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Abstract. This paper deals with the existence and global stability of solutions of a new class of Volterra
partial integral equations of Hadamard-Stieltjes fractional order.

1. Introduction

Integral equations are one of the most useful mathematical tools in both pure and applied analysis.
This is particularly true of problems in mechanical vibrations and the related fields of engineering and
mathematical physics. We can find numerous applications of differential and integral equations of fractional
order in viscoelasticity, electrochemistry, control, porous media, electromagnetism, etc. [17]. There has been
a significant development in ordinary and partial fractional differential and integral equations in recent
years; see the monographs of Abbas et al. [4-6], Kilbas et al. [16], Miller and Ross [18], Samko et al. [22], the
papers of Abbas et al. [1, 2], Banas et al. [8-10], Darwish et al. [14], and the references therein.

In [11], Butzer et al. investigate properties of the Hadamard fractional integral and derivative. In [12],
they obtained the Mellin transforms of the Hadamard fractional integral and differential operators. In [20],
Pooseh et al. obtained expansion formulas of the Hadamard operators in terms of integer order derivatives.

Many other interesting properties of those operators and others are summarized in [22] and the references
therein.

Recently, Abbas et al. [3] studied some existence and stability results for some classes of nonlinear
quadratic Volterra integral equations of Riemann-Liouville fractional order. This paper deals with the

global existence and stability of solutions to the following nonlinear quadratic Volterra partial integral
equation of Hadamard fractional order,

ut,x) = fltxult 0, u@®, ) + g [0 [ (log 22)" (log £)

it x5, €, (s, ) uty ), ) “LEEIEICD g e
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where ] = [1100) X [1/b]/ b > 1! r,rn € (O/OO)/ a, ﬁ/ s [1100) - [1/00)r f : ]XIRX]R - ]R/ n A R d
R, g2 :00— R, h: J; X RX R — R are given continuous functions, a;= {(t,s) : 1 <s < t}, Ay={(x,&): 1<
E<x<by, i ={(txs,&): (ts) en and (x, &) €np), and I'(+) is the (Euler’s) Gamma function defined by

I Q) = f ) tletdt; ¢> 0.
0

In the present paper we provide some existence and asymptotic stability of such new class of fractional
integral equations. Finally, we present an example illustrating the applicability of the imposed conditions.

This paper initiates the global existence and stability of solutions of such new class of Hadamard integral
equations of two independent variables.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout
this paper. By L!([1,+0) x [1,b]); for b > 1, we denote the space of Lebesgue-integrable functions u :

[1,+00) X [1,b] = R with the norm
00 b
l[ully = f f lu(t, x)|dxdt.
1 J1

By BC := BC(J) we denote the Banach space of all bounded and continuous functions from J into R equipped
with the standard norm

|lullpc = sup |u(t, x)|.
(tx)e]

For uy € BC and 1) € (0, ), we denote by B(uyo, 17), the closed ball in BC centered at 19 with radius 7.

Definition 2.1. [16] The Hadamard fractional integral of order q > 0 for a function g € L'([1,a], R), is defined as

x -1
(legxx):%q) f1 (1og’sﬁ)" @ds,

where I'(-) is the Euler gamma function.

Example 2.2. The Hadamard fractional integral of order q > 0 for the function
w: [1,e] > R, defined by w(x) = (logx)f~! with p > 0, is

I'(B)
LB +q)

Definition 2.3. Let r1, 72 >0, 0 = (1,1) and r = (r1,12). For w € L'(J,R), define the Hadamard partial fractional
integral of order r by the expression

Har B 1 * Y E r-1 z r—1 w(s, t)
Clw)® ¥) = Fere fl fl (logs) (log t) st .

If u is a real function defined on the interval [a, D], then the symbol \/,lzJ u denotes the variation of u on [a, b].

We say that u is of bounded variation on the interval [a, b] whenever \/2 u is finite. If w : [a,b] X [c,b] — R,
then the symbol \/?:p w(t,s) indicates the variation of the function ¢t — w(t,s) on the interval [p,q] C [a, b],

(Ilw)(x) = (logx)*7.

where s is arbitrarily fixed in [c, d]. In the same way we define \/Z:p w(t, s). For the properties of functions of
bounded variation we refer to [7, 19].
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If u and ¢ are two real functions defined on the interval [, b], then under some conditions (see [7, 19])
we can define the Stieltjes integral (in the Riemann-Stieltjes sense)

b
f u(tdo()

of the function u with respect to ¢. In this case we say that u is Stieltjes integrable on [4, b] with respect to ¢.
Several conditions are known guaranteeing Stieltjes integrability [7, 19]. One of the most frequently used
requires that u is continuous and ¢ is of bounded variation on [a, b].

