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Abstract. In this paper we consider a systematic study of several new Lp-boundedness properties for the
index 2F1-transform over the spaces Lγ,p

(
R+

)
, 1 ≤ p < ∞, γ ∈ R, and L∞

(
R+

)
. We also obtain Parseval-type

relations over these spaces.

1. Introduction and preliminaries

This paper deals with the integral transform

F(y) =
∫
∞

0
f (x)F(µ, α, y, x)dx, y > 0, (1.1)

where
F(µ, α, y, x) = 2F1

(
µ +

1
2
+ iy, µ +

1
2
− iy;µ + 1;−x

)
xα

and 2F1(µ + 1
2 + iy, µ + 1

2 − iy;µ + 1;−x) is the Gauss hypergeometric function. Here µ and α are complex
numbers withℜµ > −1/2.

The Gauss hypergeometric function [3, p. 57] is defined for |z| < 1 as

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n!
, (λ)n := λ(λ + 1) · · · (λ + n − 1), n = 1, 2 . . . (λ)0 := 1.

see also [2]. For |z| ≥ 1 is defined as its analytic continuation [18, p. 431] as

2F1(a, b; c; z) :=
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−adt, ℜc >ℜb > 0; | arg(1 − z)| < π.

For more general definitions of the hypergeometric function pFq (p, q ∈N∪{0}) see [21]. Also for several
important developments concerning the hypergeometric and other higher transcendental functions see
[22].
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The Gauss hypergeometric function satisfies the following differential equation [3, p. 56]

z(1 − z)
d2w
dz2 + [c − (a + b + 1)z]

dw
dz
− abw = 0,

where

w = w(z) = 2F1(a, b; c; z).

The integral transform (1.1) was first mentioned in [28] as a particular case of a more general integral
transform with the Meijer G-function as the kernel. Later in [1] it was also considered. In a series of papers
Hayek, González and Negrı́n have considered several properties of the index 2F1-transform both from a
classical point of view and over spaces of generalized functions (cf. [8], [9], [10], [12], [13] and [14]).

First, we study Lp-boundedness properties for the index 2F1-transform (1.1) over the space Lγ,p
(
R+

)
,

γ ∈ R, 1 ≤ p < ∞ considered by Srivastava et al. in [20] and over the space L∞
(
R+

)
. In this sense we make

use of the notation considered in [20] and therefore we denote by Lγ,p
(
R+

)
the space of the complex-valued

measurable functions defined on R+ such that

∥ f ∥γ,p =
(∫

∞

0
| f (x)|p(1 + x)γ dx

)1/p

< ∞ (1.2)

for 1 ≤ p < ∞ and γ ∈ R, and we denote by L∞
(
R+

)
the space of the complex-valued measurable functions

defined on R+ such that

∥ f ∥∞ = ess sup
x∈(0,∞)

{
| f (x)|

}
< ∞.

We also consider the integral operator

(
G1

)
(x) =

∫
∞

0
1(y)F(µ, α, y, x)dy, x > 0, (1.3)

which is related to the Olevskiı̆ transform (see [16] and [27]).
According to the results and formulas in previous papers [4] and [6], we obtain Lp-boundedness prop-

erties for the index 2F1-transform over the spaces Lγ,p
(
R+

)
, 1 ≤ p < ∞, γ ∈ R, and L∞

(
R+

)
.

Weighted norm inequalities for similar integral operators have been studied in several articles (see [4],
[19] and [20], amongst others).

By using results of section 2 of [4] we prove that the operatorG is bounded from the space Lγ,p
(
R+

)
into

Lγ,p′
(
R+

)
, 1 < p < ∞, p + p′ = pp′, whenever γ > p − 1 and −1/p′ <ℜα < −1/p′ +ℜµ + 1/2 − γ/p′. Also, for

γ ≥ 0 and 0 ≤ ℜα <ℜµ + 1/2, the operator G is bounded from Lγ,1
(
R+

)
into L∞

(
R+

)
.

