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A characterization of S-pseudospectra of linear operators
in a Hilbert space
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Abstract. In this work, we introduce and study the S-pseudospectra of linear operators defined by non-
strict inequality in a Hilbert space. Inspired by A. Bottcher’s result [3], we prove that the S-resolvent
norm of bounded linear operators is not constant in any open set of the S-resolvent set. Beside, we
find a characterization of the S-pseudospectrum of bounded linear operator by means the S-spectra of all
perturbed operators with perturbations that have norms strictly less than ¢.

1. Introduction

The concept of pseudospectra was developed by many mathematicians. For example, we can cite J. M.
Varah [12], L. N. Trefethen [10, 11], A. Jeribi [5, 6] and A. Ammar and A. Jeribi [1]. We refer the reader to L.
N. Trefethen [10] for the definition pseudospectra of the closed linear operator A

_ 1
L@ =o@| J{rec -z 2},

where ¢ > 0. By convention |[(A — A)7}|| = +o0 if, and only if, A € o(A). If A is self-adjoint operator, then we

have

_

d(A, o(A))’

where d(A, 0(A)) : is the distance between A and the spectrum of A.
In [9], T. Finck and T. Ehrhardt have proved that the pseudospectra of a bounded linear operator acting

in a Hilbert space, is equal to the union of the spectra of all perturbed operators with perturbations that
have norms less than ¢, i.e.,

Te(A) = U o(A + D).

IDll<e

(A = A)" = (1.1)

Until now, a number of papers devoted to extend this notion to the S-pseudospectra that is also studied
under the name pseudospectra of operator pencils (e.g [4]).
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In this work, we study some properties of the S-pseudospectrum of linear operators in a Hilbert space
and we show that the S-resolvent of a bounded operator cannot have constant norm. After that, we establish
a characterization of S-pseudospectrum.

We organize our paper in the following way: Section 2 contains preliminary properties that we will
need to prove the main results. In Section 3, we begin giving some proprieties of S-pseudospectrum of
linear operators in a Hilbert space. Beside that, we characterize the S-pseudospectrum of bounded linear
operators by means of perturbation of its S-spectrum in a Hilbert space.

2. Preliminary results

The goal of this section consists in collect some results which will be needed in the sequel.

Throughout this paper, let H be a Hilbert space over K = IR or C. We denote by L(H) the set of all
bounded linear operators from H into H. For A € L(H), we will denote by D(A) the domain, N(A) the null
space and R(A) the range of A.

Definition 2.1. (i) Let A € L(H). The linear operator A’ is called the adjoint of A if (Ax,y) = (x,A’y), for all
x,y € H. The operator A’ is called the adjoint of A.

(ii) A densely defined operator A on H is called symmetric, if A C A’, that is, if D(A) € D(A’) and Ax = A’x, for all
x € D(A). Equivalently, A is symmetric if, and only if, (Ax, y) = (x, Ay), for all x, y € D(A).

(iit) A is called self-adjoint if A = A’ that is, if, and only if, A is symmetric and D(A) = D(A"). &

Lemma 2.1. [7, Theorem 11.3] If A, B € L(H). Then,

H(A+BY =A"+P;

(ii) (AAY = AA’, forall A € C;

(iil) (ABY =B’ A;

(iv) (A’) = A. o
Proposition 2.1. [7] Let A € L(H). Then,

(i) A is invertible if, and only if, its adjoint A’ is invertible, and in that case

(A—l)/ — (A/)_l.
(i) A" € LH') and ||A'|| = ||Al|. o

Proposition 2.2. Let A € L(H).

+00
(i) [8, Theorem 7.3.1] If ||All < 1, then (I — A)~! exists as a bounded linear operator on X and (I — A)™! = Z A",
n=0
(i))[6, Theorem 3.3.2] Let S € L(H) such that S # Aand S # 0 S commutes with A, then for any A and Ay € ps(A)
with |A — Ag| < ||(A0S — A)~1S||71, we have

(AS— A)! = Z(A — A0)"S"(AoS — A)~"+D), S

n>0

Definition 2.2. (i) Let A € L(H). The resolvent set and the spectrum set of A are define, respectively, by:
p(A) = {A € C: A — Ais invertible}

and a(A) = C\p(A).
(ii) Let A € L(H). The spectral radius of A is defined by:
r(A) = sup{|A| : A € 0(A)}.
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(iif) Let S € L(H) such that S # 0. For A € L(H), we define the S-resolvent set of A by:

ps(A) = {A € C: AS — A has a bounded inverse},
and the S-spectrum of A by: os(A) = C\ps(A). ¢

