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Abstract. Bernstein-Stancu operators are one of the most powerful tool that can be used in approximation
theory. In this manuscript, we propose a new construction of Bernstein-Stancu operators which preserve the
constant and e−2x, x > 0. In this direction, the approximation properties of this newly defined operators have
been examined in the sense of different function spaces. In addition to these, we present the Voronovskaya
type theorem for this operators. At the end, we provide two computational examples to demonstrate that
the new operator is an approximation procedure.

1. Introduction

In recent years, approximation theory has attracted the attention of a number of mathematicians,
especially in the field of mathematical analysis. In this context, a lot of new positive and linear operators
have been introduced and presented their approximation properties. In this direction, Bernstein’s major
work on Bernstein polynomials keep the conductor status in approximation theory for many a long day.
More specifically, Bernstein polynomials are defined as

Bn( f ; x) =
n∑

k=0

(
n
k

)
xk(1 − x)n−k f

(
k
n

)
, (1)

for each bounded map on [0, 1], n ≥ 1 and x ∈ [0, 1].
Immediately after, its expansion to unbounded interval has became common in literature. However,

uniform approximation by polynomial on infinite intervals cannot be anticipated, therefore it is natural to
strive an alteration where the interval of the operator arises from rational functions.

In 1969, Stancu would like to pick the nodes in another different way, to get more flexibility. Stancu took
into account the nodes such as when n → ∞, the distance between two successive nodes and the distance
between 0 and first node and also between the last node and 1 tending all to zero. In this way, he defined
and studied the following linear and positive operators, which are called Bernstein-Stancu polynomials in
the literature:

Bα,βn ( f ; x) =
n∑

k=0

(
n
k

)
xk(1 − x)n−k f

(
k + α
n + β

)
, (2)
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for every bounded function on [0, 1], n ≥ 1, x ∈ [0, 1] and α, β ∈ R and 0 ≤ α ≤ β. Note that, if we choose
α = β = 0, we get the standard Bernstein polynomials given in (1).

On the other hand, King’s inspiration [15] make magnifical influence on the approximation theory and
has been finely practised to a number of well-known sequences of operators [4], [11], [12], [9], [16], [17], [18],
[20], [21]. The principal motivation of King is preserving quadratic function x2 instead of the unit function
x for the standard Bernstein operators that approximate better in proportion to the past. Regarding the
King’s idea, the innovative paper is due to Acar et. al. [1], who introduced the modified Szász-Mirakyan
operators preserving constants and e2ax, a > 0. This idea has been the source of inspiration a number of
qualified papers in approximation theory and successfully applied to several well known sequences of
operators too. In more detail, 1 and eax for a > 0 in [22], eax and e2ax for a > 0 in [6], [7] have been preserved
with the help of modified some well known positive linear operators, such as Bernstein, Szász-Mirakyan
and Baskakov operators. Soon after, in [13], constant and e−x, and in [2], constant and e−2x have been
preserved in a similar manner. Regarding the similar motivation, the most recent paper is due to Usta [19],
who obtained a general class of linear and positive approximation procedure defined on unbounded and
bounded intervals designed using an suitable function and Voronovskaya-type theorems.

This paper aims to introduce a modified version of Bernstein-Stancu operators which fix constant and
e−2x. In the meantime, we present the approximation properties of this newly defined operators for both in
some weighted functions spaces and in spaces of continuous functions. Additionally, we provide theoretical
background in an attempt to show that this operators have better error estimation than the original operators
on certain intervals.

The entire composition of this study is composed of seven sections including this one. The rest of this
work is organized as follows: In Section 2, we summarize the fundamental facts which we use our main
theorems. Then, in Section 3, the new type Bernstein-Stancu operators which fix the constant and e−2x are
introduced. In section 4, approximation properties of newly constructed operators have been introduced
while asymptotic formula given in Section 5. Finally, in Section 6, we provide some computational examples
while some conclusions discussed in Section 7.