In what follows we use the following properties of the Stieltjes integral ([21], section 8.13).

(1) If u is Stieltjes integrable on the interval [a, b] with respect to a function ¢ of bounded variation, then

t
[ ubdp(o| < [ b |u<t>|d(v qo]-

(i) If u and v are Stieltjes integrable functions on the interval [a, b] with respect to a nondecreasing function
@ such that u(t) < v(t) for t € [a,b]. Then

b b
fu(t)dqo(t)sf u(t)do(t).

In the sequel we consider Stieltjes integrals of the form

b
f u(t)dsg(t, s),

and Hadamard-Stieltjes integrals of fractional order of the form

1 t t q-1

where g : [1,00) X [1,0) = R, g € (0, o) and the symbol d; indicates the integration with respect to s.

Definition 2.4. Let r1, 2 > 0, 0 = (1,1) and r = (r1,12). For w € LY(J,R), define the Hadamard—Stieltjes partial
fractional integral of order r by the expression

HS 7 B 1 X ry E r—1 Z -1 w(s, t)
st = oo || (og3) (log) T a0,

where g1 : [1,0)> 5> R, g2 : [1,]* > R.

Let® # Q) ¢ BC, and let G : QO — Q, and consider the solutions of equation
(Gu)(t, x) = u(t, x). )
Now we review the concept of attractivity of solutions for equation (1).

Definition 2.5. [5] Solutions of equation (2) are locally attractive if there exists a ball B(ug, n) in the space BC such
that, for arbitrary solutions v = v(t, x) and w = w(t, x) of equations (2) belonging to B(uo, n) (3, we have that, for
each x € [1,b],

tlg(r)lo (v(t, x) —w(t, x)) =0. ®3)

When the limit (3) is uniform with respect to B(ug,n), solutions of equation (2) are said to be uniformly locally
attractive (or equivalently that solutions of (2) are locally asymptotically stable).
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Definition 2.6. [5] The solution v = v(t, x) of equation (2) is said to be globally attractive if (3) holds for each solution
w = w(t,x) of (2). If condition (3) is satisfied uniformly with respect to the set C, solutions of equation (2) are said to
be globally asymptotically stable (or uniformly globally attractive).

Lemma 2.7. [13] Let D C BC. Then D is relatively compact in BC if the following conditions hold:

(a) D is uniformly bounded in BC,

(b) The functions belonging to D are almost equicontinuous on [1,00) X [1,b],

i.e. equicontinuous on every compact of |,

(c) The functions from D are equiconvergent, that is, given € > 0, x € [1, ] there corresponds T(e, x) > 0 such that
[u(t, x) — im0 u(t, x)| < € for any t > T(e, x) and u € D.

Theorem 2.8. (Schauder’s fixed point theorem)[15] Let B be a closed, convex and nonempty subset of a Banach space
X. Let N : B — B be a continuous mapping such that N(B) is a relatively compact subset of X. Then N has at least
one fixed point in B.

3. Existence and Asymptotic Stability Results

In this section, we are concerned with the existence and the asymptotic stability of solutions for the
Hadamard partial integral equation (1).

The following hypotheses will be used in the sequel.
(H1) The function a : [1, c0) — [1, c0) satisfies lim;_,« a(f) = oo,
(H2) There exist constants M, L > 0, and a nondecreasing function ¢ : [0, 00) — (0, 00) such that M < %,

