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Abstract. This article deals with a 2 × 2 reaction-diffusion-taxis model consisting of Michaelis-Menten
functional response predator-prey system. The critical section of this model is that temporal-spatial evolu-
tion of the predators’ velocity depends largely on the gradient of prey. But beyond that, this system also
inscribes a prey-taxis mechanism that is an immediate movement of the predator u in response to a change
of the prey v (which leads to the collection of u). By using contraction mapping principle, Lp estimates
and Schauder estimates of parabolic equations, we prove the global existence and uniqueness of classical
solutions to this model. In addition to this, we prove the global boundedness of solutions by overcome the
difficulties brought by nonlinear prey-taxis.

1. Introduction

In this article, we study the following Michaelis-Menten reaction-diffusion system of predator-prey
model with prey-taxis:

ut − d1∆u + ∇ · (uχ(u)∇v) = −au + β
cuv

u + bv
, x ∈ Ω, t ∈ (0,T),

vt − d2∆v = rv −
r
K

v2
−

cuv
u + bv

, x ∈ Ω, t ∈ (0,T),

∂u
∂ν
=
∂v
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ Ω,

(1)

where Ω is a bounded domain in RN(N = 1, 2, 3) with smooth boundary ∂Ω ∈ C2+α(Ω), where 0 < α < 1,
0 < T ≤ +∞, initial condition u0(x), v0(x) ∈ C2+α(Ω) compatible on ∂Ω, the constants d1, d2, a, K, r, β, b, c
are nonnegative and ecological, and ν is the outward directional derivative normal to ∂Ω. Throughout the
paper, a and r reflect the death rate of u (predator) and the intrinsic growth rates of v (prey), respectively.
K stands for the carrying capacity of prey v. β denotes the conversion rate of the species. We will use

2020 Mathematics Subject Classification. Primary 35A01, 35K55, 35K57; Secondary 92B05
Keywords. Nonlinear prey-taxis, global existence, global boundedness
Received: 31 December 2019; Revised: 19 January 2020; Accepted: 20 January 2020
Communicated by Maria Alessandra Ragusa
Email address: 1483091362@qq.com (Jiqing Tian)



J. Tian / Filomat 37:5 (2023), 1535–1547 1536

the symbols b and c to denote the handling time taken by predator to capture and expend prey and the
efficiency of searching of predator, respectively.

There is the Michaelis-Menten functional response contained in the model (1), where u and v represent
the population density of two species at time t with diffusion rates d1 and d2 (the tendency of random
walks of the species), respectively. In fact, there are many well-known reaction-diffusion models such
as Keller-Segel model [5, 6], Holling-type models [7], Holling-type II models [8], Ivlev-type models [9],
Lotka-Volterra-type models [3, 4, 10, 11, 24–26] and so on. The system (1) was introduced by Michaelis and
Menten [22]. Recently, it is of great interests to investigate the Michaelis-Menten predator-prey system.
In 2011, Baek and Lim [14] discussed the dynamics of an impulsively controlled Michaelis-Menten type
predator-prey system. They obtain some conditions for the existence and stability of prey-free solutions of
the system by using the Floquet theory. In 2005, The stability and bifurcation analysis for a predator-prey
system with the nonlinear Michaelis-Menten type predator harvesting are taken into account by Hu and
Cao [15]. On the other hand, the researchers in [16] investigates the global analysis of the Michaelis-Menten-
type ratio-dependent predator-prey system. With the rise of biological mathematics, many scientists and
mathematicians apply their efforts to Partial Differential Equations (PDEs), especially in nonlinear parabolic
partial differential equations [17, 18]. In addition, PDEs are supposed to be sufficient in modeling of the
countless processes in all fields of science. Many phenomena in physical sciences, chemistry and biology
are naturally described by PDEs, such as competition systems, chemotaxis systems, predator-prey models
and so on.

Under some certain conditions, Fan and Li [2] obtained the global asymptotic stability of the unique
positive constant equilibrium of the following problem, a similar model to (1), by applying constructing
suitable Lyapunov functions and the monotone iteration,

ut − d1∆u = −au + β
cuv

u + bv
, x ∈ Ω, t ∈ (0,T),

vt − d2∆v = rv −
r
K

v2
−

cuv
u + bv

, x ∈ Ω, t ∈ (0,T),

∂u
∂ν
=
∂v
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ Ω,

(2)

which is a Michaelis-Menten reaction-diffusion system with diffusion. It is well known that the global
boundedness of solutions to (2) has been proved by [23]. However, the existence of nonlinear prey-taxis
brings enormous difficulties to obtain the global boundedness of solutions to (1).