One has that under these conditions, if f , 1 ∈ Lγ,p
(
R+

)
, 1 ≤ p < ∞, then one obtains the Parseval-type

relation∫
∞

0

(
F f

)
(x) 1 (x) dx =

∫
∞

0
f (x)

(
G1

)
(x) dx. (1.4)

Let G′ be the adjoint of the operator L, i.e.,〈
G′ f , 1

〉
=

〈
f ,G1

〉
. (1.5)

The aforementioned Parseval-type relation (1.4) allows us to obtain an interesting connection between
the operator G′ and the operator F.
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We conclude that the operator G′ is the natural extension of the integral operator F, i.e.,

G′T f = TF f

where T f is given by:

< T f , 1 >=

∫
∞

0
f (x)1(x)dx. (1.6)

We also point out relevant connections of our work with various earlier related results (see [7], [15], [19],
[20], [25] and [26]).

From [3, (7), p. 122 and (6), p. 155], we obtain

F(µ, α, y, x) =

=
Γ(µ + 1)xα
√
πΓ(µ + 1

2 )

∫ π

0

(
1 + 2x + 2

√
x(x + 1) cos ξ

)−µ−1/2−iy
(sin ξ)2µdξ, (1.7)

which is valid for

x > 0, y > 0, ℜµ > −
1
2
, α ∈ C.

Observe that one has

sin ξ ≥ 0, ξ ∈ [0, π],

1 + 2
√

x + 2x(x + 1) cos ξ ≥ 0, x > 0, ξ ∈ [0, π],

and hence, it follows from (1.7) that∣∣∣F(µ, α, y, x)
∣∣∣

≤

∣∣∣Γ(µ + 1)
∣∣∣ xℜα

√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣
∫ π

0

(
1 + 2x + 2

√
x(x + 1) cos ξ

)−ℜµ− 1
2 (sin ξ)2ℜµ dξ

=

∣∣∣Γ(µ + 1)
∣∣∣ xℜα

√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣
∫ π

0

(
1 + 2x + 2

√
x(x + 1) cos ξ

)−ℜµ− 1
2 (sin ξ)2ℜµ dξ

=

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
F(ℜµ,ℜα, 0, x), ℜµ > −1/2. (1.8)

Also, from [3, (7), p. 122] and [17, p.171, Entry (12.08) and p. 172, Entry (12.20)], forℜµ > −1/2 we have

F(ℜµ,ℜα, 0, x) = O
(
xℜα

)
, x→ 0+, (1.9)

F(ℜµ,ℜα, 0, x) = O
(
xℜα−ℜµ−

1
2 ln x

)
, x→ +∞. (1.10)
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2. The operator F over the space Lγ,p
(
R+
)
, 1 < p < ∞

In this section we study the behaviour of the operator F over the space Lγ,p
(
R+

)
, 1 < p < ∞, γ ∈ R,

α, µ ∈ C. Indeed, by following [5, Proposition 2.1], we derive Theorem 2.1 below

Theorem 2.1. Let 1 < p < ∞, p + p′ = pp′. Then, for all γ < −1, −1/p′ < ℜα < ℜµ − 1/2 + (γ + 1)/p, and all
q, 0 < q < ∞, the operator F given by (1.3) is bounded from Lγ,p

(
R+

)
into Lγ,q

(
R+

)
. Furthermore, for all γ ∈ R and

−1/p′ <ℜα <ℜµ − 1/2 + (γ + 1)/p, then the operator F is bounded from Lγ,p
(
R+

)
into L∞

(
R+

)
.

Proof. By applying the Hölder inequality we get∣∣∣(F f )(y)
∣∣∣ = ∣∣∣∣∣∫ ∞

0
f (x)F(µ, α, y, x)dx

∣∣∣∣∣
≤

∫
∞

0

∣∣∣ f (x)
∣∣∣ ∣∣∣F(µ, α, y, x)

∣∣∣ dx

=

∫
∞

0

∣∣∣ f (x)
∣∣∣ (1 + x)γ/p

∣∣∣F(µ, α, y, x)
∣∣∣ (1 + x)−γ/p dx

≤

(∫
∞

0

∣∣∣ f (x)
∣∣∣p (1 + x)γ dx

)1/p

·

(∫
∞

0

∣∣∣F(µ, α, y, x)
∣∣∣p′ (1 + x)−γp′/pdx

)1/p′

= ∥ f ∥γ,p

(∫
∞

0

∣∣∣F(µ, α, y, x)
∣∣∣p′ (1 + x)−γp′/p dx

)1/p′

, (2.1)

which, from (1.8) and taking into account thatℜµ > −1/2, leads us to the following inequality∫
∞

