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Abstract. In this paper, we present a new hybrid extragradient algorithm for finding a common element
of the fixed point problem for a demicontractive mapping and the split equilibrium problem for a pseu-
domonotone and Lipschitz-type continuous bifunction. By using a new technique of choosing the step size
of the proposed method, our algorithms do not need any prior information of the operator norm. In fact,
we propose an inertial type algorithm in order to accelerate its convergence rate and then prove strong
convergence theorem of our proposed method under some control conditions. Moreover, we give some
numerical experiments to support our main results.

1. Introduction

The equilibrium problem provides a unified approach to address a variety of mathematical problems
arising in disciplines such as physics, transportation, game theory, economics and network (see[12, 19]).
Let H; and H; be real Hilbert spaces with the inner product (-, -) and the norm || - ||. Let C; and C; be
nonempty closed convex subset of Hy and H», respectively. Let T : C; — C; be a mapping. We denoted
Fix(T) by the set of all fixed points of T, i.e., Fix(T) = {x € C; : Tx = x}. Let f; : C; X C; — R be a bifunction.
The equilibrium problem (shortly, (EP)) is as follows:

Find a point ¥ € C; such that fi1(%,y) > O forall y € C;. (1)

The set of all solutions of the problem (EP) is denoted by EP(f;). The equilibrium problem is a gener-
alization of the variational inequality problem, the optimization problem, the Nash equilibrium problem
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and some others (see [4, 6, 7, 11, 20]). Recently, some nonlinear problems to find a common point of the
solution set of the equilibrium problem and the set of fixed points of a nonexpansive mapping becomes an
attractive field for many researchers (see [1, 8-10, 17, 18, 22, 25, 27-29]).

Let fi : C1 X C; —» Rand f, : C; x C; = R be two bifunctions. Let A : H; — H; be a bounded linear
operator. The split equilibrium problem (shortly, (SEP)) [21] is as follows:

Find a point ¥ € C; such that f1(%,y) > 0 forally € C; (2)
and such that
i = Ax € Cy solves f»(i7,z) = O forall z € Cs. 3)
The solution set of the problem (SEP) is denoted by

Q = {z € EP(f)) : Az € EP(f)).

The split equilibrium problem is said to be monotone if bifunctions f; and f, are monotone.

Obviously, if f, = 0 and C; = H; in the problem (SEP), then the split equilibrium problem becomes the
equilibrium problem.

In 2012, He [21] proposed a new algorithm for solving the split monotone equilibrium problem and
investigated the convergence behaviour in several ways including the strong convergence and he also
generated the sequence {x,} iteratively as follows:

x1€C;=C,
fl(unl y) + ;(y — Up, Up — xn) = 0/ V]/ € C/

1
Jo(Wn,2) + =z = W, Wy = Ay} 20, Vz €D, (4)

Yn = Pclu, — VA*(wn — Auy)],

Cr1 = {v € Gyt llyn — 0ll <ty —0ll < |lx — 2},

Xu+1 = Pc,,,(x1), Yn>1,

where C and D are nonempty closed convex subsets of H; and H, respectively, A" is the adjoint operator of
A ye (0, W) and {r,} is a sequence in [r, o) C (0, o) with some conditions.

To find a solution of a system of equilibrium problems for pseudomonotone monotone and Lipschitz-
type continuous bifunctions in R™, in [32], Tran et al. introduced the following extragradient method
{xak:

Xg € C1,

(1
yn = argmin{Zlly = I + Aufixn, y) 1 y € Cal, )

. (1
X1 = argmin >y = xall + Aufilyn, v) 1y € o), Yn 20,

where A, € (0, 1]. They proved that the sequence {x,} converges to a solution of the equilibrium problem.

Recently, Anh [3] presented a hybrid extragradient iteration method {x,} for finding a common element
of the set of fixed points of a nonexpansive self-mapping and the set of solutions of the equilibrium problem
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for a pseudomonotone and Lipschitz-type continuous bifunction as follows:
xo € Cy,

. (1
yn = argmin{>lly = 2l + A firn, v) 2 y € Ca),

by = argmin{%llt =Xl + A fi(yu t) : t € Cil,

Zn = Xy + (1 — an)T(ty),

Dy ={z € Cy :llzw — zll < |lxu —zll},
Qu=1{z€Cr:{xy—z,x —x,) 20},
Xus1 = Pp,ng,, ¥n>0.