M(Juy = us| + [v1 — v2)
(1 + a®))L + lur — uz| + |1 — v2l)”

|f(t/ X, ul/vl) - f(tr X, Uz, 02)| <

and
|f(t1/x1/ u, Z]) - f(tZIxZ/ u, U)| < (ltl - t2| + |x1 - X2|)ll)1(|u| + |U|)/

for each (tl X), (tl/ xl)/ (tZ/ x2) € ] and U,0,Uy1,01,U2,02 € IR/

(H3) The function (t,x) — f(t,x,0,0) is bounded on | with

f= sup  f(t,x,0,0)
(t,x)€[1,00)x[1,b]

and
tlim If(t,x,0,0)| = 0; x €[1,1],

(Hs) There exist continuous functions ¢ : ] = R;, p : J1 = R and a nondecreasing function ¢, : [0, c0) —
(0, 00) such that
[h(t1,x1,8,&,u,0) = h(ta, x2,5,&,u, )| < @(s, E)(|t — ta| + [x1 — x2))PPa(lul + [0]),

and
p(t,x,5,¢&)
a(t) + |ul + o]

htl 7 7 7 7 S
|h(t, x,s, &, u,0) n

for each (t,x,s,&), (t1,x1,5,&), (t2,x2,8,&) € ] and u, v € R. Moreover, assume that

A flﬁm f L

log —
for each x € [1, 0],

ri—=1 12

x
. log z

-1 13 s
p(t,x,5,8)ds \/ g k)ds \ [/ gt J) =0,
kzzl k1 =1
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(Hs) The functions s — g1(t,s) and & — g»(x, &) have bounded variations for each fixed t € [1, ) or
x € [1,b], respectively. Moreover, the functions s = g1(1,s) and & — g(1, &) are nondecreasing on
[1, ) or [1, b] respectively,

(Hg) For each (t,s), (t1,5), (t2,5) €A1, (x, &), (x1, &), (x2, &) €A2, we have

X2 tr X1 ty
\/ 92002, 5) \/ g1(t2, k1) = \/ g1, ko \/ g (11, K))| = 0
kzil k1:1 k2:1 k1:1

ast; — tr and x; — xp,
(H7) g1(t,1) = go(x,1) = 0 for any ¢ € [1,0) and any x € [1, b].

Theorem 3.1. Assume that hypotheses (H1) — (Hy) hold. Then the integral equation (1) has at least one solution in
the space BC. Moreover, solutions of equation (1) are globally asymptotically stable.

Proof: Set d* := SUP; e d(t, x) where

7‘1—1

()

t,
fli((rlxrs(rf)) . \/ gz(x kp)ds \/ 91(t kq).

d(t,x) = ) log PO
1 s

6

From hypothesis (H), we infer that d" is finite. Let us define the operator N such that, for any u € BC,

Nu(tx) = £t utt,0,u(@®, )+ [ [ (log 22)" (log 2)™
dega(x, E)dsgi(t, s)
sl (r))I(r2)

By considering the assumptions of this theorem, we infer that N(u) is continuous on J. Now we prove that
N(u) € BC for any u € BC. For arbitrarily fixed (¢, x) € | we have

(4)

xh(t, x,s,&,u(s, &), u(y(s), £))

I((Nu)(t, )| < |f(t, x, u(t, x), u(a(t), x)) — f(t,x,0,0)[ +|f(t x,0,0)|
B(t) B(t)
s

" -1 7’2—1

X

3
dsga(x, E)dsga(t, 9)l
s&

+|f(t,x,0,0)

X |h(t, x,s,&,u(s, &), u(y(s), )|

M(Ju(t, )| + fu(a(t), x))
S a(t))(L *+ [t 2] + o), 2
o ﬁ(t)

= r—1

x

52
7 k)ds \/ g1t k)

1 k=1

« p(t, X,s, E)
1+ a(t) + lu(s, &) + lu(y(s), &)
M(Ju(t, x)| + [u(a(t), ©)I)

u(t, )| + |u(a(t), x)|

de
k

3
=

+f+d.

Thus
IN(W)llgc <M+ f+d". (5)

Hence N(u) € BC. The equation (5) yields that N transforms the ball B, := B(0,n) into itself where
n =M+ f*+d'. We shall show that N : B, — B, satisfies the assumptions of Theorem 2.8. The proof
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will be given in several steps and cases.