0

∣∣∣(F f )(y)
∣∣∣q (1 + y)γdy

≤ ∥ f ∥qγ,p

∫
∞

0

(∫
∞

0
|F(µ, α, y, x)|p

′

(1 + x)−γp′/p dx
)q/p′

(1 + y)γdy

≤

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
∥ f ∥qγ,p

(∫
∞

0
F(ℜµ,ℜα, 0, x)p′ (1 + x)−γp′/p dx

)q/p′

·

∫
∞

0
(1 + y)γ dy

(2.2)

≤

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
∥ f ∥qγ,p

(∫
∞

0
F(ℜµ,ℜα, 0, x)p′ (1 + x)−γp′/p dx

)q/p′

· (−1 − γ)−1. (2.3)

Now from (1.9) and (1.10), the integral in (2.3) converges under the conditions for this Theorem. So, we
have that the operator F is bounded from Lγ,p

(
R+

)
into Lγ,q

(
R+

)
.

Analogously, one has

ess sup
x∈(0,∞)

{
|F f (x)|

}
(2.4)

≤ ∥ f ∥γ,p ess sup
x∈(0,∞)


(∫

∞

0

∣∣∣F(µ, α, y, x)
∣∣∣p′ (1 + x)−γp′/pdx

)1/p′
 (2.5)

≤

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
∥ f ∥qγ,p

(∫
∞

0

∣∣∣F(ℜµ,ℜα, 0, x)
∣∣∣p′ (1 + x)−γp′/pdx

)1/p′

. (2.6)
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We next observe that, under the conditions of this Theorem and by virtue of (1.9) and (1.10), the integral
in (2.6) converges. So, clearly, we have

∥F f ∥∞ ≤ C∥ f ∥γ,p,

where C is a real constant depending on p and γ. Consequently, the operator F is bounded from Lγ,p
(
R+

)
into L∞

(
R+

)
.

3. The operator F on the space Lγ,1
(
R+
)

In this section we study the behaviour of the operator F over the space Lγ,1
(
R+

)
, γ ∈ R, α, µ ∈ C. Indeed,

by following [5, Proposition 3.1], we derive Theorem 3.1 below

Theorem 3.1. For all γ < −1 and 0 ≤ ℜα < ℜµ + 1/2 + γ, and any q, 0 < q < ∞, the operator F given by (1.3)
is bounded from Lγ,1

(
R+

)
into Lγ,q

(
R+

)
. Also, for all γ ∈ R and 0 ≤ ℜα < ℜµ + 1/2 + γ, then the operator F is

bounded from Lγ,1
(
R+

)
into L∞

(
R+

)
.

Proof. Note that∣∣∣(F f )(y)
∣∣∣ = ∣∣∣∣∣∫ ∞

0
f (x)F(µ, α, y, x)dx

∣∣∣∣∣
≤

∫
∞

0

∣∣∣ f (x)
∣∣∣ ∣∣∣F(µ, α, y, x)

∣∣∣ dx

=

∫
∞

0

∣∣∣ f (x)
∣∣∣ (1 + x)γ

∣∣∣F(µ, α, y, x)
∣∣∣ (1 + x)−γdx

≤

∫
∞

0

∣∣∣ f (x)
∣∣∣ (1 + x)γdx · sup

x∈(0,∞)

{
|F(µ, α, y, x)|

(1 + x)γ

}

= ∥ f ∥γ,1 · sup
x∈(0,∞)

{
|F(µ, α, y, x)|

(1 + x)γ

}
, (3.1)

which, from (1.8) and taking into account thatℜµ > −1/2, leads us to the following inequality∫
∞

0

∣∣∣(F f )(y)
∣∣∣q (1 + y)γdy

≤ ∥ f ∥qγ,1

∫
∞

0

 sup
x∈(0,∞)

{
|F(µ, α, y, x)|

(1 + x)γ

}q

(1 + y)γdy

≤ ∥ f ∥qγ,1

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)

 sup
x∈(0,∞)

{
F(ℜµ,ℜα, 0, x)

(1 + x)γ

}q ∫ ∞

0
(1 + y)γdy

= ∥ f ∥qγ,1

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)

 sup
x∈(0,∞)

{
F(ℜµ,ℜα, 0, x)

(1 + x)γ

}q

· (−1 − γ)−1.