In the present work, motivated by [2] and [13], we will consider the global boundedness of classical
solutions to (1) under the predator-prey-taxis mechanism with simplified conditions on χ(u), which is
weaker than that supposed in [1]. The following theorems are the main results of this paper.

Theorem 1.1. Suppose that χ(u) satisfies

(i) χ(u) ∈ C1([0,+∞));

(ii) χ(u) ≡ 0 for u ≥M, with M > 0;

(iii) |χ′(u1) − χ′(u2)| ≤ L|u1 − u2| for u1,u2 ∈ [0,+∞), with L > 0;

(iv) uχ(u) and (uχ(u))′ are bounded, and (uχ(u))′ is Lipschitz continuous,

and v0 ≤ K, then there exist a unique classical solution

(u(x, t), v(x, t)) ∈ C2+α,1+ α2 (Ω × (0,T))

of the system (1) for any given T > 0. In addition,

u ≥ 0, 0 ≤ v ≤ K. (3)
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Theorem 1.2. Suppose that χ(u) satisfies

(i) χ(u) ∈ C1([0,+∞));

(ii) χ(u) ≡ 0 for u ≥M, with M > 0;

(iii) |χ′(u1) − χ′(u2)| ≤ L|u1 − u2| for u1,u2 ∈ [0,+∞), with L > 0,

and v0 ≤ K, then we have that the solutions to (1) are global and uniformly bounded in time.

The prey-taxis mechanism contained in the system means a immediate movement of the predator u
in response to a change of the prey v (which lead to the collection of u). Here we assume that χ(u) ≡ 0
for u ≥ M means that there exists a marginal value M for the cumulation of predator u, over which the
prey-tactic cross-diffusion χ(u) vanishes. In addition, it is necessary for the existence of classical solutions of
the system (1) to suppose that χ′(u) satisfies |χ′(u1)−χ′(u2)| ≤ L|u1−u2| for u1,u2 ∈ [0,+∞), with L > 0. Refer
to Remark 2.1 in [13] for a detailed explanation. Throughout this paper we also denote that ω(u) = uχ(u),
then it follows from the assumptions of Theorem 1.1 thatω(u) andω′(u) are bounded, andω′(u) is Lipschitz
continuous.

The remainder of this article is organized as follows. In Section 2, we illustrates the proof of Theorem
1.1 which are essential to the proof of Theorem 1.2. Section 3 illustrates the proof of Theorem 1.2. In Section
4, we will discuss how to generalize our results to more general setting.

2. Existence of global solutions

In this section we illustrates the proof of Theorem 1.1 which are essential in the proofs of Theorem 1.2
due to the difficulties brought by nonlinear prey-taxis. Firstly, we need some preliminary results.

Lemma 2.1. Let (u, v) ∈ (C2+α,1+ α2 (Ω×(0,T)))2 be a solution of (1). Then u ≥ 0 and 0 ≤ v ≤ K0 = max
{
maxΩ v0(x),K

}
.

Proof. We consider the following system of predator
ut − d1∆u + ω′(u)∇v · ∇u +

[
χ(u)∆v + a − β

cv
u + bv

]
u = 0, x ∈ Ω, t ∈ (0,T),

∂u
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

u(x, 0) = u0(x) ≥ 0, x ∈ Ω.

(4)

Obviously, u ≡ 0 is a sub-solutions to system (4). Therefore, using the maximum principle, we can
obtain that u ≥ 0. By the same way, v ≥ 0 is also obtained.

In addition, we also study the following system of prey
vt − d1∆v = rv −

r
K

v2
−

cuv
u + bv

≤ rv −
r
K

v2, x ∈ Ω, t ∈ (0,T),

∂v
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

(5)

v(t) stands for a solution of the model
dv(t)

dt
= rv(t) −

r
K

v2(t),

v(0) = max
Ω

v0(x) ≤ K.
(6)

Easily, v(t) (0 ≤ v(t) ≤ K) is a sup-solution to model (5). Therefore, using the maximum principle,

v(x, t) ≤ v(t) ≤ K. (7)

The proof is complete.
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Now, we need to establish a priori estimate of u.

Lemma 2.2. Assume that (u, v) ∈ C2,1(Ω × (0,T)) is a solution of (1), then there holds ∥u∥Lp+1(Ω×(0,T)) ≤ C for any
p > 1.

