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relations over these spaces.

Abstract. In this paper we consider a systematic study of several new LP-boundedness properties for the
index ,F;-transform over the spaces L},,p(]RJr), 1<p<o,yelR and L°°(IR+). We also obtain Parseval-type

1. Introduction and preliminaries

This paper deals with the integral transform

E(y) = fo FORQ, a,y,xdx, y>0,

(1.1)
where

F(u,a,y,x) = 2F; (p+ % +iy, u+ % —iy;y+1,'—x)x“

and oF;(u + 1 +iy, u + 3 — iy; u + 1;—x) is the Gauss hypergeometric function. Here u and a are complex
numbers with Ru > -1/2.

The Gauss hypergeometric function [3, p. 57] is defined for |z| < 1 as
= (2), (), 2"
oFia, b;c;z) := 2‘0 %ﬁ M= AA+1)--(A+n—1), n=1,2...(A) := 1.

see also [2]. For |z| > 1 is defined as its analytic continuation [18, p. 431] as

) e ') b _p\eb-1(1 _ 4y-a . _
2Fi(a,b;c;z) = l"(b)l"(c—b)fot (1= 1 —t2)dt, Re>Rb>0; |arg(l—2)| < 7.

For more general definitions of the hypergeometric function ,F, (p, g € INU{0}) see [21]. Also for several
important developments concerning the hypergeometric and other higher transcendental functions see
[22].
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The Gauss hypergeometric function satisfies the following differential equation [3, p. 56]

2
z(1—z)‘;7f+[c—(a+b+1)z]”;—:’—abwzo,

where
w = w(z) = 2F1(a, b; c; ).

The integral transform (1.1) was first mentioned in [28] as a particular case of a more general integral
transform with the Meijer G-function as the kernel. Later in [1] it was also considered. In a series of papers
Hayek, Gonzalez and Negrin have considered several properties of the index ,F;-transform both from a
classical point of view and over spaces of generalized functions (cf. [8], [9], [10], [12], [13] and [14]).

First, we study LP-boundedness properties for the index Fi-transform (1.1) over the space LW(IRJr),
y € R, 1 < p < oo considered by Srivastava et al. in [20] and over the space L°°(]R+). In this sense we make
use of the notation considered in [20] and therefore we denote by L),,p(llh) the space of the complex-valued

measurable functions defined on R, such that

1/p

£l = (fo P +x)” dx) < (1.2)

for1 <p < oo and y € R, and we denote by L°°(]R+) the space of the complex-valued measurable functions
defined on R, such that

lIfllo = esssup {|f ()|} < co.

x€(0,00)

We also consider the integral operator

(Gg) (x) = fo gWF(, a, y,x)dy, x>0, (1.3)

which is related to the Olevskii transform (see [16] and [27]).
According to the results and formulas in previous papers [4] and [6], we obtain LP-boundedness prop-

erties for the index ,F;-transform over the spaces L),IP(IIL), 1<p<oo,yelR, and L°°(1R+).

Weighted norm inequalities for similar integral operators have been studied in several articles (see [4],
[19] and [20], amongst others).

By using results of section 2 of [4] we prove that the operator ® is bounded from the space LW,(]RJr) into
L),,pz(]RJ,), 1<p<oo,p+p =pp,whenevery >p—1land -1/p' < Ra <-1/p’ + Ru+1/2-y/p’. Also, for
y>0and 0 < Ra < Ry + 1/2, the operator ® is bounded from L},,l(]RJr) into L°°(]R+).

One has that under these conditions, if f,g € LW(]RJr), 1 < p < oo, then one obtains the Parseval-type
relation

[ Gpwowa= [ roe)wa 14
0 0
Let ®’ be the adjoint of the operator £, i.e.,

(O f,9) =, Og) . (15)

The aforementioned Parseval-type relation (1.4) allows us to obtain an interesting connection between
the operator " and the operator .
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We conclude that the operator &’ is the natural extension of the integral operator §, i.e.,

where T is given by:

<Tfg>= j; fx)g(x)dx. (1.6)

We also point out relevant connections of our work with various earlier related results (see [7], [15], [19],
[20], [25] and [26]).
From [3, (7), p. 122 and (6), p. 155], we obtain

F(u,a,y,x) =

C Tuexe (T
Val(u+3) Jo

which is valid for

(1+2x+2xGx+ Deosé) " (sinyde, (1.7)

1
x>0, y>0, %y>—§,aeC.