Step 1: N is continuous.
Let {u,}sen be a sequence such that u, — u in B,. Then, for each (t,x) € ], we have

|(Nuy)(t, x) = (Nu)(t, )| < |f(t, X, un(t, X), un(a(t), X)) = f(t x,u(t, x), u(a(t), x))|

1 B(H) x 0] -1
tror b b flog T| [log |

X Sup(slg)e] |h(t, xr S/ 6/ un(sr CE), un ()/(S)/ 5)) - h(tl x/ S/ Er u(sl ‘S)/ u()/(s)/ ‘S))l
> ldega(x,E)dsgi (¢,5)]
s& 6

2, e 1 ©

B®) x 0] i x
o b b g™ gt
X”h(tr Jfr ry Mn(', ')/ Up ()/()/ )) - h(tr X,y u('r ')/ M(V()r ))”BC
ng \/1?2:1 92(3(; kZ)dS \/]Sﬁ:l 91 (tr kl)

IA

I‘z—l

Case 1. If (t,x) € [1, T]1 x[1,b], T > 1, then, since u, — u as n — oo and h, y are continuous, then (6) gives
IN(t,) = N(u)llpc = 0 asn — oo.
Case 2. If (t,x) € (T, 00) X [1,b], T > 1, then from (Hy) and (6), for each (¢, x) € ], we have

(N )(t, %) = (Nu)(t, )| < 3|l — ullpe

ri—1
oz 1S g B2 log 3|

Xp(t, x,5,E)ds Vi _y 925, ka)ds /3,y g1t ).
< My, — ullgc + 2d(t, x).

1’2—1

Thus, we get

2M
((N14:)(t, ) = (Nu)(t, )] < =l = llpc + 24t ). )
Since u, — uasn — oo and t — oo, then (7) gives
IN(un) — N(u)llpc >0 asn — oo.

Step 2: N(B,)) is uniformly bounded.
This is clear since N(B;) C B, and B, is bounded.

Step 3: N(B,) is equicontinuous on every compact subset [1,a] x [1,b] of ], a > 0.
Let (t1, x1), (t2,x2) € [1,a] X [1,b], t1 < t2, x1 < x2 and let u € B,. Also without loss of generality suppose that
B(t1) < B(t2). Then, we have

[(Nu)(t2, x2) — (Nu)(t1, x1)l
< |f(t2, x2, u(ta, x2), u(a(tz), x2)) — f(t2, x2, u(ts, x1), u(a(ty), x1))l
+|f(t2/ X2, u(tll xl)/ u(a(tl)/ xl)) - f(tll X1, u(tll xl)/ u(a(tl)/ xl))|

1 B(t2) (2 ey |11 v [r2=1
e o flos B2 Jlog 2

X|h(t2, x2,8, &, u(s, &), u(y(s), €)) — h(t1, x1,8, &, u(s, &), u(y(s), &)
X|dega(x2, E)dsgi(ta, s)|




Thus, we obtain

Hence, we get

S. Abbas et al. / Filomat 37:5 (2023), 1319-1329

B(t2) rx2 Blt) 171 x\21
e b S (log52) " (log %)
Xh(tlrxlfs & u(s, &), u(y(s), E)dzga(x2, E)dsgi(t2, 5)

-1 -1
r(mr(rz) h " h ) (l(’g ﬁ(m)r1 (IOg Xéz)rz

Xt 31, &, 6, £) 1/ 6), Mgl (e )|

pt) a1 Bt2) 1~ v \271
o bk (log52) (108 )
Xh(tlr X1,5, CE/ M(S/ é), u(’)/(S), ‘E))(dég2(x2, 5)‘1591 (t2, S) — d592(x1/ E)dsgl(tli S))

—1 _
+r(n)1r(rz> f " f i (log @)rl (log %)rz

Blt)\1™ -1 x\271
—(log #2)"  (log %) ‘Ih(t1,x1,s,é,u(s,E),u(V(S),E))I
X|dsga(x1, E)dsga(t, s)l.

+

|(Nu)(t2, x2) — (Nu)(t1, x1)l
< Hutz, x2) = u(ty, x1)| + [u(a(t2), x2) = ula(ty), x1)))
+(lt2 — t1l + |x2 = x1|)¢1(2||u||Bc)
B(t2) (x2 5(t y|" ¥ 121
+r(r1)1r(r2) fl fl log == |1 7
Xp(s, E)(It2 — tal + |x2 — x1|)¢2(2||u||Bc)d.£ \/kzzl 92(x2, ka)ds Vi 2 91(t2, k1)
B(t2) ﬁ(t )1 ra-1
+F(r1 )1F(rz) B(t1) fl lo 08 =5 - |log %
Xlh(t1, x1,5, & u(s, &), u(V(S) ENMe V5 _, 922, ko)ds V3, -y 91 (k2 )

B(t2) () |11 -1
toms kL flog 52| flog 2
Xlh(t1, 21,5, & (s, €)1y, eV _, g2z, ks Vi, (b2 k)
-1