2. Fundamental Facts

Throughout this and following sections, we shall represent by In the set of
[
α

n+β ,
n+α
n+β

]
. We will use the

notation C(In) for the space of all continuous real valued functions on In. In this manner, we shall use Cb(In)
for the space consisting of all bounded functions in C(In). Here, Cb(In) endowed with the natural order and
the uniform norm ∥ · ∥∞, is Banach lattice. Additionally, let C∗(In) and C0(In) be the Banach sublattices of all
space of real-valued bounded continuous functions on In described as,

C∗(In) = { f ∈ C(In) : ∃ lim
x→ α

n+β

f (x) ∈ R ∧ lim
x→ n+α

n+β

f (x) ∈ R},

and

C0(In) = { f ∈ C∗(In) : lim
x→ α

n+β

f (x) = 0 ∧ lim
x→ n+α

n+β

f (x) = 0},

respectively. Now let us consider the weighted space

Fm := { f ∈ C(In) : sup
x∈In

ρm(x)| f (x)| ∈ R},

where ρm(x) =
(
x − α

n+β

)ξ ( n+α
n+β − x

)η
is the weight function with ξ, η ≥ 0 for m ≥ 1 and x ∈ In. It is quite

apparent that this weighted space endowed with the norm

∥ f ∥ξ,η = sup
x∈In

ρm(x)| f (x)|,
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where f ∈ Fm and its natural subspaces

F∗m = { f ∈ Fm : ∃ lim
x→ α

n+β

ρm(x) f (x) ∈ R ∧ lim
x→ n+α

n+β

ρm(x) f (x) ∈ R},

and

F0
m = { f ∈ Fm : lim

x→ α
n+β

ρm(x) f (x) = 0 ∧ lim
x→ n+α

n+β

ρm(x) f (x) = 0}.

It must be noted that, C0(In) is dense in F0
m as a consequence of the Stone-Weierstrass theorem.

In addition to this, throughout this and the next sections, we take a fixed real parameter µ > 0 and take
the exponential function fµ, defined by

fµ(x) = e−µx, (3)

for x ∈ [0, 1]. Moreover, as usual, we denote by e j the polynomials functions defined by e j(t) = t j ( j ∈N).

It might be functional to recall the following identities for every n ≥ 1

1. Bα,βn (e0) = e0,

2. Bα,βn (e1) =
ne1 + α
n + β

,

3. Bα,βn (e2) =
(n2
− n)e2 + (2αn + n)e1 + α2

(n + β)2 .

In particular, if one take the function described for each x ≥ 0, as

ϕm
t = (e1 − te0)m,

then for every x ∈ [0, 1],

1. Bα,βn (ϕ0
t ) = 0,

2. Bα,βn (ϕ1
t ) =

ne1 + α
n + β

− e1,

3. Bα,βn (ϕ2
t ) =

(n2
− n)e2 + (2αn + n)e1 + α2

(n + β)2 −
2(ne2 + αe1)

n + β
+ e2.

In conclusion, one can easily deduce that the following equality for the exponential function given in
(3),

Bα,βn ( fµ)(x) = e−µα/(n+β)
(
1 − x

(
1 − e−µ/(n+β)

))n
. (4)

As a result, (Bα,βn )n≥1 is an approximation procedure in C[0, 1]; i.e., for every f ∈ C[0, 1],

lim
n→∞

Bα,βn ( f ) = f ,

uniformly on [0, 1].
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3. Bernstein-Stancu operators preserving e−2x

After taking into consideration the above-stated, we can introduce a general version of Bernstein-Stancu
operators which fix the function f2. For this purpose, first of all, we need to introduce a sequence (sn)n≥1 of
a real functions such that the operators,

B
α,β
n := Bα,βn ◦ sn, (5)

have the function f2 as a constant point for every n ≥ 1. To do this, with the help of (4), we have

e−2α/(n+β)
[
1 − sn(x)

(
1 − e−2/(n+β)

)]n
= e−2x,

such that

sn(x) =
1 − e2α/[n(n+β)]−2x/n

1 − e−2/(n+β)
.

where α, β ∈ R and 0 ≤ α ≤ β. Here is a point that

lim
n→∞

sn(x) = x.