Proof. Multiplying ut − d1∆u + ∇ · (χ(u)u∇v) =
(
−a + β cv

u+bv

)
u by up, integrating over Ω × (0, t), using the

no-flux boundary condition ∂u
∂ν = 0, and noting u ≥ 0, 0 ≤ v ≤ K0 and 0 ≤ cv

u+bv ≤
c
b , we have∫ t

0

∫
Ω

d
dt

up+1dt − d1

∫ t

0

∫
Ω

∆u · updt

=

∫
Ω

up+1(t) −
∫
Ω

up+1(0) + (p + 1)pd1

∫ t

0

∫
Ω

up−1
|∇u|2dt

= −

∫ t

0

∫
Ω

∇ · (χ(u)u∇v) · updt +
∫ t

0

∫
Ω

(
−a + β

cv
u + bv

)
up+1dt

≤(p + 1)p
∫ t

0

∫
Ω

upχ(u)∇u · ∇vdt +
βc
b

∫ t

0

∫
Ω

up+1dt.

(8)

Applying Young’s inequality and the assumption of χ(u) yields∣∣∣∣∣∣
∫ t

0

∫
Ω

upχ(u)∇u · ∇vdt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ t

0

∫
Ω

upχ(u)|∇u · ∇v|dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ t

0

∫
Ω

u
p+1

2 ·
p−1

2 χ(u)|∇u · ∇v|dt

∣∣∣∣∣∣
≤M

p+1
2

∣∣∣∣∣∣
∫ t

0

∫
Ω

u
p−1

2 χ(u)|∇u · ∇v|dt

∣∣∣∣∣∣
≤M

p+1
2 max

0≤u≤M
χ(u)

∫ t

0

∫
Ω

∣∣∣∣u p−1
2 ∇u · ∇v

∣∣∣∣ dt

=M
p+1

2 max
0≤u≤M

χ(u)
∫ t

0

∫
Ω

∣∣∣∣u p−1
2 ∇u

∣∣∣∣ · |∇v| dt

≤ε

∫ t

0

∫
Ω

up−1
|∇u|2dt +

C0

2ε

∫ t

0

∫
Ω

|∇v|2dt

(9)

for any sufficiently small ε > 0.
Multiplying vt − d2∆v =

(
r − r

K v − cu
u+bv

)
v by v, integrating overΩ× (0, t), applying the no-flux boundary

condition ∂v
∂ν = 0, and noting u ≥ 0, v ≥ 0 and 0 ≤

(
r − r

K v
)

v ≤ rv, we obtain∫ t

0

∫
Ω

d
dt

v2dt − d2

∫ t

0

∫
Ω

∆v · vdt =
∫
Ω

v2(t) −
∫
Ω

v2(0) + 2d2

∫ t

0

∫
Ω

|∇v|2dt

=

∫ t

0

∫
Ω

(
r −

r
K

v −
cu

u + bv

)
v2dt

=

∫ t

0

∫
Ω

(
r −

r
K

v
)

v2dt

≤r
∫ t

0

∫
Ω

v2dt.

According to 0 ≤ v ≤ K0, we obtain∫ t

0

∫
Ω

|∇v|2dt ≤ C. (10)
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Based on (8), (9) and (10), we have∫
Ω

up+1(t) + (p + 1)p(d1 − ε)
∫ t

0

∫
Ω

up−1
|∇u|2dt ≤ C + C0

∫ t

0

∫
Ω

up+1dt. (11)

Setting 0 < ε < d1, we can conclude that∫
Ω

up+1(t) ≤ C + C0

∫ t

0

∫
Ω

up+1dt.

Applying Gronwall’s lemma yields∫ t

0

∫
Ω

up+1dt ≤ C.

The proof is complete.

Lemma 2.3. Assume that (u, v) ∈ C2,1(Ω× (0,T)) is a solution of (1), then there holds ∥u, v∥W2,1
p (Ω×(0,T)) ≤ C for any

p > 5.

Proof. Assume that (u, v) ∈ C2,1(Ω × (0,T)) is a solution of (1). Note that

vt − d2∆v =
(
r −

r
K

v −
cu

u + bv

)
v

can be rewritten as follows:

vt − d2∆v −
(
r −

r
K

v −
cu

u + bv

)
v = 0, (12)

where∥∥∥∥r −
r
K

v −
cu

u + bv

∥∥∥∥
Lp(Ω×(0,T))

≤ C (13)

by 0 ≤ v ≤ K0 and ∥u∥Lp+1(Ω×(0,T)) ≤ C. Based on (12), (13) and the parabolic Lp-estimate, we obtain

∥v∥W2,1
p (Ω×(0,T)) ≤ C. (14)

This, together with Sobolev embedding theorem, yields

∥∇v∥L∞(Ω×(0,T)) ≤ C. (15)

Now, we consider the equation of u. It can be rewritten as in non-divergence form:

ut − d1∆u + ω′(u) · ∇v = −ω(u)∆v +
(
−a + β

cv
u + bv

)
u. (16)

where

∥ω′(u)∇v∥L∞(Ω×(0,T)) ≤ C,∥∥∥∥∥−ω(u)∆v +
(
−a + β

cv
u + bv

)
u
∥∥∥∥∥

Lp(Ω×(0,T))
≤ C

by (14), (15), 0 ≤ v ≤ K0 and ∥u∥Lp+1(Ω×(0,T)) ≤ C. Using the parabolic Lp-estimate, we have

∥u∥W2,1
p (Ω×(0,T)) ≤ C.