Also, he showed that, under certain appropriate conditions imposed on A, and a;, the sequences {x,}
strongly converges to a common solution of the solution sets of the fixed point problem and the equilibrium
problem. Further, some more iterative algorithms for finding a common element of the set of fixed points of
a nonlinear mapping and the set of solutions of the equilibrium problem for pseudomonotone bifunctions
in real Hilbert spaces have been studied by some authors (see[2, 13, 23, 31, 33]).

Very recently, Dong et al. [14-17], Hieu et al. [22] and some others have studied some kinds of
inertial algorithms to converge strongly and weakly to some fixed points of nonlinear mappings and some
solutions of some variational inequality problems, equilibrium problems and split feasibility problems in
Hilbert spaces.

In this paper, motivated and inspired by the results [3, 21], first we apply the inertial term, that is, inertial
extrapolation, to some algorithms and then our control conditions on the step sizes do not require any prior
knowledge of the operator norm. Second, we prove some strong convergence theorems of the proposed
algorithms for approximating a common solution of the set of solutions of the split pseudomonotone
equilibrium problem and the set of fixed points of a demicontractive mapping in real Hilbert spaces.

2. Preliminaries

Let H be a real Hilbert space with the inner product (-, -) and the norm || - ||. Let C be a nonempty closed
convex subset of H. Let the symbols — (—) be denoted the strong and weak convergence, respectively, and
let wy(x,) denote the set of cluster points of the sequence {x,} in the weak topology, that is, there exists a
subsequence {x,,} of {x,} such that x,, — x. Let f : H — R be a function. Define the set of minimizers of the
function f by

argminf(y) ={y € C: f(y) < f(z), Vz€ C}L.

yeCcH
It is known that argmin{f(y) + a : y € C} = argmin{f(y) : y € C} for all a € R. A mapping Pc is called the

metric projection of H onto C if, for any x € H, there exists a unique nearest point in C denoted by Pc(x), i.e.,

Pc(x) = argmin{|ly — x|l : y € C}.

It is known that Pc¢ is a firmly nonexpansive mapping and, moreover, Pc is characterized by the following

property:
(x—=Pcx,y—Pcx) <0, VxeH, yeC

Now, we recall the following definition:
Definition 2.1. Let C be a nonempty closed convex subset of a real Hilbert space H. A mapping T : C — C is said
to be:

(1) firmly nonexpansive if
ITu — To|> < (Tu — To,u —v), Yu,v e C;
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(2) nonexpansive if
[|Tu — To|| < |lu—2|, Yu,veC;

(3) quasi-nonexpansive if Fix(T) # 0 and
[ Tu — || < |lu—2l|l, YueC, v e Fix(T);
(4) k-demicontractive if Fix(T) # 0 and there exists k € [0, 1) such that
I Tu - oll> < |ju — 0l + klju — Tull?, Yu € C, v € Fix(T).

Noted the following;:

(1) Every firmly nonexpansive mapping is nonexpansive.

(2) Every nonexpansive mapping is quai-nonexpansive.

(3) Every quasi-nonexpansive mapping is demicontractive.

(4) If T is a demicontractive mapping with Fix(T) # 0, then Fix(T) is closed convex.

Definition 2.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C — C be a mapping
and 1 be the identity mapping on C. The mapping T — I is said to be demiclosed at zero if, for any sequence {x,} in C
which x, — x and Tx, — x, — 0, we have x € Fix(T).

Next, we list some well-known definitions for the next section.