In addition to this, thanks to the fact that 1 − e−x
≤ x for x ≥ α

n+β , we can smoothly deduce that,

1 − e2α/[n(n+β)]−2x/n
≤

2x
n

e2α/[n(n+β)] + 1 − e2α/[n(n+β)],

≤
2x
n

e2α/[n(n+β)],

since 1 − e2α/[n(β+n)] < 0. So it yields,

0 < sn(x) ≤ Knx, (6)

as

sn

(
α
β + n

)
= 0,

where

Kn :=
2e2α/[n(n+β)]

n(1 − e−2/(n+β))
,

for every n ≥ 1 and x >
(
α
β+n

)
. Here is a point that

lim
n→∞

Kn = 1,

and additionally Kn ≥ 1 for n ≥ 1. Taking into account all of these, the new sequence (Bα,βn )n≥1 can be
expressed as

B
α,β
n ( f ; x) =

n∑
k=0

f
(

k + α
n + β

)
φ
α,β
n,k (x), (7)

where

φ
α,β
n,k (x) =

(
n
k

) (
1 − e2α/[n(n+β)]−2x/n

1 − e−2/(n+β)

)k (
1 −

1 − e2α/[n(n+β)]−2x/n

1 − e−2/(n+β)

)n−k

,

for every f ∈ Cb (In), n ≥ 1 and x ∈ In such that α, β ∈ R and 0 ≤ α ≤ β.
Now, we can provide the following lemma without detailed proof since it can be obtained with elemen-

tary calculus.
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Lemma 3.1. For each x ∈ In and n ∈N, then the following identities hold:

1. Bα,βn (e0; x) = 1,

2. Bα,βn (e1; x) =
n

n + β
sn(x) +

α
n + β

,

3. Bα,βn (e2; x) =
n2
− n

(n + β)2 s2
n(x) +

n2 + nβ + 2αn
(n + β)3 sn(x) +

α2n + α2β + 2α2

(n + β)3 .

where α, β ∈ R and 0 ≤ α ≤ β.

In addition to this, we can present the following lemma in a similar way.

Lemma 3.2. For each x ∈ In and n ∈N, then the following identities hold:

1. Bα,βn (ϕ0
t ; x) = 1,

2. Bα,βn (ϕ1
t ; x) =

n
n + β

sn(x) +
α

n + β
− x,

3. Bα,βn (ϕ2
t ; x) =

n2
− n

(n + β)2 s2
n(x) +

n2 + nβ + 2αn
(n + β)3 sn(x) +

α2n + α2β + 2α2

(n + β)3 −
2nx

n + β
sn(x) −

2xα
n + β

+ x2,

where α, β ∈ R and 0 ≤ α ≤ β.

In addition to this, with the help of (4), for each µ > 0, we deduce that

B
α,β
n ( fµ; x) = e−µα/(n+β)

(
1 − sn(x)

(
1 − e−µ/(n+β)

))n
,

= e−µα/(n+β)
1 −

(1 − e2α/[n(n+β)]−2x/n)
(
1 − e−µ/(n+β)

)
1 − e−2/(n+β)


n

.

In particular, if one take the function described for each x ≥ 0, as

Ψm
t = (e−t

− e−x)m,

then we can smoothly obtain the following lemma.

Lemma 3.3. For each x ∈ In and n ∈N, then the following identities hold:

1. Bα,βn (Ψ0
t ; x) = 1,

2. Bα,βn (Ψ1
t ; x) = e−α/(n+β)

(
1 − sn(x)

(
1 − e−1/(n+β)

))n
− e−x,

3. Bα,βn (Ψ2
t ; x) = 2e−2x

− 2e−xe−α/(n+β)
(
1 − sn(x)

(
1 − e−1/(n+β)

))n
,

where α, β ∈ R and 0 ≤ α ≤ β.