1 Blt2) Blt2) -1
e Jn) fxl log =~ |108%i
Xlh(ty, x1,8, &, u(s, &), u(y(s), E)lde Vi _y g2(x2, k2)ds Vo1 91(t2, k1)

Bt (x1 Bt nhy
trra b b g P flog 2
th(tll xl/ S/ 5/ M(S, 5)/ u(V(s) 5))”‘1592(3(2/ 5)ds!]1 (tZ/ S) - dégz(xll é)dsgl(tll S))l

1 X1 x -1
+r(r1)1r(r2) fﬁ(t : f (1 0g ﬁstZ)) (log EZ)
~ (log 22)"™ (1og )™ ‘ Ik, x1,, & u(s, &), u(y(s), &)
Xdg \/,<2=1 g2(x1, ka)ds \/3, -y g1(t1, ka).

rz—l

—

I(Nu)(t2, x2) — (Nu)(t1, x1)|
< Mlu(ty, x2) — u(tr, x1)| + lu(atz), x2) — u(e(tr), x1)))

+(|t2 = t1] + 2 — x1))¢1(2)
" (Ita—t1 1+ Ixa—x11)¢2(21))

I(r)L(r2)
(t2) [x2 xo [P2— s

x 1 o 22 fo o8 7" 916, Vi, 2tz kol Vi cy 1 k)
L p®) e’

)1 xZ r—1

L)l (r2) JB(t1)
xp(t,x1,,E)de Vi, gz<xz, kz)d vkl -1 1(t2, k)

1 /S(tZ) X2 (tz xZ r—1
i b )1

xp(ty, x1,8,E)de \/,i:l gZ(XZrkZ)ds \/klzl g1(t2, k1)

1325
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1 B(t2) x2 B(t2) |
e Jpn) fxl log == 11
xp(ty, x1,8,€)d: Vi _ g2(x2, kz)d \/kl_1 71(ta, k1)

(t1) rx . n- ra—1
+1"(r1)11“(r2) ﬁﬁ ' ﬁ ' 1 g ﬁ(t ) ‘1 p(tl/ X1,S, g)
X|dg \/22:1 g2(x2, k2)ds \/k1 1 g1(t2,k1) dg \/1‘32:1 g2(x1, ko)ds \/ilz1 g1t ko))l

+m fﬁ(h) fxl (log ﬁ(fz))r] (log %z)rz—l

(log ﬁ(h))h (log % ' p(t1, x1,8, &)ds \/li:l g2(x1, ko)ds \/il:l g1(t1, k1).

Tzl

From continuity of a, 8, @, p and as t; — t, and x; — x;, the right-hand side of the above inequality tends to
Zero.

Step 4: N(B,) is equiconvergent.
Let (t,x) € ] and u € B,, then we have

lu(t, x)| < |f(t,x,u(t,x),u(a(t),x)) - f(t,x,0,0) + f(t,x,0, 0)|

5(t) rn- rom
T mf f( ﬁ(t)) k’g%)l

dégZ(x/ 5) sgl(t/ S)
s&

+|f(t,x,0,0)

X h(t,x,s,&,u(s, &), u(y(s), €))

M(Jut, )| + [ula(t), X))
— (L +a@®)L + fult, )] + fula(t), X))

B -1 -
B v flﬁ()fl (l"g@) (108 7) 1

p(t,x,s,&)
“Tra®) + 1, O] + 0 ), H] 2 s t:9)
M
= Taaq TG00

I“(r1)r(rz)(1+a(t)) f ﬁ(t)f (log ﬁ())yl (1Og§)r“

X p(t, x,, E)d \/ 2%, ka)ds \/ 1t k1)
k=1

< .
1+ a(t)

T 1+ah)

+1f(t,x,0,0)| +

Thus, for each x € [1, 1], we get
lu(t,x)| = 0, as t — +oo.

Hence,
lu(t, x) — u(+co,x)| = 0, as t — +oo.

As a consequence of Steps 1 to 4 together with the Lemma 2.7, we can conclude that N : B, — B, is
continuous and compact. From an application of Theorem 2.8, we deduce that N has a fixed point # which
is a solution of the Hadamard integral equation (1).

