,N,l(x) —202(A, a, B)Lyn2(x)
LN (x)(r2 — $2)
2[(1 - A)a+2)+ ABB - 1)]

= Ly (x) [((P((S} x) + 5

s — 6a3 = (1-0)

1
[(T=)@+2)+ A@p- 1)])“

( / )
W] ere

LIZM/N/l(x)(l —-90)
[(A-A)a+2)a+1)+2AB2B-1)] L%A,Nll(x) - 202(A, &, B)Lyina(x)

P(6;%) =
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According to (3), we find that

IM(x)| . 1
A-Na+2)+AGp-1)” 0< |(P(6' x)| < 2[A-M)(a+2)+ABp-1)]”

|tl3 - 6€l§| <

2IM(x)||(5; x)

. 1
, |§0(6' x)| 2 [N @+2AG-D]”

After some computations, we obtain the desired result. [J

Putting A = = 1 in Theorem 2.6, we conclude the following result:

Corollary 2.7. If f belongs to the family P;(0; x), then

M N
M, for 16 -1 < 54,

2
|a3 - 6[12| <
IM@)Pls-1] , IN()l
NG for [6-1| = Q)

Putting 6 = 1 in Theorem 2.6, we conclude the following result:

Corollary 2.8. If f belongs to the family £yn(A, a, B; x), then

IM(x)|
A-ANa+2)+A@-1)

|Ll3 - ﬂ%) <
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