Now, let focus on the properties of the function sn(x).

Proposition 3.4. For each n ≥ 1 and any x ∈ In, we have

sn(x) ≥
(
1 +
β

n

)
x −
α
n
, (8)

where α, β ∈ R and 0 ≤ α ≤ β.
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Proof. First of all, for n ≥ 1 we know that sn is convex down increasing function in In. Additionally, because
of sn

(
α

n+β

)
= 0 and sn

(
α+n
β+n

)
= 1, we can easily deduce that sn(x) ≥

(
1 + βn

)
−
α
n for x ∈ In, thus the proof is

completed.

Proposition 3.5. For α, β ∈ R and 0 ≤ α ≤ β, lim
n→∞

sn = e1 uniformly on compact subintervals of In.

Proof. It is clear that, lim
n→∞

sn = e1 pointwise on In. In addition to this, every sn(x) is concave the convergence
is indeed uniform on every compact interval of In.

4. Approximation Properties of the Sequence (Bα,βn )n≥1

In this section, we now present the approximation properties of introduced operator which preserve
exponential function in several spaces.

Theorem 4.1. Let x > 0 be fixed and Bα,βn , n ≥ 1, be the operator defined in 7. Then,

1. Bα,βn is a linear and positive operator from C∗(In) into itself; in addition to this, ∥Bα,βn ∥C∗(In) = 1,

2. Bα,βn (C0(In)) ⊂ C0(In).

for α, β ∈ R and 0 ≤ α ≤ β.

Proof. 1. It can be easily shown that for each n ∈ N, sn(x) is positive function which given in (6). As
a explicit consequence of that, one can say deduce that Bα,βn is a positive operator. Additionally, if
f ∈ C∗(In), one can say that Bα,βn ( f ) ∈ C∗(In) resulting from (2) which yields Bα,βn ( f ) ∈ C(In). Then, it
can be easily seen that Bα,βn ( f ) ∈ C(In) since sn(x) satisfy the continuity and the relation (5). Moreover,
it is obvious that limx→

{
α

n+β ,
n+α
n+β

}Bα,βn ( f )(x) = limx→
{
α

n+β ,
n+α
n+β

}( f )(x) ∈ R. As a consequences, ∥Bα,βn ∥C∗(In) =

∥B
α,β
n (e0)∥∞ = 1 due to the positivity of each Bα,βn .

2. From the direct consequence of (i) and

lim
x→

{
α

n+β ,
n+α
n+β

}Bα,βn ( f )(x) = 0 and lim
x→

{
α

n+β ,
n+α
n+β

}( f )(x) = 0,

whenever f ∈ C0(In), one can easily show the proof of (ii).

Theorem 4.2. For α, β ∈ R and 0 ≤ α ≤ β and the fixed n ≥ 1, consider the operators L∗n defined by (7). Then

1. limn→∞B
α,β
n ( f ) = f uniformly on In if f ∈ C∗(In),

2. limn→∞B
α,β
n ( f ) = f uniformly on compacts subsets of In if f ∈ Cb(In).

Proof. 1. In an effort to prove the first part of theorem, firstly, we need to show that

lim
n→∞
B
α,β
n ( fµ) = fµ uniformly on In, (9)

for every µ > 0. In accordance with this purpose, for every k > 0, we use the following useful
inequality given in [14, Lemma 3.1]

e−kσn − e−k <
kn

2e
, n ≥ 1, (10)
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where σn =
1−e−kn

kn
and (kn)n≥1 is a sequence of strictly positive real numbers. Following the similar

method of the proof of [14, Corollary 3.4], we can deduce that

|B
α,β
n ( fµ)(x) − ( fµ)(x)| ≤ e−µ

α
n+β

(
1 − sn(x)