This completes the proof of Lemma 2.3.
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Lemma 2.4. Assume that (u, v) ∈ C2,1(Ω × (0,T)) is a solution of (1), then there holds ∥u, v∥C2+α,1+ α2 (Ω×(0,T)) ≤ C.

Proof. Applying the Sobolev embedding theorem and Lemma 2.3, yields

∥u, v∥Cα, α2 (Ω×(0,T)) ≤ C. (17)

This, together with the parabolic Schauder estimate of vt − d2∆v =
(
r − r

K v − cu
u+bv

)
v, ∂Ω ∈ C2+α, u0(x), v0(x) ∈

C2+α(Ω), where 0 < α < 1, 0 ≤ v ≤ K0 and (17), we obtain

∥v∥C2+α,1+ α2 (Ω×(0,T)) ≤ C. (18)

Using the same method to the equation of u, we have

∥u∥C2+α,1+ α2 (Ω×(0,T)) ≤ C. (19)

The proof is complete.

Proof. [Proof of Theorem 1.1] The proof of the lemma is based on ∥u, v∥C2+α,1+ α2 (Ω×(0,T)) ≤ C. Motivated by the
pioneering work of Tao [13], utilizing Lemma 2.1, Lemma 2.2, Lemma 2.3 and Lemma 2.4, this proves the
theorem.

3. Global boundedness of solutions to system (1)

In this section, we will prove the global boundedness of classical solutions to (1). The following lemma
is the well-known classical Lp

− Lq estimate for the Neumann heat semigroup on bounded domains.

Lemma 3.1. Suppose (et∆)t>0 is the Neumann heat semigroup inΩ, and λ1 > 0 denotes the first nonzero eigenvalue
of −∆ in Ω under Neumann boundary conditions. Then the following Lp

− Lq estimates hold with C1,C2 > 0 only
depending on Ω:

(i) If 1 ≤ q ≤ p ≤ +∞, then

∥∇et∆w∥Lp(Ω) ≤ C1(1 + t−
1
2−

n
2 ( 1

q−
1
p ))e−λ1t

∥w∥Lp(Ω), t > 0

for all w ∈ Lq(Ω);

(ii) If 2 ≤ q ≤ p < +∞, then

∥∇et∆w∥Lp(Ω) ≤ C2(1 + t−
n
2 ( 1

q−
1
p ))e−λ1t

∥∇w∥Lp(Ω), t > 0

for all w ∈W1,q(Ω).

Lemma 3.2. Suppose that T ∈ (0,∞], that Ω ⊂ Rn. n ≥ 1, is a bounded domain, and that D, f and 1 comply with
D ∈ C1(Ω × [0,T) × [0,∞)) and D ≥ 0, f ∈ C0

(
(0,T); C0(Ω)

⋂
C1(Ω)

)
and 1 ∈ C0 (Ω × (0,T)) with f · v ≤ 0 on

∂Ω × (0,T). Moreover, assume that D(x, t, s) ≥ δsm−1, f ∈ L∞ ((0,T); Lq1 (Ω)) and 1 ∈ L∞ ((0,T); Lq2 (Ω)) for all
x ∈ Ω, t ∈ (0,T), δ > 0 and s ≥ s0 and for some δ > 0, m ∈ R and s0 ≥ 1, and some q1 > n+ 2 and q2 > n+2

2 . Then if
u ∈ C0(Ω × [0,T))

⋂
C2,1(Ω × [0,T)) is a nonnegative function satisfying{

ut ≤ ∇ · (D(x, t,u)∇u) + ∇ · f (x, t) + 1(x, t), x ∈ Ω, t ∈ (0,T),
∂νu(x, t) ≤ 0, x ∈ ∂Ω, t ∈ (0,T),

and if u ∈ L∞ ((0,T); Lp0 (Ω)) is valid for some p0 ≥ 1 fulfilling

p0 > 1 −m ·
(n + 1)q1 − (n + 2)

q1 − (n + 2)
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and

p0 > 1 −
m

1 − nq2

(n+2)(q2−1)

as well as

p0 >
n(1 −m)

2
,

then there exists C > 0, only depending on m, δ,Ω, ∥ f ∥L∞((0,T);Lq1 (Ω)), ∥1∥L∞((0,T);Lq2 (Ω)), ∥u∥L∞((0,T);Lq0 (Ω)) and ∥u(0)∥L∞(Ω),
such that

∥u(t)∥L∞(Ω) ≤ C

for all t ∈ (0,T).