Definition 2.3. The bifunction f : C X C — R is said to be:

(1) strongly monotone on C if there exists a constant y > 0 such that f(x,y) + f(y,x) < =yllx —yl?>, Vx,y€C;
(2) monotone on Cif f(x,y) + f(y,x) <0, Vx,yeC;

(3) pseudomonotone if f(x,y) 20= f(y,x) <0, Yx,y € C;

(4) Lipschitz-type continuous on C if there exist two positive constants c1, c, such that

ey + fy,2) = f(x,2) = allx = ylIP = cally = 2IP, Yx,y,z€C

From the definitions above, it is clear that (1) = (2) = (3).

Now, we assume that the bifunction f : C x C — R satisfies the following conditions:

(b1) f(x,x) =0forall x € C and f is pseudomonotone on C;

(b2) f is Lipschitz-type continuous;

(b3) for each x € C, y = f(x, y) is convex and subdifferentiable;

(b4) f(x,y) is weakly continuous on C x C, that is, if {x,}, {y,}] € C weakly converges to x,y € C,
respectively, then f(x,, y.) = f(x, y).

Note that, if f satisfies the condition (b1) and EP(f) # 0, then EP(f) is convex (see [7]). By the condition
(b4), we can show that EP(f) is closed.

Lemma 2.4 ([30]). Let H be a real Hilbert space. Then the following results hold:
(1) forallt € [0,1]and u,v € H,

lItu + (1 = £)oll* = Hlull® + (1 = B)lloll* — (1 = £)lju — ol
(2) llu + ol> = [[ull® £ 2¢u, v) + |[v||* for all u,v € H.

Lemma 2.5 ([24]). Let C be a closed and convex subsets of a real Hilbert space H. Then, for any x,y,z € H and
a € R, the set

D:={veC:|ly-olf <|x -0l +(w,v) +a} 7)

is closed and convex.
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Lemma 2.6 ([24]). Let C be a closed convex subset of a real Hilbert space H. Let {x,} be a sequence in H, u € H and
let q = Pcu. Suppose that the sequence {x,} in H satisfies the following conditions:

wu(xn) €C, Ay —ull < flu—qll, Yn=>1.
Then x, — q.

Lemma 2.7 ([2, 3]). Let C be a nonempty closed convex subset of a real Hilbert spaces H and f : C x C — R be
a psedumonotone and Lipschitz-type continuous bifunction with constants c1,co > 0. For each x € C, let f(x,-) be
convex and subdifferentiable on C. Let {v,}, {z,} and {w,} be the sequences generated by

0 € C,
_ (1 2 )
Zy = argmm{zllz Oull® + Anf(vn,2) 1z € C}, ®)
w, = argmin{%”w — 0l + Ay f(zn,w) :w € C}, V20,
where Ay, > 0 for all n > 0. Then, for each x* € EP(f),
Anlf(Wn,2) = f(On,20)] 2 (2p = Vn, 20 —2), V2 EC, )
and
lwn = |7 < l[on = x°IF = (1 = 2Ane)llwy — zal* = (1 = 2Auc1)l[on — zull>, V> 0. (10)

3. Main Results

Throughout this section, let H; and H; be real Hilbert spaces with the inner product ¢-, -) and the norm
I - |l. Let C; and C, be nonempty closed convex subsets of H; and Hj, respectively. and let I be the identity
mapping on H;. We assume that

e T: H; — Hj is a k-demicontractive mapping such that T — I demiclosed at zero;

e A:H; — H;is abounded linear operator with its adjoint operator A*;

e fi : C; x C; — R is the bifunction satisfies the conditions (b1)-(b4) with the Lipschitz constants
c1,6>0;

e f, : C; x C; = R is the bifunction satisfies the conditions (b1)-(b4) with the Lipschitz constants
bl , bz > 0;

o Fix(T)NQ # 0.