(
1 − e−µ/(n+β)

))n
− e−µx,

= e−µ
α

n+β en log(1−sn(x)(1−e−µ/(n+β))) − e−µx,

≤ e−µ
α

n+β e−
n

n+βµsn(x)
(1−e−µ/(n+β))
µ/(n+β) − e−µx,

≤ e−µ
α

n+β e−
n

n+βµsn(x)
(1−e−µ/(n+β))
µ/(n+β) − e−µsn(x) n

n+β−µ
α

n+β ,

= e−µ
α

n+β

[
e−

n
n+βµsn(x)

(1−e−µ/(n+β))
µ/(n+β) − e−µsn(x) n

n+β

]
,

because ln x ≤ x − 1 and the inequality (8) holds. Then using the (10) for k = µsn(x) n
n+β and kn =

µ
n+β ,

we deduce that

|B
α,β
n ( fµ)(x) − fµ(x)| ≤ e−µ

α
n+β

µ

2e(n + β)
,

and

∥B
α,β
n ( fµ) − fµ∥∞ ≤ e−µ

α
n+β

µ

2e(n + β)
, (11)

for x ∈ In and the proof of (9) is completed. Then, relying the direct result of (9) and [8], we can prove
the first part of theorem.

2. For the second part of theorem, we notice that

|B
α,β
n (e1)(x) − e1(x)| ≤ x

(
Kn

n
n + β

− 1
)
+
α

n + β
,

and

|B
α,β
n (e2)(x) − e2(x)| ≤

(
n2
− n

(n + β)2 K2
n − 1

)
x2 +

n2 + nβ + 2αn
(n + β)3 Kn +

α2n + α2β + 2α2

(n + β)3 ,

thereby, limn→∞B
α,β
n ({e0, e1, e2}) = {e0, e1, e2} uniformly on compact subsets of In, owing to the fact that

limn→∞ Kn = 1. As a result, as {e0, e1, e2} ⊂ F∗2, the consequence follows from [5, Theorem 3.5].

In order to estimate the rate of convergence of (Bα,βn ( f )) for n ≥ 1 to f in Theorem 4.2, we need to brush
up our knowledge about the modulus of continuity. In this estimation, we will take advantage of the
following definition of modulus of continuity introduced in [14]:

Definition 4.3. Let f ∈ C∗(In). Then the modulus of continuity of a function, ω∗
(

f , δ
)
, is defined for δ ≥ 0 by

ω∗
(

f , δ
)
= sup

x,t∈In
|e−x
−e−t
|≤δ

| f (x) − f (t)|. (12)

In other words, this modulus of continuity can be stated concerning the standard modulus of continuity by

ω∗
(

f , δ
)
= ω (f, δ) ,

where f : C∗(In)→ C(In) is the continuous function defined by

f(θ) =


f (− lnθ) if θ ∈ (0, 1],

1 if θ = 0.
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Then the following theorem would be helpful in order to express next theorems.

Theorem 4.4. [14] If Pn : C∗(In)→ C∗(In) is a sequence of positive and linear operators for n ≥ 1 with

An = ∥Pn(e0) − e0∥∞,

Bn = ∥Pn( f1) − f1∥∞,
Cn = ∥Pn( f2) − f2∥∞,

where An,Bn,Cn → 0 as n→∞, then,

∥Pn( f ) − f ∥∞ ≤ ∥ f ∥∞An + (2 + An)ω∗
(

f ,
√

An + 2Bn + Cn

)
,

for f ∈ C∗(In).

In this regard, it is clear that there is a close relation between ω∗
(

f , δ
)

and the particular Korovkin subset
chosen for the space C∗(In), (see [14]). At this moment we can state the following theorem with the help of
above.

Theorem 4.5. For every f ∈ C∗(In) and n ≥ 1,

∥B
α,β
n ( f ) − f ∥∞ ≤ 2ω∗

 f ,

√
e
α

n+β
1

e(n + β)

 ,
under the same assumptions of Theorem 4.2.