Refer to the proof of Lemma A.1 in [12] for the details.

Proof. [Proof of Theorem 1.2] The proof consists of four parts.
Part 1: Boundedness of ∥u∥L1(Ω).
Integrate the sum of the first equation and the β times of the second equation in (1) on Ω by parts,

d
dt

∫
Ω

u +
d
dt

∫
Ω

βv = −a
∫
Ω

u + rβ
∫
Ω

v −
rβ
K

∫
Ω

v2. (20)

Employing Young’s inequality, we have

2rβ
∫
Ω

v ≤
rβ
K

∫
Ω

v2 + Krβ|Ω|.

Setting the last inequality into (20), we obtain

d
dt

∫
Ω

u +
d
dt

∫
Ω

βv = −a
∫
Ω

u + rβ
∫
Ω

v −
rβ
K

∫
Ω

v2

≤ −a
∫
Ω

u − rβ
∫
Ω

v + Krβ|Ω|.
(21)

Define

y1(t) =
∫
Ω

u +
∫
Ω

βv, t > 0.

Then

y′1(t) + k1y1(t) ≤ k2

for all t > 0 by (21) with k1 = min{a, r} and k2 = Krδ|Ω|. This ensures

y1(t) ≤ C1 = max
{

y1(0),
k2

k1

}
for all t > 0 by the comparison principle of ordinary differential equations.

Part 2: Boundedness of ∥u∥Lp(Ω) with p > 2.
Multiply the equation of u in (1) by up−1 and integrate on Ω by parts, then we have∫

Ω

ut · up−1
−

∫
Ω

d1∆u · up−1 +

∫
Ω

∇ · (χ(u)u∇v) · up−1 =

∫
Ω

(
−a + β

cv
u + bv

)
up.
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We first observe an important inequality

(p − 1)
∫
Ω

χ(u)up−1
∇u · ∇v ≤

d1(p − 1)
2

∫
Ω

up−2
|∇u|2 +

p − 1
2d1

∫
Ω

χ(u)2up
|∇v|2.

By simplifying the problem, we recall a reduced form of the last inequality

χ(u)up−1
∇u · ∇v ≤

d1

2
up−2
|∇u|2 +

1
2d1
χ(u)2up

|∇v|2.

Applying Young’s inequality with ε
(
ab ≤ εp ap + ε

−
q
p

q bq
)

and setting p = q = 2, ε = d1, a = u
p−2

2 ∇u and

b = χ(u)u
p
2∇v, we obtain

χ(u)up−1
∇u · ∇v

=χ(u)u
p−2

2 +
p
2∇u · ∇v

=(u
p−2

2 ∇u) · (χ(u)u
p
2∇v)

≤
d1

2
up−2
|∇u|2 +

1
2d1
χ(u)2up

|∇v|2.

Multiply the inequality by (p − 1) and integrate on Ω by parts yielding

(p − 1)
∫
Ω

χ(u)up−1
∇u · ∇v ≤

d1(p − 1)
2

∫
Ω

up−2
|∇u|2 +

p − 1
2d1

∫
Ω

χ(u)2up
|∇v|2.

According to∫
Ω

ut · up−1 =
1
p

∫
Ω

pup−1
· ut =

1
p

∫
Ω

d
dt

up =
1
p

d
dt

∫
Ω

up,∫
Ω

d1 · ∇ · (∇u · up−1) = d1

∫
Ω

∆u · up−1 + d1(p − 1)
∫
Ω

up−2
|∇u|2 = 0

and ∫
Ω

∇ · (χ(u)u∇v) · up−1 + (p − 1)
∫
Ω

χ(u)up−1
∇u · ∇v = 0,

we have

1
p

d
dt

∫
Ω

up + d1(p − 1)
∫
Ω

up−2
|∇u|2

=

∫
Ω

(
−a + β

cv
u + bv

)
up + (p − 1)

∫
Ω

χ(u)up−1
∇u · ∇v

≤

∫
Ω

(
−a + β

cv
u + bv

)
up +

d1(p − 1)
2

∫
Ω

up−2
|∇u|2 +

p − 1
2d1

∫
Ω

χ(u)2up
|∇v|2.

