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L7 extremal polynomials (0 < p < o) in the presence of a denumerable
set of mass points
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Abstract. We study, for all p > 0 the asymptotic behavior of L extremal polynomials with respect to the
measure @ = f§ + Y, a denotes a positive measure whose support is the unit circle I' plus a denumerable set
of mass points, which accumulate at I' and satisfy Blaschke’s condition and = 8, + B, s the absolutely
continuous part of the measure satisfies Szegt condition and S the singular part. Our main result is the
explicit strong asymptotic formulas for the L¥ extremal polynomials.

1. Introduction

Let o be a finite positive Borel measure with an infinite compact support in the complex plane. We
denote T, ;.(z) = 2" + Ay_12" Y + ...+ ag, a1, ..., a0 € C, the monic polynomial of degree n with respect to
measure a. Then the extremal or general Chebyshev polynomial T}, is a monic polynomial that minimize
the LP(a) norm in the set of monic polynomials of degree n

mn,p(a) = ”Tn,p,a”U;(a) = min{”Qn”Ln(a) 1 Qp (Z) =z"+ an_1Z”_1 + ...+ {10} .

For p = 2, we have the special case of orthogonal polynomials with respect to the measure a. A large
number of works have been done on this subject; see, for example [2], [3].

A series of results concerning the asymptotics of the L extremal polynomials was established. In [1]
Geronimus has given such asymptotics in the case where the support of the measure « is a rectifiable
Jordan curve with some smoothness condition. An extension of the Geronimus'’s result has been given by
Kaliaguine [5], where the measure is supported by a rectifiable Jordan curve plus a finit number of mass
points. In [8] Laskri, Benzine have obtained the asymptotics of L” extremal polynomials on a complete
curve plus an infinite number of mass points with some conditions of smoothness. Recently, X. Li and K.
Pan [4] investigated the zero distributions of L7 extremal polynomials on the unit circle (1 < p < o).

In this note we shall study the power asymptotic of the L7(a) extremal polynomials T, outside the
unit circle I We are also inspired by the work of Peherstorfer and Yuditskii [6] and Bello Hernandez,
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Marcellan and Minguez [7] to reach the desired asymptotic formula for L7 extremal polynomials T}, p,q.
However, we can use a new technic due to Peherstorfer and Yuditskii [6]. In which the authors showed the
asymptotic formula for the orthogonal polynomials, their method based on the use of a measure concentred
on a segment plus an infinite points. we try to carry over some of the main ideas of [6] for L () extremal
polynomials with the necessary modification imposed by the nature of our problem, we can show the
asymptotic formula for the case of L¥(«) extremal polynomials. First of all, we set some notations.

LetI' ={zeC:|z|=1},G = {z € C: |z| > 1} the exterior of the unit circle and let & be a measure which
has a decomposition of the form

a=p+y=pFatps+y, (1)

where f3, is the absolutely continuous part of f with supp(B,) = I, respect to the Lebesgue measure |d(]
on [-7, +7t], that is

du(Q) = p(Q)1dC|, p = 0; p € L' ([-7, +7],1dC]), (2)
and supp(Bs) C T ( Bs the singular part of f) and y is a point measure supported on {z};_,, (|z¢| > 1), that

is

y = ;Akézk,Ak > 0and ;Ak < o0, 3)

where each 6, is the Dirac measure at the point z;. Suppose that the absolutely continuous part §, of j3,
satisfies the following Szego condition :

fr log (p (0)) ldC| > —co, (4)

Condition (4) allows us to construct the so-colled Szegt function Dg, associated with G and the weight
function p(C) with the following properties [5]:

(i) Dgp(z)is analyticin G, Dg (z) # 0, Dg,p(e0) > 0,

P CeT.

(i1) Dg,p(z) has boundary values almost everywhere on I' such that p(C) = |Dc,p(C)

The following function is the Szegé function for the domain G :

21 i6
Dc,p(z)=exp{—i fo ulog(p(@))d@}.

2pm z —eif

One can find in the literature several technics to solve the problem of the asymptotic behavior of L”
extremal polynomials.

The technic that we use consists to generate and to study some sequences of extremal problems in Hardy
spaces.