For our main results, that is, some strong convergence theorems, we start with the following important
lemmas:

Lemma 3.1. Let {x,}, {y,} and {t,} be the sequences generated by

X0 EHl,

(1
Ynp = argmm{zlly - PczAxnllz + ﬁnfz(PczAxn, ]/) tye Cz}, (11)
ty = argmin{%“t = Pe,Axy|P + Bufoyn, ) 1 t € Caf, ¥n 20,

where 0 < B, < min{lelr lez}for all n > 0. Then we have

|Ax, — tall* < 2(Axy — AX", Axy — ) (12)
and

b = VA" (A% = £) = 1 < [ = 1P = o [ = tall? = yllA” (A, — )17 (13)
foralln > 0 and x* € Hy such that Ax* € EP(f).
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Proof. Let n > 0and x* € Hy be such that Ax* € EP(f,). By Lemma 2.7, we have
lAx, — tll* < [|Ax, — AX'|* — 2(Ax,, — AX", t, — AX") + |It, — AxX|?
< |Ax, — Ax*|]> — 2(Ax,, — Ax", t, — Ax") + ||Pc,Ax, — Ax"|]?
= (1= 2,b2)lltn = yull® = (1 = 2Bub1)lIPc, Ay = Yl
Since 2B,b1, 2Buby < 1 and Pc, is a firmly nonexpansive mapping, we obtain
lAx, — tall* < [|Ax, — AX|? = 2(Ax, — AX', t, — AX") + ||Pc,Ax, — Ax|?

< ||Ax, — Ax*|]> — 2(Ax, — Ax", t, — Ax*) + ||Ax,, — Ax"|]?
= 2(Ax, — AX", Axy — ty). (14)

From (14), it follows that

”xn_)/nA*(Axn - tn) - x*Hz
= Iy = X1 = 2y Cn — %, A (Axy — 1)) + V2IIA"(Axy — )|
= Iy = X' = 2y5(Axy — AX', Ax, = ) + V2IA (Axy = £,)I1
<l = 212 =y [IAx, = bl = VallA*(Ax, — £)IP]. (15)

This completes the proof. [

Remark 3.2. Let {x,}, {y,} and {t,} be the sequences generated by (11) and let A~Y(EP(f,)) # 0. Then, by (12), we
have

Axy, —t, =0 A"(Ax, —t;,) =0, Yn>0. (16)

Lemma 3.3. Let {u,} be the sequence generated by

So € Hl,
(17)
u, = (1 —ay)s, +a,Ts,, Yn=>0,
where {a,) is a real sequence in (0, 1). Then we have
litn = 17 < llsy = I = an(1 = k = @ )I(T = Ds,ll®, ¥n 20, x* € F(T).
Proof. Let x* € F(T). Since T is a k-demicontractive mapping, by Lemma 2.4 (1), we have
I[een, — x*Hz =11 = an)(sn — x7) + an(Ts, — xx‘)”z
=1 —an)llsn — x»”2 + al|Ts, — X*HZ = an(1 = o) I(T — I)SnHz
<A =ay)llsy — X*HZ + anllsn, — X*HZ + akl|Ts;, — Sn”z
= (1 = a)I(T - I)anz
= llsw = 2P = (1 =k = a) (T = Dsyll*. (18)

This completes the proof. [J

Now, we introduce the hybrid extragradient algorithm for solving the split pseudomonotone equilib-
rium problem and the fixed point problem of a k-demicontractive mapping.
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Algorithm 3.1. Initialization. Choose {A,}, {4} € (0, o), {a,} € (0,1), {8,} € [0, 00). Take x; = wy € H; and
forn > 1.
Step 1. Solve the strongly convex problem:

1
Yn = argmln{EHy - PCZAanZ + ﬁnfz(PczAxn, Y):y € Cz}/
1 (19)
by = argmin{EHt — P, Axll? + Bufa(yu, D) 1 £ € G,

Step 2. Compute v, using
Oy = PC1 [xn - VnA*(Axn - tn)]/ (20)

where y,, is chosen such that {y,} is bounded and there exists ¢ > 0 such that

n

lAx, — tn“z

n€le, —————— |, nel' ={k: Ax, -t # O}. 21
v [2||A*(Axn—tn>||2] k- Ax = by 2 0) @

Otherwise, v, = y, where y is a nonnegative real number.
Step 3. Solve the strongly convex problem:

1
2, = argmin{§||z — 0P + Aufi(0n,2) 12 € Cil,
1 (22)
Wy = argmin{zllw — vl + A fi(zn, w) :w e Cl}.