Remark 2.1. [6, Proposition 3.3.1] Let A € L(H), S € L(H) such that S # 0. Then, the S-resolvent set ps(A) is
open. o
Lemma 2.2. [6, Remark 3.3.1] If A € L(H) and S is an invertible bounded operator, then

0s(A) = a(S7'A) (N o(AS7Y). o
Remark 2.2. Let A € L(H). Let S be a non-null bounded operator such that S # A.

ps(A) = ps(A"). ¢
Indeed, it follows from Proposition 2.1 and Lemma 2.1 that

ps(A)

{A € C: AS — A has a bounded inverse}

= {A € C:(AS — A) has a bounded inverse}
= {Ae€C:AS — A’ has a bounded inverse)
= ps(AY).

3. Main results

The goal of this section is to study some proprieties of S-pseudospectra of linear operator in a Hilbert
space and to find a relationship between S-spectra and S-pseudospectra.

Definition 3.1. Let A € L(H) and € > 0. Let S be a non-null bounded operator such that S # A. We define the
S-pseudospectra of A by:

1
. = : — -1 > —
Tse(A) = os(A) | J{1 e C: s - A > -}
by convention |[(AS — A)7Y|| = +oco if, and only if, A € a5(A). o

Lemma 3.1. Let A € L(H) and ¢ > 0. Let S be a non-null bounded operator such that S # A. Then, Lg.(A) is
closed. o

Proof. We consider the following function

p:ps(A) — R,
A — I(AS = A)7I.

It is clear that ¢ is continuous and

(LecC: s - A" < %} s (]—oo, %D

So, we can deduce that {/\ eC:|(AS-A)1Y < %} is open. Finally, the use of Remark 2.1 allows us to

conclude that ps.(A) is open. This is equivalent to saying that Xs.(A) is closed. |

Proposition 3.1. Let A € L(H) and € > 0. Let S be a non-null bounded operator such that S # A. Then,
Yo e(A) = L (A). ¢
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Proof. By using Lemma 2.1 and proposition 2.1, we obtain

IAS =AY = [I((AS=A)YIl
= (As =4I
= |I(AS" = A7
Finally, the use of Remark 2.2 allows us to conclude that Xg ((A") = Zg(A). m|

Theorem 3.1. Let A be a bounded invertible operator on H, S = A~ and ¢ > 0. If A is self-adjoint, then we have
(i) Ts:(A) C o(S1A) U {A eC: inf |A-ul<|S7 e}.
uea(S1A)
(i) o(STTA) U {/\ eC: inf [A-pul< IISII_le} C Zge(A).
uea(S1A)

(iii) Moreover, if ||Al| = |A7Y|| = 1, then

Sse(A) = o(sA) U {1 eC: onf, A —pl < e}. o

Proof. Since S = A1, then S is invertible, S™! = A and S7'A = AS™! . It follows from Lemma 2.2 that
os(A) = 6(S7A) = 6(AS™Y).
Consequently,
1
Yse(A) =o(SIA AeC:|l(AS-A) 1> =1 3.1
se(A) = oA Jrec:ins - a7z 2 (3.1)

(7)) For A € C, we can write

IAS=A) = [I(S(A=STTA)I
= [(A-S1A)7's
< A =STTA)THISTLL
Therefore,
IAS = A)TNISTHT < (A = ST A) I (3.2)

Let A € Z5:(A). Then, by (3.1), we have
1
-1 . AV > =
Aeo(S A)U{A eC:AS=A)"|| = 5}'

It is clear that
o(S1A) c 6(S71A) U {Aec: inf
(

uea(S1A)

A=l < IS ).
Then, it is sufficient to show that

Y5 (A)\a(SIA) c 6(ST'A) U {)\ eC: ,ueai(rslflA) A —ul <1IS7Y e}.

Let A € {)\ eC:||(AS-A)7Y > %} Then, using (3.2), we obtain

1

(A =7 A) | = :
( elIs|

(3.3)
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Now, combining the fact that S = A~ and (jii) of Lemma 2.1, we infer that
(S—lA)/ — A/(S—l)/
= AA’
= S'A,
which yields S™'A is self-adjoint. By referring to (1.1), we have

1 1

STA) T inf -l
d(A,0(S71A)) yeé(rs‘—m)l u

(A =SA) =
Hence, by (3.3), we conclude that i(l’Slf " A —ul < IS7Y|| €. This shows that
uea(S

Ts.(A) C 0(S7'A) U {rec: » Oi(rsl_flA) A=l < 1IS7le).