Consequently, together with χ(u) ≤M1 due to χ(u) ∈ C1 and χ(u) ≡ 0 for u ≥M, we have

1
p

d
dt

∫
Ω

up +
d1(p − 1)

2

∫
Ω

up−2
|∇u|2

≤

∫
Ω

(
−a + β

cv
u + bv

)
up +

p − 1
2d1

∫
Ω

χ(u)2up
|∇v|2

≤

∫
Ω

(
−a + β

cv
u + bv

)
up +

(p − 1)M2
1Mp

2d1

∫
Ω

|∇v|2.

(22)
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Multiply the equation of v in (1) by −∆v, and integrate on Ω by parts to get

d
dt

∫
Ω

|∇v|2 + 2d2

∫
Ω

|∆v|2 =2r
∫
Ω

|∇v|2 − 4
r
K

∫
Ω

v|∇v|2 + 2c
∫
Ω

uv
u + bv

∆v

≤2r
∫
Ω

|∇v|2 +
2cv

u + bv

∫
Ω

u∆v

≤2r
∫
Ω

|∇v|2 +
2cK0

u + bK0

∫
Ω

u∆v

≤2r
∫
Ω

|∇v|2 +
2c
b

∫
Ω

u∆v.

Employing Young’s inequality, we have

2c
b

∫
Ω

u|∆v| ≤
ε
2

∫
Ω

|∆v|2 +
2c2

εb2

∫
Ω

u2.

Setting ε = 2d2, we can obtain that

d
dt

∫
Ω

|∇v|2 + d2

∫
Ω

|∆v|2 ≤ 2r
∫
Ω

|∇v|2 +
c2

d2b2

∫
Ω

u2. (23)

According to

d1(p − 1)
∫
Ω

up−2
|∇u|2

=d1(p − 1)
∫
Ω

u
p−2

2 ·2|∇u|2

=
4d1(p − 1)

p2

[∫
Ω

(p
2

)2
u( p

2−1)·2
|∇u|2

]
=

4d1(p − 1)
p2

∫
Ω

|∇u
p
2 |

2

for p > 2, we know from (22) and (23) by Young’s inequality that

1
p

d
dt

∫
Ω

up +
d
dt

∫
Ω

|∇v|2 +
2d1(p − 1)

p2

∫
Ω

|∇u
p
2 |

2 + d2

∫
Ω

|∆v|2

≤

∫
Ω

(
−a + β

cv
u + bv

)
up +

(p − 1)χ(u)2up
m

2d1

∫
Ω

|∇v|2 + 2r
∫
Ω

|∇v|2 +
c2

d2b2

∫
Ω

u2

=

∫
Ω

(
−a + β

cv
u + bv

)
up +

(
(p − 1)χ(u)2up

m

2d1
+ 2r

) ∫
Ω

|∇v|2 +
c2

d2b2

∫
Ω

u2

≤

(
−a +

βc
b
+ 1

) ∫
Ω

up +

 (p − 1)M2
1up

m

2d1
+ 2r

 ∫
Ω

|∇v|2 + k3

(24)

with k3 =
c2M2

|Ω|
d2b2 > 0.

For
∫
Ω
|∇v|2, applying the Sobolev interpolation inequality

∥D jv∥p,Ω ≤ ε∥Dkv∥p,Ω + C∥v∥p,Ω,

setting j = 1, k = 2, p = 2, and integrating on Ω by parts, it’s easy to see that∫
Ω

|∇v|2 ≤ ε1

∫
Ω

|∆v|2 + k4

∫
Ω

|v|2 ≤ ε1

∫
Ω

|∆v|2 + k4K2
0 |Ω|

=ε1

∫
Ω

|∆v|2 + k5

(25)
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for any ε1, k4 and k5 = k4K2
0 |Ω| > 0 depending on ε1.

For
∫
Ω

up, by the Gagliardo-Nirenberg inequality with u ≥ 0, we obtain∫
Ω

up =

∫
Ω

|u
p
2 |

2
≤k6

(
∥∇u

p
2 ∥

2Np−2N
Np−N+2

2 · ∥u
p
2 ∥

4
Np−N+2
2
p

+ ∥u
p
2 ∥

2
2
p

)
=k6

(
∥∇u

p
2 ∥

2Np−2N
Np−N+2

2 · ∥u
p
2 ∥

2− 2Np−2N
Np−N+2

2
p

+ ∥u
p
2 ∥

2
2
p

)
=k6

(
∥∇u

p
2 ∥

2θ
2 · ∥u

p
2 ∥

2(1−θ)
2
p

+ ∥u
p
2 ∥

2
2
p

) (26)