Observe that one has
siné >0, £€[0,m],
1+2yx+2x(x+1)cos& >0, x>0, £€][0,7],
and hence, it follows from (1.7) that

[F(u, o, )|

Ra
- (F(y + 1))x

< m j; ' (1+2x+2x(x+ 1)cos g)_m"% (sin £)2# d&
T (u+5

B (F(y + 1)) xRa

m fﬂ (1 +2x 4+ 2 /x(x + 1) cos 5)_%H_% (sin &K dE
| u+ > 0
1
P+ D[TRp+ ) Ry, Ra,0,0), Ry>—1/2 (1.8)
VA [0 (e + 3)| TRy + 1)

Also, from [3, (7), p. 122] and [17, p.171, Entry (12.08) and p. 172, Entry (12.20)], for Ry > —1/2 we have

F(Ry, Ra,0,) = O(x*), x— 07, (1.9)

F(Ry, Ra,0,x) = O(x®®dnx), x - +oo. (1.10)
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2. The operator § over the space L, ,(R;), 1 <p < o

In this section we study the behaviour of the operator § over the space LW(]RJr), l<p<o,yeR,
a, i € C. Indeed, by following [5, Proposition 2.1], we derive Theorem 2.1 below

Theorem 2.1. Let 1 <p < co, p+p’ =pp’. Then, forall y < -1, -1/p’ < Ra < Ru—-1/2+ (y +1)/p, and all
9,0 < g < oo, the operator § given by (1.3) is bounded from L},,p(]RJr) into Lm(]RJr). Furthermore, for all y € R and

-1/p' < Ra < Ru—1/2+ (y + 1)/p, then the operator & is bounded from Ly,;,(IRJr) into L°°<]R+).

Proof. By applying the Holder inequality we get

|&HW)| = ’fo FOF(u, a, y, x)dx
= F(u,a,v, d
< [ el Fsa, 0] i
= f |f(x)| 1+ x))’/p IF(y, a,y, x)| 1+ x)—?//P dx
0

00 1/P - /
< (L |f(x)|p (1+x) dx) : (fo |F(Hr a,y, x)|p (1 + 277 P

o , 1y’
= Ifll,p (f |F(y, a,y, x)"’ (1 +x)7¥'1P dx) , (2.1)
0

1/p’

which, from (1.8) and taking into account that Ry > —1/2, leads us to the following inequality
[ @l a+pray
0

0 0 aly’
<A1, f ( f IF ay, 0 (14 %7 dx) A+ ydy
0 0
IF(u + D|T(Rp + 1)
VA [ (s )| TR+ 1)

00 G/P/ 00
||f||?,,p (f F(Ru, Ra,0, x)P (1 +x)7PIP dx) ) j; 1 +y) dy

0
(2.2)
q/y’

T(u+1)|T(Ru+1 o
[F@+ TRy +3) “f”;/p( f F(m,m,o,x)fﬂ’(ux)W’/"dx) (1= @3)
) 0

- \r |T([,l+ %)'F(‘Klu+1

Now from (1.9) and (1.10), the integral in (2.3) converges under the conditions for this Theorem. So, we
have that the operator § is bounded from LW,(]RJr) into L?,,q(lRJr).
Analogously, one has

ess sup {|F f(x)l} (2.4)
x€(0,00)
w© , 1p
<|Ifll,,p esssup {(f |F(y,a, Y, x)|” 1+ x)_VP'/de) } 2.5)
x€(0,00) 0