2. Asymptotic behavior

Let I be a unit circle, and the support of the measure « is I plus an infinite discrete set of mass points
which accumulate on I'. We associated to the measures 8, and a the extremal constants 11, ,(8,), m,,,(a) and
the L¥ extremal polynomial T}, 6, T p,a, as follows :

minp(Be) = [Tupp ey = , min - {1Qulloo)} (5)

(2)=
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Mp(@) = [Tl = MIn{1Qulr @y, Qu @) = 2" + ., 6)

with

7 7)

17 = [ 1@ P+ [ @ dpe Y sl e

||erL]P(I‘) = ]1:|f (C)lp p Q) 1dC]. (8)

We pose 0 < p < 1. The optimal solution ¢* of the following extremal problem :

inf{HﬁDIIZP(G,p),@ € H'(G, p), ¢ (e0) = 1}, o)
is given by
.y Dcp(e)
(P (Z) - Dc/p(z) 7 (10)

i.e., the infinimum (9) denote u(f;) is reached for (9):

P

P Ak G0

H(Bo) = | =D, () = D} (0), (11)
where Z)r,p, Szego function associated with the unit disk and the weight function p and the analytic
function ¢* belongs to H?(G, p) if and only if ¢*(z)Dg,(z) € HP(G), where HP(G) is the usual Hardy space
associated with the exterior G of the unit circle.
We denote by p(a) the extremal value of the problem:

u(@) = inf{“(pHZp o # EHG P () = 1) =0,k=12, } (12)
We denote by
i g
B(Z)_gz_k—l Zk !

the Blaschke product and we denote by ¢*(z) = ¢*(z)B(z) is an extremal function of problem (12). The
optimal values of the problems (9) and (12) are connected by:

(e -p
p(Ba) = (H |Zk|) p(a). (13)
k=1

Lemma 2.1. [5] If f(z) € HP(G, p), then for every compact set K C G there is a constant C(K) (C(K) depending only
on K ) such that :

sup {|f(2)] : z € K} < C(K) f||Hp(G,p).
Lemma 2.2. [5] Let {f,,} be a sequence of functions in HP(G, p) and
() fu. — f uniformly on the compact sets of G,

(ii) ||fn||:!,,(c,p) < M (constant),
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then

feH(G,p) and || f||’;p<crp) < lim inf|| fn“L},(Glp) .

Definition 2.3. If the measure a = B, + s + v is such that a verifies the condition (4) and its discrete part verifies

Y (1 -1z < oo,
k=1

then we say that a € &.

Theorem 2.4. Let I be the unit circle and a = f, + s + 7y, such that a € &, and Dg,,, the Szegd function associated
with G, then

0 lim (@) = {p (@),

Tn,p,a (a) _ DG,,D(OO)

=0
zZ" Dg,p(2)

HP(G,p)

B(2)

(ii) lim

Dg p(00) o 7 2
) 2oz Bl g, ),
Dep(2) j=12zk =1 zk

(iif) Tn,p,a (z) =2"
€ (z) = 0 uniformly on the compact sets of G.
Proof. First, we will prove the inequality follow
lim sup m,, (@) < {u @) .

Let Dr . be a function analytic belong C*(T') such that mrin |Z)r,p,€ (C)| > 1 and by hypothesis irrlf |Z)r,p,€ (C)| >
0and

fr 1D e @ - [Dr, @F |1l < &, (€ > 0), (14)

1 _
we put e = rnlgx |Z)r,p,g (C)| .

In the following, let n where 7 <1and 0 <7 <7 (e€). Let as define a smooth function xe,

1 - -
Dm0 C¢Ts U~1"Jr U~1"_
Xen(©) =1 1 CeTNTLUT.
IC+1P Cel.,
and
1 -
L1 S xey(Q) S ———  YCeT.\Iy,
! |Df,p,s (C)|
where

ri={C€F:|Cil|2S

N

broet={cer:ce1f<y),

and

f dps <n, sl <. (15)
T\T,
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It’s clear that x., (C) is differentiable and

|Drpe (©) xeq (O] <1, (16)

also
D1, () < % (17)

Hence, by the above settings

0 <log _1 log Dr e (0) < f lo ! |4C] .

Xon (0) Eotor 8 Xen (© Drpe (O

1 1 1
0< lo dac| + lo dC| + log — dC|=o(1), -0,
L 8 gy ¢ fr 8 F gy C gnL|C| M, 7

implies x, (0) Dr,pe (0) = 1 except in the neighbors of the two points +1,77 — 0, — 0.
We see that the function By, is regular and (Bx.,)" € L*(I'), implies the uniform convergence of the
Fourie’s serie on T, also

1
ml§1X|(BXe,W) (C)’ < max m‘ <1, (18)
Qn,e,n the Fourie’s some of n order of the function B Xen,80¥e >0,Yn>0,dm (,n):
sup | Quen (O] < |(Quen = xen) O + e (@] <2, (19)
nzrn(e,q)
and for all €, n) fixed
||BX€,1] - Qn,e,n“Lw(r) — 0,n — oo. (20)
So taking into account that (17), (18), (20):
||DT,P£Q”,€,'1HU(F) < ”D rpeB Q”/E"’“U’(r) + ”DF'P'G (BXG’” a Q”’E’”) L/(r)
= ”Z)rrp/eBQ”fﬂ“Lp(r) + ”Dl",p,EHLp(r) H(BXG/TI - Qnﬁr'l) L)
< l+e,Yn=s(e,n). (21)
Consequently, by using the following formulas (14), (19), and (21):
”DI‘,an,e,r]”U(r) = L\()Dr,pr, - |Dr,p,e|p + )Dr,p,er}) |Qn,e,1] (C)|p |dC|
< (1+e) + fr (190" = |Drpel’) [Quen ©[ 14
< 1+pe +2P¢?,¥n = max (m,s), (22)

forn — co,n — 0,61 = 0,6 — 0.
For the singular measure ; we have

||Qn,€,7)||Lp(ﬁ5) = ||DF'PBX€'U”U’(135)