Proof. It is obvious that, An and Cn equal to zero due to the their definitions. On the other hand, it is clear
that Bn = e

α
n+β 1

2e(n+β) from the (11). with µ = 1 for every n ≥ 1. So the proof is completed.

5. Pointwise Convergence of (Bα,βn )n≥1

This part of paper is devoted pointwise convergence of the sequence ofBα,βn . To present the convergence
we present Voronovskaya-type theorem in quantitative mean which shall allows us both degree of aimed
convergence and upper bound for the error of approximation.

The quantitative Voronovskaya-type theorem for the operators acting on bounded intervals and un-
bounded intervals can be found in the papers [3], [10], respectively. Here we take the modulus of continuity
given in (12). The main theorem of this section is:

Theorem 5.1. Let f , f ′′ ∈ C∗(In). Then the inequality∣∣∣∣∣n [
B
α,β
n

(
f , x

)
− f (x)

]
− x(1 − x) f ′(x) −

1
2

x(1 − 2α − x) f ′′(x)
∣∣∣∣∣

≤

∣∣∣ f ′(x)
∣∣∣ |an(x)| +

∣∣∣ f ′′ (x)
∣∣∣ |bn(x)| + 2 |2bn(x) + x(1 − 2α − x)| + 2cn(x)ω∗

(
f ′′;

√
1/n

)
,

holds for any x ∈ In, α, β ∈ R and 0 ≤ α ≤ β where

an(x) = nBα,βn (ϕ1
t ; x) − x(1 − x),

bn(x) =
1
2

nBα,βn (ϕ2
t ; x) − x(1 − 2α − x),

cn (x) = n2
√
B
α,β
n (ϕ4

t ; x)
√
B
α,β
n (Ψ4

t ; x).

where ϕm
t andΨm

t defined in Section 3.
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Proof. Thanks to the Taylor expansion of f at the point x ∈ In, we can write

f (t) = f (x) + f ′ (x) (t − x) +
1
2

f ′′ (x) (t − x)2 + τ (t, x) (t − x)2 , (13)

where

τ (t, x) :=
f ′′ (υ) − f ′′ (x)

2
,

and υ is a number between x and t. If we apply the introduced operators Bα,βn to both sides of equality (13)
and using the fact Bα,βn (e0) = e0,we immediately obtain∣∣∣∣∣Bα,βn

(
f , x

)
− f (x) − f ′(x)Bα,βn (ϕ1

t ; x) −
1
2

f ′′ (x)Bα,βn (ϕ2
t ; x)

∣∣∣∣∣ ≤ ∣∣∣∣Bα,βn (τϕ2
t ; x)

∣∣∣∣ .
Then we deduce that by manipulating the above inequality,∣∣∣∣∣n [

B
α,β
n

(
f , x

)
− f (x)

]
− x(1 − x) f ′(x) −

1
2

x(1 − 2α − x) f ′′(x)
∣∣∣∣∣

≤

∣∣∣ f ′(x)
∣∣∣ ∣∣∣∣nBα,βn (ϕ1

t ; x) − x(1 − x)
∣∣∣∣ + 1

2

∣∣∣ f ′′ (x)
∣∣∣ ∣∣∣∣nBα,βn (ϕ2

t ; x) − x(1 − 2α − x)
∣∣∣∣ + ∣∣∣∣nBα,βn (τϕ2

t ; x)
∣∣∣∣ .

In order to get simpler demonstration, we shall denote by

an(x) = nBα,βn (ϕ1
t ; x) − x(1 − x),

bn(x) =
1
2

nBα,βn (ϕ2
t ; x) − x(1 − 2α − x).