with k6 > 0 and 0 < θ = Np−N
Np−N+2 < 1. Applying Young’s inequality yields

∥∇u
p
2 ∥

2θ
2 · ∥u

p
2 ∥

2(1−θ)
2
p

≤ ϵθ∥∇u
p
2 ∥

2
2 + ϵ

θ
θ−1 (1 − θ)∥u

p
2 ∥

2
2
p

with ϵ > 0. Setting the last estimate into (26), we see that∫
Ω

up =

∫
Ω

|u
p
2 |

2
≤k6

(
∥∇u

p
2 ∥

2θ
2 · ∥u

p
2 ∥

2(1−θ)
2
p

+ ∥u
p
2 ∥

2
2
p

)
≤k6

(
ϵθ∥∇u

p
2 ∥

2
2 + ϵ

θ
θ−1 (1 − θ)∥u

p
2 ∥

2
2
p
+ ∥u

p
2 ∥

2
2
p

)
=k6ϵθ∥∇u

p
2 ∥

2
2 + k6ϵ

θ
θ−1 (1 − θ)∥u

p
2 ∥

2
2
p
+ k6∥u

p
2 ∥

2
2
p

=k6ϵθ∥∇u
p
2 ∥

2
2 + k6

[
ϵ
θ
θ−1 (1 − θ) + 1

]
∥u

p
2 ∥

2
2
p

=ε2∥∇u
p
2 ∥

2
2 + k7∥u

p
2 ∥

2
2
p

=ε2∥∇u
p
2 ∥

2
2 + k7∥u∥

p
1

for any ε2 = k6ϵθ > 0, with k7 = k6

[
ϵ
θ
θ−1 (1 − θ) + 1

]
> 0 depending on ε2. Because of ∥u∥1 ≤ A1 by Part 1, we

know that∫
Ω

up
≤ε2

∥∥∥∥∇u
p
2

∥∥∥∥2

2
+ k7Ap

1 = ε2

∥∥∥∥∇u
p
2

∥∥∥∥2

2
+ k8 (27)

with k8 = k7Ap
1 > 0.

Now, we need to consider the value of ε1 and ε2. Fix them with (p − 1)M2
1Mp

2d1
+ 2r

 ε1 =
d2

2

and (
βc
b
+ 1

)
ε2 =

2d1(p − 1)
p2 .

We have from (24), (25) and (27) that

1
p

d
dt

∫
Ω

up +
d
dt

∫
Ω

|∇v|2 +
(
βc
b
+ 1

)
ε2

∫
Ω

|∇u
p
2 |

2 + 2
(

(p − 1)χ(u)2Mp

2d1
+ 2r

)
ε1

∫
Ω

|∆v|2

≤

(
−a +

βc
b
+ 1

) ∫
Ω

up +

(
(p − 1)χ(u)2Mp

2d1
+ 2r

) ∫
Ω

|∇v|2 + k3

≤ − a
∫
Ω

up +

(
βc
b
+ 1

)
ε2

∥∥∥∥∇u
p
2

∥∥∥∥2

2
+

(
βc
b
+ 1

)
k8 +

 (p − 1)M2
1Mp

2d1
+ 2r

 ε1

∫
Ω

|∆v|2

+

 (p − 1)M2
1Mp

2d1
+ 2r

 k5 + k3.
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Obviously,

1
p

d
dt

∫
Ω

up +
d
dt

∫
Ω

|∇v|2

≤ − a
∫
Ω

up
−

(
(p − 1)χ(u)2Mp

2d1
+ 2r

)
ε1

∫
Ω

|∆v|2

+

[(
βc
b
+ 1

)
k8 +

(
(p − 1)χ(u)2Mp

2d1
+ 2r

)
k5 + k3

]
= − a

∫
Ω

up
−

(
(p − 1)χ(u)2Mp

2d1
+ 2r

) (
ε1

∫
Ω

|∆v|2 + k5

)
+

[(
βc
b
+ 1

)
k8 + 2

(
(p − 1)χ(u)2Mp

2d1
+ 2r

)
k5 + k3

]
≤ − a

∫
Ω

up
−

 (p − 1)M2
1Mp

2d1
+ 2r

 ∫
Ω

|∇v|2 + k9

with k9 > 0. Therefore, define the function

y2(t) =
1
p

∫
Ω

up +

∫
Ω

|∇v|2, t > 0

satisfies y′2(t) + k10y2(t) ≤ k9 for all t > 0 with k10 = min
{

(p−1)M2
1Mp

2d1
+ 2r, ap

}
. This also ensures

y2(t) ≤ C2 = max
{

y2(0),
k9

k10

}
for all t > 0 by the comparison principle of ordinary differential equations.