[ f [xeq O dps + f |Xe,r,(C)|pdﬁs]p+°(1),
T T\I's

IA
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due to (15), we get

1Queall, g, < Cn7 +0 ), n— . 29

At last, for the discrete measure y we have, for fixed €, 1 and with the Blaschke product equal zero in
the points z; then,

||Qn,e,n||u,(y) = ”BXe,n - Q”£/’7“L!’(y) =o(l), n— oo, (24)
Indeed, if we notice that

Qnen () = Bxen ) +...,

by using (6) we get, with the help of (22), (23) and (24)

1 1
mn,p(a) < Nl =CQunen =TT ”Qn,e,n”Lp(a)
(BXe,n) (0) @ (BXe,r]) (0)
1+ pe; + 2P€P
(BX e,n) (0)
Finally, by using (11), (13) we obtain
lim sup (@) < D p(e0) [ [ 1zl = (wBa) [ [ 12l = (u@) - (25)
k=1 k=1

To get rid of the assumption that ’Dr,p| is bounded from below we use the following standard trick. We
define

|Drc @ = |Drp(Qf +€,CeT (e>0). (26)

Note that |Z)r,p,g( is bounded from below. The extremal properties of T}, p,» and T}, ;4. imply

mn,p(a) 2 mn,p(ae)/ (27)
with
Mp(@e) = |[Tupa. ()

Iy = [V @F [orpd i [1F@F dsi+ Y Al sl
k=1
We also have (see [7, Theorem 2])
Tim 1y, (0) = [Dr e O] 2l (28)
k=1

Since Dr ¢ (0) = Dr, (0),e — 0 using (25), (27), (28) we get
U (oz)%17 < lim infmy,p(a) < lim sup m,, ,(a) < {u (a)}flﬂ ,
n—oo n—oo

and (i) of theorem is proved.
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The function

1(Tupa(@) . 1(Tupa(®) |
®;(z>=§( Sty (z)) and®n<z>=§(’;—n—¢ (z)),
where ||111H1;p (Gp)’ tends to the following limits

@} (0) =1 and lim @} (z) = 0.
As in (i) of theorem we have

lim inf |17, ) = (@)

n—oo H
Finally, (ii) of theorem follows from an extension of the Keldysh lemma and the Clarkson inequality. [

For 0 < p < oo, we use the extension of the Keldysh lemma due to Bello Hernandez, Marcellan and
Minguez [7]. If we adapted this result to our case, we obtain the following version of the Keldysh lemma.

Lemma 2.5. Let {zx};., be a set of points in G,a = p+y = B, + s +y wherea € & and {f,} € HP(G, p),0 < p < 0.
Let

z)G,p(oo)
DG,p (Z) .

fu
w = —, where @* (z) =
9 o ¢

If

(@) lim g (e0) =1,

(b) 1}5130 gn(zr)=0,k=1,2,..,

© T (- 1) < o0,

@) 1m [l = Do) T .
Then

g —
H'G,p) — 0

tim |fo - ¢°B
We get (ii) of theorem in the case 0 < p < 1, by applying Lemma 2.5 to the sequence { fn = %} C HP(G, p),
We have
fa(0) =1 and ¢* (c0) = 1.

Hence (a) follows. On the other hand, (b) is a consequence of the fact that
@ (zx) #0and lim f, (z) =0,k =1,2, ...
n—oo

(c) is exactly the condition of convergence of the Blaschke product. We obtain (d) by (i) of theorem.
1

forl<p<2:
[ f o3 @ p(© |d¢|]” - [ f @, @ p(© |d¢|]
T T

1 » 1
< [Eﬁ)Tn,p,a (C)' P(C) |dC|+§j}"‘

1
p-1

1
p-1

v p© |d(:|]
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ForO0<p<1:
f ot ©f p (0 1dc| + f o, @[ p (0 14c|
T T

1 1 .
< E]r‘lT”'V'“ (C)'pP(C) |dC|+§£|¢ (C)|pp(C) |dc| .

To prove (iii)of theorem we consider the function
€n=Tupa—V",

which belongs to the space H?(G, p). Then by applying lemma 2.1, we obtain
sup {lex (2)] : z € K} < C(K) lleallgwc,p) — O,

for all compact subsets K of G. This achieves the proof of the theorem.
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