As a direct consequence of Lemma 3.2, it is obvious that an → 0 and bn(x)→ 0 as n→∞ at any point x ∈ In.
So we obtain,∣∣∣∣∣n [
B
α,β
n

(
f , x

)
− f (x)

]
− x(1 − x) f ′(x) −

1
2

x(1 − 2α − x) f ′′(x)
∣∣∣∣∣ ≤ ∣∣∣ f ′(x)

∣∣∣ |an(x)| +
∣∣∣ f ′′ (x)

∣∣∣ |bn(x)| +
∣∣∣∣nBα,βn (τϕ2

t ; x)
∣∣∣∣ .

To complete the proof successfully, we must estimate the last term
∣∣∣∣nBα,βn (τϕ2

t ; x)
∣∣∣∣. Taking into consider-

ation an inequality in Holhoş’s paper [14], we deduce that

|h (t, x)| ≤

1 +
(
e−x
− e−t)2

δ2

ω∗ ( f ′′; δ
)
,

and


|h (t, x)| ≤ 2ω∗

(
f ′′; δ

)
if

∣∣∣e−x
− e−t

∣∣∣ ≤ δ,
|h (t, x)| ≤ 2(e−x

−e−t)2

δ2 ω∗
(

f ′′; δ
)

if
∣∣∣e−x
− e−t

∣∣∣ > δ.
Accordingly, we have |h (t, x)| ≤ 2

(
1 + (e−x

−e−t)2

δ2

)
ω∗

(
f ′′; δ

)
.With the help of this fact, we obtain

∣∣∣∣nBα,βn (τϕ2
t ; x)

∣∣∣∣ ≤ 2nω∗
(

f ′′; δ
)
B
α,β
n (ϕ2

t ; x) +
2n
δ2 ω

∗
(

f ′′; δ
)
B
α,β
n (ϕ2

tΨ
2
t ; x),

and applying well-known Cauchy-Schwarz inequality, we deduce that
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nBα,βn (|τϕ2
t |; x) ≤ 2nω∗

(
f ′′; δ

)
B
α,β
n (ϕ2

t ; x) +
2n
δ2 ω

∗
(

f ′′; δ
) √
B
α,β
n (ϕ4

t ; x)
√
B
α,β
n (Ψ4

t ; x).

Choosing δ =
√

1
n and using the notations cn (x) = n2

√
B
α,β
n (ϕ4

t ; x)
√
B
α,β
n (Ψ4

t ; x), we obtain

∣∣∣∣∣n [
B
α,β
n

(
f , x

)
− f (x)

]
− x(1 − x) f ′(x) −

1
2

x(1 − 2α − x) f ′′(x)
∣∣∣∣∣

≤

∣∣∣ f ′(x)
∣∣∣ |an(x)| +

∣∣∣ f ′′ (x)
∣∣∣ |bn(x)| + 2 |2bn(x) + x(1 − 2α − x)| + 2cn(x)ω∗

(
f ′′;

√
1/n

)
,

thus the proof is completed.

Corollary 5.2. Let f , f ′′ ∈ C∗(In). Then the inequality

lim
n→∞

n
[
B
α,β
n

(
f , x

)
− f (x)

]
= x(1 − x) f ′(x) +

1
2

x(1 − 2α − x) f ′′(x),

holds for any x ∈ In.

6. Numerical Examples

In this part, two computational illustrations for the newly constructed Bernstein-Stancu type operators
are given due to display their approximation properties.
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Figure 1: Bα,βn
(

f , x
)

approximation of test function f (x) = − sin(10x)e−3x + 0.3 on a equally placed evaluation grid of In where α = 1,
β = 2 and n = 1000.
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Figure 2: Bα,βn
(

f , x
)

approximation of test function f (x) = x10

3 +
x2

2 − 3xe−x on a equally placed evaluation grid of In where α = 1, β = 2
and n = 1000.

For these numerical experiments, we consider the next two test functions such that,

f (x) = − sin(10x)e−3x + 0.3,

and

f (x) =
x10

3
+

x2

2
− 3xe−x,

for n = 1000. The results of the approximation can be seen in Figures 1 and Figure 2.
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