Part 3: Boundedness of ∥ ∇v ∥L∞(Ω).
We can define f (u, v) =

(
r − r

K v − cu
u+bv

)
v. It follows from Part 2 and Lemma 2.3 that there is C3 > 0 such

that

sup
t>0

∥∥∥ f (u, v)
∥∥∥

Lp(Ω)
≤ C3 < +∞.

By the variation-of-constants formula for v, we have

v(·, t) = ed2t∆v0 +

∫ t

0
ed2(t−s)∆ f (u(s), v(s))ds, t > 0.

Because of Lemma 3.1, we can draw a conclusion that

∥∇v∥Lp(Ω) =

∥∥∥∥∥∥∇ed2t∆v0 +

∫ t

0
∇ed2(t−s)∆ f (u(s), v(s))ds

∥∥∥∥∥∥
Lp(Ω)

≤

∥∥∥∇ed2t∆v0

∥∥∥
Lp(Ω)

+

∥∥∥∥∥∥
∫ t

0
∇ed2(t−s)∆ f (u(s), v(s))ds

∥∥∥∥∥∥
Lp(Ω)

≤C2(1 + d2t−
n
2 ( 1

q−
1
p ))e−λ1d2t

∥∇v0∥Lp(Ω) +

∫ t

0

∥∥∥∇ed2(t−s)∆ f (u(s), v(s))
∥∥∥

Lp(Ω)
ds

≤2C2e−λ
′

1t
∥∇v0∥Lp(Ω) + C1

∫ t

0
(1 + d−

1
2

2 (t − s)−
1
2 )e−λ

′

1(t−s)
∥ f (u(s), v(s))∥Lp(Ω)ds

≤2C2e−λ
′

1t
∥∇v0∥Lp(Ω) + C1C3

∫ t

0
(1 + d−

1
2

2 s−
1
2 )e−λ

′

1sds

≤2C2∥∇v0∥Lp(Ω) + C1C3

(
1
λ′1
+ d−

1
2

2

(
2 +

1
λ′1

))
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for all t > 0. Therefore, ∥∇v∥Lp(Ω) is global bounded. We can apply

dv(t)
dt
= rv(t) −

r
K

v(t)2

and the Moser iteration to obtain the boundedness of ∥∇v∥L∞(Ω), since ∥u∥p for any p > N is bounded.
Part 4: Global boundedness.
Based on Part 2, Part 3 and Lemma A.1 in [12], the global boundedness of solutions can be proved by

using of the standard Moser iterative technique. The proof is complete.

Let us mention two important Remarks of our main results.

Remark 3.3. It is not difficult to find the global boundedness of solutions is an obvious result to the corresponding
predator-prey model [19, 20] without nonlinear prey-taxis. The existence of prey-taxis in (1) makes stupendous
difficulty to obtain the global boundedness, and even the global existence of solutions. On the other hand, the
nonlinear prey-taxis term ∇ · (χ(u)u∇v) contained in the system is supposed that χ(u) ≡ 0 whenever u ≥ M, where
the maximal density M acts as a switch to repulsion at high densities of the predator population, very similar to the
volume-filling effect or prevention of overcrowding for chemotaxis [21]. Therefore, the global boundedness of solutions
established by Theorem 1.1 should be reasonable and natural.

Remark 3.4. To investigate the qualitative behavior of the class of reaction-diffusion equations, in which the global
bounded argument is incorporated together with the prey-taxis term ∇ · (χ(u)u∇v), a standard technique have been
applied. According to the boundedness of ∥u∥L1(Ω), ∥u∥Lp(Ω) with p > 2 and ∥∇v∥Lp(Ω) with p > 2, using the standard
Moser’s iterative technique of parabolic partial differential equations, we obtain a sufficient condition to verify whether
the unique nonnegative solution of (1) is global bounded.

4. Generalization and future works

The method we propose in this paper can be applied to many interesting reaction-diffusion systems with
nonlinear prey-taxis. The existence of solution is an important problem to be considered. For instance, the
famous predator-prey model with Lotka-Volterra functional response and continuous diffusive functions

ut − d1(x, t)∆u + ∇ · (uχ(u)∇v) = −au + β
cuv

m + bv
, x ∈ Ω, t ∈ (0,T),

vt − d2(x, t)∆v = rv −
r
K

v2
−

cuv
m + bv

, x ∈ Ω, t ∈ (0,T),

∂u
∂ν
=
∂v
∂ν
= 0, x ∈ ∂Ω, t ∈ (0,T),

(u(x, 0), v(x, 0)) = (u0(x), v0(x)) ≥ 0, x ∈ Ω,

is an interesting model worth of investigation.
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