Therefore, in view of (1.9) and (1.10), we obtain

∥F f ∥γ,q ≤ C| f ∥γ,1,
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where C is a real constant depending on q and γ. Consequently, the operator F is bounded from Lγ,1
(
R+

)
into Lγ,q

(
R+

)
.

Similarly, by using (1.8), we get

∥F f ∥∞ ≤ ∥ f ∥γ,1 · ess sup
y∈(0,∞)

sup
x∈(0,∞)


∣∣∣F(µ, α, y, x)

∣∣∣
(1 + x)γ


≤ ∥ f ∥γ,1 ·

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
sup

x∈(0,∞)

{
F(ℜµ,ℜα, 0, x)

(1 + x)γ

}
,

which, in light of (1.9) and (1.10), yields to

∥F f ∥∞ ≤ C∥ f ∥γ,1,

for a certain real constant C depending on γ. Thus, clearly, the operator F is bounded from Lγ,1
(
R+

)
into

L∞
(
R+

)
, which evidently completes the proof of Theorem 3.1.

4. The operator F on the space L∞
(
R+
)

In this section we study the behaviour of the operator F over the space L∞
(
R+

)
, α, µ ∈ C. Indeed, by

following [5, Proposition 4.1], we derive Theorem 4.1 below.

Theorem 4.1. For γ < −1 and −1 < ℜα < ℜµ − 1/2, and any q, 0 < q < ∞, the operator F given by (1.1) is
bounded from L∞

(
R+

)
into Lγ,q

(
R+

)
. Moreover, for γ ∈ R and −1 < ℜα < ℜµ − 1/2, the operator F is bounded

from L∞
(
R+

)
into L∞

(
R+

)
.

Proof. One has

|(F f )(y)| ≤
∫
∞

0
| f (x)||F(µ, α, y, x)|dx ≤ ∥ f ∥∞ ·

∫
∞

0
|F(µ, α, y, x)|dx,

so that, for any q, 0 < q < ∞, we get

|(F f )(y)|q ≤ ∥ f ∥q∞ ·
(∫

∞

0
|F(µ, α, y, x)|dx

)q

.

We thus find that∫
∞

0
|(F f )(y)|q(1 + y)γdy ≤ ∥ f ∥q∞ ·

∫
∞

0

(∫
∞

0
|F(µ, α, y, x)|dx

)q

(1 + y)γdy,

and, therefore, that

∥F f ∥γ,q ≤ ∥ f ∥∞ ·
(∫

∞

0

(∫
∞

0
|F(µ, α, y, x)|dx

)q

(1 + y)γdy
)1/q

.

In view of (1.8), we have

∥F f ∥γ,q ≤ ∥ f ∥∞ ·

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)

(∫
∞

0
F(ℜµ,ℜα, 0, x)dx

) (∫
∞

0
(1 + y)γdy

)1/q
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= ∥ f ∥∞ ·

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)

(∫
∞

0
F(ℜµ,ℜα, 0, x)dx

)
(−1 − γ)−1/q. (4.1)

Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. So, we have

∥F f ∥γ,q ≤ C∥ f ∥∞,

for certain real constant C depending on γ and q. Therefore, the operator F is bounded from L∞
(
R+

)
into

Lγ,q
(
R+

)
.