(i1) For A € C, we can write

IA=STAT = IS AS = ANl
I(AS = A)~H IS

IA

Therefore,

IS = A)7HIE = 1A = ST A THHISIE

Let us assume that A € {/\ eC: (nflA) A —pul < 1SII7* e}, then by (3.4), we infer that

uea(S-
- sy L
By referring to (3.5), we have
_ 1
1S = A7l =~

The use of (3.1) makes us conclude that

5(SA) U {rec: » Ui(l’slflA) A=l < [ISIe} € Ss,(A).

(iii) Using the fact that S = A~ and |A]| = |A7!]| = 1, then
IS~ = NlAll = 1A~ = 11S] = 1.
Finally, the use of (i), (ii) of Theorem 3.1 and (3.6) allows us to conclude that

Tse(A) = o(STA) U{1 e C: '(nf A=l < e},

uea(S~1A)
Remark 3.1. From Theorem 3.1, it follows immediately that
Tepaf1 (A% € Zae(A) C T (A?)

and that equality holds in (3.7), if ||Al| = [|A7Y| = 1.

1335

(3.4)

(3.5)

(3.6)

(3.7)
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Theorem 3.2. Let A € L(H) and ¢ > 0. Let S € L(H) such that S # 0and S # A + D, for all D € L(H) with
ID|| < €. Then,

U 05(A + D) C T (A). S
[IDll<e

Proof. Let us assume that A € U 0s(A + D). Then, there exists D € L(X) such that ||D|| < ¢ and
IDlI<e

A € 05(A + D). We derive a contradiction from the assumption that A € ps(A) and [|[(AS — A)7Y|| < % For
A € ps(A), we can write

AS—A-D=(AS-A)I-(AS-A)"D). (3.8)

Since

I(AS = A)'DIl < [I(AS = Al IDI

then by using (i) of Proposition 2.2, we infer that I — (AS — A)™'D is invertible. By referring to (3.8), we
conclude that AS — A — D is invertible. This is equivalent to say that A € ps(A + D). o

As an immediate consequence of Lemma 3.1 and Theorem 3.2, we have

Corollary 3.1. Let A € L(H)and € > 0. Let S € L(H) such that S # 0and S # A+ D, for all D € L(H) with
IID|| < €, then we have

C ZS,S (A)/

clos( U os(A + D)

IDl|<e

where clos(-): denotes the closure. o

Proposition 3.2. Let A, S € L(H) such that S is invertible, S # A and SA = AS. Suppose that AS — A is invertible
for all A in some open subset U C C and ||(AS — A)7H| < M, for all A € U. Then,

lAS = A) Y < M, forall A € U

Proof. A little thought reveals that what we must show is the following: if U is an open subset of C
containing 0 and ||(AS — A)7!|| < M, then

(AS = A)'l < M, forall A € UL
To prove this assume the contrary
(AS = Al =M, forall A € U
If A =0, then
IA™I = M. (3.9)
Using the fact that SA = AS, then by using (ii) of Proposition 2.2, we have

(AS-A)! = Z A"S" A= for all [A] < [JATES) L (3.10)

n>0
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Let x € H and |A| < [|JA~1S||"!. Hence, by (3.10), we infer that
I(AS — A) x| ((AS = A)'x, (AS — A) ')

( Z AkGk A=+ Z NSIA~ D)

k=0 =0

Z AEAI(sF A~ Dy, Z SIA-G*Dy).

k,j=0 j=0

Let r < ||A~1S||"!.Therefore, forallx € Hand |A| < r

I(AS — A)x|? = Z Akﬂsk A4y g A-U’“)x).
k,j>0

Integrating (3.11) along the circle || = 7, we obtain

1
“(reZitTLS _ A)—lx“2dt — T’2k SkA_(k+1)x, SkA—(k+1)x — r2k“SkA_(k+1)x“2.
| YA )= Y.

k>0 k>0

Using (3.12) and the hypothesis [|(re**™S — A)~1x|| < M||x||, then we arrive at

AT P + ISA72xIP < M|,

Now pick an arbitrary ¢ > 0. It follows from (3.9) that there is an xy € H such that [|xg|| = 1 and

A xol> > M? — €.
In view of (3.13) and (3.14) implies that
ISA™2x0|* < er™2.