T(u + D|T(Rp + 3)
VR[N (e )R +1

oo ) 1y
I, ( f [FRy, Ra, 0,2) (1 +x)-?/P’/de) : (2.6)
) 0
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We next observe that, under the conditions of this Theorem and by virtue of (1.9) and (1.10), the integral
in (2.6) converges. So, clearly, we have

13 flleo < ClIfllyp,
where C is a real constant depending on p and y. Consequently, the operator & is bounded from LW,(]RJr)
into L°°(]R+). O
3. The operator § on the space L, 1(R)

In this section we study the behaviour of the operator & over the space L;,,l(]RJr ), Yy €R, a,u €C. Indeed,
by following [5, Proposition 3.1], we derive Theorem 3.1 below

Theorem 3.1. Forally < -1and 0 < Ra < Ru+1/2+ 7y, and any q, 0 < g < oo, the operator § given by (1.3)
is bounded from L%1<IR+) into LM(]RJr). Also, forall y € Rand 0 < Ra < Ry + 1/2 + y, then the operator § is

bounded from L%l(llh) into L°°(1R+).

Proof. Note that

(@) =| fo FOR(,a,y,x)dx

< fom |fe|[F(u, @, y, x)| dx

= f |Fe| @+ x) [F(u, @, y,%)| (1 +x)7dx

f |f()| @ + x)dax - sup {W}

x€(0,00)

[F(u, a, y,x)| }
=lflly1: sup § —————¢,
17l xE(O,IZo){ (1 +x)

which, from (1.8) and taking into account that Ru > —1/2, leads us to the following inequality

(3.1)

fo (GO (1 +ydy

°° By, a,y,2)]) ) y
<I, f (xqoli’o){—mx)w }] 1+ yydy

T(u+1)|TRu+ 1 F(Ru, Ra, 0,
e e ) [
7'[|1"(,u+%)|1"(‘Ry+1) x€(0,00) (I +x)

[F(+ DI TRpt + 3) ( {F(%y, Ra, 0, ) }]" B
up {———————¢| - (-1-»)7"
V7 |F (y + %)‘ F(‘)"\y + 1) \xe(0,00) 1 +x)y

Therefore, in view of (1.9) and (1.10), we obtain

151y, < Clfllya

= IAIl,
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where C is a real constant depending on q and y. Consequently, the operator § is bounded from L, ; (]R+)
into Ly q(R.).
Similarly, by using (1.8), we get

F(u,a,y,x)
1T flleo < lIflly,1 - esssup sup {M}

y€(0,00) x€(0,00) (1 +x)
I(p+1)|TRp+ 1) F(Ry, Ra,0,)
VR [ (o 3)| TRy + 1) xe0m

which, in light of (1.9) and (1.10), yields to
15 flleo < ClIflly,1,
for a certain real constant C depending on y. Thus, clearly, the operator & is bounded from L;,ll(]RJ,) into

L*® (R+), which evidently completes the proof of Theorem 3.1. [

4. The operator § on the space L*(R)

In this section we study the behaviour of the operator § over the space L°°(]R+), a,u € C. Indeed, by
following [5, Proposition 4.1], we derive Theorem 4.1 below.

Theorem 4.1. For y < =1 and -1 < Ra < Ru—1/2, and any q, 0 < q < oo, the operator & given by (1.1) is
bounded from L°°(1R+) into LM(IRJr). Moreover, for y € Rand -1 < Ra < Ru — 1/2, the operator § is bounded

from L=(R, ) into L(R..).
Proof. One has
W< [ NG 0y < Ul [ G0
so that, for any g, 0 < g < oo, we get
GO < IFIE - ( fo R oy, x>|dx)q |
We thus find that
[ 1@nwra < [ ( [ e, x>|dx)q (1 +yrdy,

and, therefore, that

0o 0o q 1/q
||?sf||y,qs||f||m-( fo ( fo IF(y,a,y,x)Idx) (1+y)ydy) .