Step 5: The uniform global attractivity.
Let us assume that 1, is a solution of integral equation (1) with the conditions of this theorem. Consider
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- ro—1

the ball B(ug, n) with * = L ZM, where
oo =

B(t)
M =
F(rl)l“(rz) (tx e] f f &

th(t/ X, S, él (S/ é), M(')/(S), é)) h(t/ X, S, 5/ MO(S, 5)/ MO('}/(S), 5))'
xd: v 72(x, k2 )ds v g1(t,kr); u € BC},

k=1 k=1

B(£)

lo—

Taking u € B(ug, n1"). Then, we have

|(N1/l)(i', X) - Lto(t, X)l |(NM)(t, X) - (NMO)(tr X)|

< f X udt, x), u(at), X)) = f(E x, uo(t, ), uo(a(t), X))l
e T
XIh(t, x,5, &, u(s, &), uly(s), &) = hit, x,8, &, uo(s, £), uo(y (s), )
xd \/ 72(x, ka)ds \/ g1t k1)
< ﬂ/{nu — gllgc + M

ZM
< Tf]yc + M = Tf.

Thus we observe that N is a continuous function such that N(B(ug, 11%)) C B(uo, ). Moreover, if u is a solution
of equation (1), then

|u(tr X) - Z’10(1’/ x)| |(Nu)(t/ X) - (NMO)(tr X)|
|f(tr X, M(i’, x)r M(O((t), x)) - f(tr X, MO(t/ X), MO(a(t)/ x))l

0 B | r-1
+F(r1)l"(r2)f1 L _'

S

x|h(t, X5, ¢, u(s, &), u(y(s), &) — h(t, x,s, &, uo(s, &), uo(y(s), )|
Xdé \/1?2:1 gZ(XI kZ)dS \/]Sq:l gl(tr kl)

IA I

&

Hence
u(t, x) —up(t, x)| < B(lu(t, x) — uo(t, x)| + Iu(a(q, x) — up(a(t), x)|)
B(t) B |~ r-1
trm b les 5| [log ] (®)
Xp(t,x,s,E)ds Vi _y 920, ka)ds Vi 4 91(t, ko).

By using (8) and the fact that a(t) — oo as t — oo, we get

()

- 72*]
ﬁ( ) log x

3

thm |u(t1 x) - Ll()(t, x)| <

X plt,x,s, E)de ngoc ko), \/gl(t k) = 0.

Consequently, all solutions of the Hadamard—Volterra—Stieltjes integral equation (1) are globally asymptot-
ically stable.
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4. An Example

As an application of our results we consider the following partial Hadamard-Volterra—Stieltjes integral
equation of fractional order

. t rx 2 2
u(t,x) = e (1+ 2sin(u(t, 1)) + ﬁ ) (1og§)s (10g §)3

In(1+2x(s&) " Jus,
Tt dsga(x, O (t,9); (1,%) € [1,00) X [1, €],

wherer; =1, = 3, a(t) = B(t) = y(t) = t, 1(t,s) =, ga(x, &) = & 5, & € [L,e],

_ tx(1 + sin(u) + sin(v))
flxu o) = = 5a T haTm

and
In(1 + x(s&) " (lul + [0]))

A+t 4+ [u] + [0)2(1+ 2 + 1)’

h(t,x,s,&,u,v) =

for (t,x),(s,&) € [1,0) X [1,¢], and u, v € R.

We can easily check that the assumptions of Theorem 3.1 are satisfied. In fact, we have that the function

f is continuous and satisfies assumption (H,), where M = 11—0, L = 1. Also f satisfies assumption (Hs), with

f* = 15- Next, let us notice that the function / satisfies assumption (Hy), where p(t, x,s, &) = m Also,

t X
tim [ [
t—oo 1 1

=2
3

=2 & s
t x|3 ’
log | [log E‘ p(t, x, s, £)d: k\/l 92(x, ko )ds k\z/l 7t k)

t X =2 =2 & s
X e x|3 1
= lim ———— log-| l|log=| — k
tg?ol+x2+t4f1f1 Ogs‘ Ogé‘ Sgdgk\/:lgz(x,kz)dsk\/:lm(t, 1)
= lim —r ft fx lo 5‘32 '10 X ¥ _déds
h t—>°<>1+x2+t4 1 1 gS gé Sé

9x(log t)% B

tooo 1+ x2 4 4

Hence by Theorem 3.1, the Volterra—Stieltjes equation (9) has at least a solution defined on [1, o0) X [1, e] and
solutions of this equation are globally asymptotically stable.
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