Also, in view of (1.8), we get

∥F f ∥γ,q ≤ ∥ f ∥∞ · ess sup
y∈(0,∞)

{∫
∞

0

∣∣∣F(µ, α, y, x)
∣∣∣ dx

}

≤

∣∣∣Γ(µ + 1)
∣∣∣Γ(ℜµ + 1

2 )
√
π

∣∣∣∣Γ (µ + 1
2

)∣∣∣∣Γ(ℜµ + 1)
∥ f ∥∞ ·

∫
∞

0
F(ℜµ,ℜα, 0, x)dx. (4.2)

Thus, by applying (1.9) and (1.10), we see that the integral in (4.1) converges. Hence we have

∥F f ∥∞ ≤ C∥ f ∥∞,

for certain real constant C. Consequently, the operator F is bounded from L∞
(
R+

)
into L∞

(
R+

)
.

5. The operator G over the space Lγ,p
(
R+
)
, 1 < p < ∞

In this section we deal with the behaviour of the operatorG on the spaces Lγ,p
(
R+

)
, γ ∈ R and 1 < p < ∞.

Theorem 5.1. Set 1 < p < ∞ and p+p′ = pp′. Then for all γ > p−1 and −1/p′ <ℜα < −1/p′+ℜµ+1/2−γ/p′,
the operator G given by (1.3) is bounded from Lγ,p

(
R+

)
into Lγ,p′

(
R+

)
.

Proof. Taking into account the hypothesis of this Theorem, using (1.8), (1.9) and (1.10), one has that
F(ℜµ,ℜα, 0, x) ∈ Lγ,p

(
R+

)
and moreover, since∫

∞

0
(1 + y)−γp′/pdy =

p
γp′
,

from Proposition 2.1 in [4] the result holds.

As a consequence of Proposition 2.2 in [4] one has

Theorem 5.2. Assume 1 < p < ∞ and p+p′ = pp′, then for γ > p−1 and−1/p′ <ℜα < −1/p′+ℜµ+1/2−γ/p′,
the following mixed Parseval-type relation holds∫

∞

0
(F f )(x)1(x)dx =

∫
∞

0
f (x)(G1)(x)dx,

for f , 1 ∈ Lγ,p
(
R+

)
.

Also, as a consequence of Corollary 2.1 in [4] one has

Corollary 5.3. Assume 1 < p < ∞ and p+p′ = pp′, then for γ > p−1 and−1/p′ <ℜα < −1/p′+ℜµ+1/2−γ/p′,
one has for f ∈ Lγ,p

(
R+

)
G′T f = TF f

on
(
Lγ,p

(
R+

))′
.
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6. The operator G over the spaces Lγ,1
(
R+
)

This section is devoted to the study of the behaviour of the operator G on the spaces Lγ,1
(
R+

)
.

Theorem 6.1. If γ ≥ 0 and 0 ≤ ℜα <ℜµ + 1/2, then the operator G given by (1.3) is bounded from Lγ,1
(
R+

)
into

L∞
(
R+

)
.

Proof. Observe that for γ ≥ 0 and 0 ≤ ℜα < ℜµ + 1/2, and using (1.8), (1.9) and (1.10), we get that
F(ℜµ,ℜα, 0, x) is essentially bounded of (0,∞). Then from Proposition 2.1 in [4] the result holds.

As a consequence of Proposition 2.1 in [4] we get the following mixed Parseval relation

Theorem 6.2. The following mixed Parseval relation holds∫
∞

0
(F f )(x)1(x)dx =

∫
∞

0
f (x)(G1)(x)dx, (6.1)

for f , 1 ∈ Lγ,1
(
R+

)
with γ ≥ 0 and 0 ≤ ℜα <ℜµ + 1/2.

Also, as a consequence of Corollary 3.1 in [4] we have the following

Corollary 6.3. For f ∈ Lγ,1
(
R+

)
with γ ≥ 0 and 0 ≤ ℜα <ℜµ + 1/2 is holds that

G′T f = TF f

on
(
Lγ,1

(
R+

))′
.

7. Conclusions

Starting from the properties of the Gaussian hypergeometric function and considering suitable condi-
tions on the parameters µ and α, we have deduced some boundedness properties between Lp spaces with
different weights for the operatorF defined by the index 2F1-transform (1.1). Analogous boundedness have
been obtained for the operator G given by (1.3) and related to the Olevskiı̆ integral transform.

In addition, Parseval-type relations have been derived for the operators F and G over the Lp spaces
considered.
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