In view of (1.8), we have

IC(u + D|T(Rp + ) ( 00 0o 1/q
15 10 < I1flle - F(Ru, Rat, 0, 2)d )( 1+ yyd )
Hoa =11 VAT (p+ )| TR+ 1) fo AR fo o
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IF(u+ 1| TR+ 1)
VA [0 (s ) TR +1
Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. So, we have
18 £1ly.q < Cllflleo,

for certain real constant C depending on y and g. Therefore, the operator & is bounded from L* (IR+) into

Lyq(R.).
Also, in view of (1.8), we get

= flle - ( f ) F(Ru, Ra,0,x)dx | (=1 - )71/, 4.1)
) 0

I £l < IIflls - ess sup{ f IF(u, , y,x)|dx}

ye0,00) (Jo
[P + D[ TRyt + 3)
Y |r(y + %)‘ TRy +1)
Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. Hence we have
15 flleo < Cllfllo,

for certain real constant C. Consequently, the operator & is bounded from L°°(]R+) into L (1R+). O

||f||oo~f F(Ru, Ra, 0, x)dx. (4.2)
0

5. The operator ® over the space L, ,(R;),1<p < o
In this section we deal with the behaviour of the operator ® on the spaces Ly,,,(R+), y€Rand1 <p < oo.

Theorem 5.1. Set1 <p <ooandp+p’ =pp’. Thenforally >p—-1and -1/p’ < Ra < -1/p'+Ru+1/2-y/p,
the operator & given by (1.3) is bounded from Ly,p(IRJr) into Ly, (]R+).

Proof. Taking into account the hypothesis of this Theorem, using (1.8), (1.9) and (1.10), one has that
F(Ru, Ra,0,x) € L),,p(]lh) and moreover, since

* —yp’ p
(1 +y) 7y = L
j(: y / rp

from Proposition 2.1 in [4] the result holds. [

As a consequence of Proposition 2.2 in [4] one has
Theorem 5.2. Assumel <p < coandp+p’ =pp’, thenfory >p—-land -1/p’ < Ra < -1/p'+Ru+1/2-y/p’,
the following mixed Parseval-type relation holds

f (B0 = f FO(Gg)(dx,
0 0

for f,g € Ly,p(]RJr).
Also, as a consequence of Corollary 2.1 in [4] one has

Corollary 5.3. Assumel <p < coandp+p’ = pp’, thenfory >p—-1land -1/p’ < Ra < -1/p' +Ru+1/2-y/p,
one has for f € L),,p(]R+)

6Ty = Ty

on (L),,,,<]R+))/.
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6. The operator ® over the spaces L, 1(R)

This section is devoted to the study of the behaviour of the operator ® on the spaces L)/,l(lRJr).

Theorem 6.1. Ify > 0and 0 < Ra < Ry + 1/2, then the operator & given by (1.3) is bounded from L7,,1<1R+) into
L(R,).

Proof. Observe that for y > 0 and 0 < Ra < Ru + 1/2, and using (1.8), (1.9) and (1.10), we get that
F(Ru, Ra, 0, x) is essentially bounded of (0, o). Then from Proposition 2.1 in [4] the result holds. O

As a consequence of Proposition 2.1 in [4] we get the following mixed Parseval relation

Theorem 6.2. The following mixed Parseval relation holds
fo (§F)(x)g(x)dx = fo f)(Gg)(x)dx, (6.1)

for f,g € Ly,1(]R+) withy >0and 0 < Ra < Ry +1/2.
Also, as a consequence of Corollary 3.1 in [4] we have the following
Corollary 6.3. For f € Ly,l(RJr) withy > 0and 0 < Ra < Ry + 1/2 is holds that

6Ty = Tgs
on (LM(]RJr)),.

7. Conclusions

Starting from the properties of the Gaussian hypergeometric function and considering suitable condi-
tions on the parameters y and o, we have deduced some boundedness properties between LV spaces with
different weights for the operator & defined by the index »F-transform (1.1). Analogous boundedness have
been obtained for the operator ® given by (1.3) and related to the Olevskii integral transform.

In addition, Parseval-type relations have been derived for the operators § and ® over the L” spaces
considered.
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