Consequently, by referring to (3.15), we have

1= |l < ISA™)HHISA 2 x0l? < [I(SA™2)Hler 2,

1337

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

whichisimpossibleif ¢ > Oissufficiently small. This contradiction shows that I(AS—=A)7Y| < M, forall A € LL

O

Remark 3.2. (i) In Proposition 3.2, we proved that the S-resolvent of a bounded operator acting in Hilbert space

cannot have constant norm on any open set.
(ii) Proposition 3.2 is a generalization of [3, Proposition 6.1].

¢

Theorem 3.3. Let ¢ > 0and A,S € L(H) such that S is invertible, SA = ASand S # A + D for all D € L(X) with

[ID|| < €. Then,

Tse(A) C clos[ |J osa+D)
[IDll<e

1
Proof. LetA € Is.(A) = 05(A) U{A € C:[I(AS - A)!|| 2 E}'
First case. If A € 05(A), we may put D = 0.
Second case. If A € {)\ eC:||[(AS=A)71 > %}\Us(A), then

1
I(AS — A7 > - and A € ps(A).
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1
This leads to [|(AS — A)~Y|| > = for A € pg(A). Therefore, by Remarks 2.1 and 3.2 (i), we obtain
2 1
(48 = A) > < forall A € ps(A).

1
This implies that there exists yo such that ||yo|| = 1 and |[(AS — A) Lyl > - Putting

x0 = [I(AS = A) "ol M (AS — A) Mo
Therefore, xg € H, ||xoll = 1 and

IAS = A)xoll = 1I(AS = A) ' yol
< E&.

Consequently, there exists xg € H such that ||xg|| = 1 and ||[(AS — A)xo|| < &. By the Hahn-Banach theorem,
there exists x” € X’ such that |[x’|| = 1 and x’(xg) = 1. We consider the following linear operator

D(x) := x"(x) (AS — A)x.
Let us observe that

DI < Il I(AS = A)x]l
< ellxll,

then we have ||D|| < € and D is everywhere defined. Therefore, D is bounded. Moreover, we have

(AS— A = D)xo = 0, for |[xoll = 1.

Hence, A € 05(A + D) and we can deduce that A € clos[ U os(A+ D)|. O

IDl|<e

As a direct consequence of Corollary 3.1 and Theorem 3.3, we infer the following result

Corollary 3.2. Let ¢ > 0and A, S € L(H) such that S is invertible, SA = AS and S # A + D for all D € L(X) with
[ID|| < €. Then,

Tse(A) = clos( U as(A +D)|. 1S
[IDll<e
Theorem 3.4. Let ¢ > 0and A,S € L(H). Then,
Tse(A) = U os(A + D). o

[IDll<e

Proof. LetusassumethatA € U 05(A + D). Then, there exists D € L(H) such that||D|| < eand AS—A-D
IDlI<e
is not invertible. If A € 05(A), then A € Xg.(A). So we can suppose that AS — A is invertible. Therefore, we
can write
AS—A—-D = (AS-A)I-(AS—A)"'D).

Consequently, I — (AS — A)"!D is not invertible which yields ||(AS — A)™'D|| > 1. This implies that

1 < [(AS-A)'DI
< IAS=A)HIDI
< ell(AS=A)).
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1
Hence, ||(AS — A)7Y|| > = This enables us to conclude that

|J o5(A + D) € Zs.(A).

IDl|<e

Conversely, we suppose for contrary that there exists a A € Lg.(A) such that AS — A — D is invertible for all
D e L(H) with ||D]| £ e. Setting D = 0, we get the invertibility of AS — A. It follows from Remark 2.2 that

AS’ — A’ is invertible. Setting D = u(AS’ — A’)~! where  is arbitrary complex number satisfying
_c

(A" = Ay

For y satisfying (3.16), we can write

AS—A-D = AS—A-u(AS —A")!

0<ul < (3.16)

1(AS — A) (% - (AS - A)'(AS - A')-l) )
Consequently, i — (AS = A)1(AS’ — A’) ! is invertible for u satisfying (3.16) which yields

— 1S — A’)L
(s -4 as - ay) < I
Using the fact that (AS — A)"(1S’ — A’)~! is self adjoint, then we have

QA1
_Ias -y

[(AS = A)7' (A" =AY = ((AS - A (AS" - A7) -

Hence,

_ <, _ A1
l(AS’ _A')—1||2 < M

Finally, the use of Proposition 2.1 (ii) allows us to conclude that
3 o’ ’N— - 1
IAS" =AY = 1I(AS = A)7'l < =
which is a contradiction. ]

Remark 3.3. Theorem 3.4 is a generalization of T. Finck and T. Ehrhardt’s result [9]. &
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