Step 4. If x, = Tx,,, y, = Ax, and z, = x,, then x,, € Fix(T) N Q and stop. Otherwise, go to Step 5.
Step 5. Compute s,, u, and x,.1 using

Sy = Wy + Qn(wn - wn—l)/
uy = (1= an)sy + anTsy, (23)

Xu+1 = Pp,ng, (x1),

where

D, = {p € Hy : |luy = plP* < llxu = pl* + 20,wy, — p, wy — wy1) + Oallwy — wy1]*} (24)
and

Qun={p€Hy:{xy—p,x1—x2) 20} (25)

Then update n := n + 1 and go to Step 1.

Lemma 3.4. If x, = Tx,, y, = Ax, and z, = x,, in Algorithm 3.1, then x,, € Fix(T) N Q.
Proof. Since x,, = Tx,, we get x,, € Fix(T). By (9), we see that
A f2(Axn, y) = Aul f2(Pc,Axn, ) = fo(Pe,Axu, Yn)] 2 (Yn — Po,Axn, yu —y) =0, Yy € Ca. (26)

Since A, > Oforalln > 0, we have Ax,, € EP(f,). Since y,, = Ax, and z,, = x,,, we gett, = Ax, and z, = x, = v,.
Similarly, we can prove that x,, € EP(f1). Therefore x, € Fix(T) N Q. This completes the proof. [
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Lemma 3.5. Let {x,} be a sequence in Algorithm 3.1 satisfying the following conditions:
(@ O0<a,<l—kforalln>1;
(b) 0< A, < min{lel, ;Tz}for alln > 0;
(0) 0 < B < min{5-, 5=} forall n > 0.
Then {x,} is well defined and Fix(T)N Q € D, N Qy foralln > 1.
Proof. 1t is easy to see that Q, is closed and convex. By Lemma 2.5, it follows that D,, is closed and convex.
So, we have D,, N Q, is closed and convex for all n > 1.
Let x* € Fix(T) N Q. By Lemma 3.3 and the condition on a,,, we have
llitn = X1 < llsu = X°IP = an(1 = k — ) (T = Dsyl?
= |lw,, + On(wy — Wp—1) — x*HZ —ay(1 =k —ay)l(T - I)Snllz
< “wn - X*Hz + 29n<wn - x*/ Wy — wn—1> + Qﬁ”wn - wn—1||2
—ay(1—k—al(T - 1)571”2

< My = x| + 20, (w, — X, Wy = Wy1) + Opllww, — Wy | (27)
By (10) and the condition on A,, we have
lwn = 17 < l[on = xI7 = (1 = 2Ane2)llwy — zal? = (1 = 2A0c1)l[vn — zal* < llon — x| (28)
By (13) and the condition on y,,, we have
o = I = 1Pe, [, — yuA”(Ax, — )] = P,
< lln = yuA*(Ax, — t,) = x|
<l = 212 = 7 [IlAx, = talP = yallA*(Axy — £)IP]
< ey — x| (29)
From (27), (28) and (29), it follows that
[z, — x*Hz <|lx, — X*||2 +20,(wy, — X", Wy — Wy—1) + gillwn - wn—1”2/ Yn>1, (30)

that is, x* € D, for all n > 1. So, we have Fix(T)N Q C D,, ¥n > 1.

Next, we show, by induction, that {x,} is well defined and Fix(T)NQ € D, N Q, foralln > 1. Forn =1,
we have Q; = H; and hence Fix(T) N Q2 € D1 N Qy. Suppose that Fix(T) N Q € Dx N Qi for some k > 1. There
exists a unique element x;.1 € Dy N Qk such that x41 = Pp,ng,(x1) is equivalent to

(K41 — X, %1 = Xp1) 2 0, Vx € D N Q. (31)

Since Fix(T) N Q) € Dy N Qk, we get (X1 — X, X1 — Xk41) 2 0, Vx € Fix(T) N Q and hence Fix(T) N Q C Qg41.
Therefore, by induction, we have Fix(T) N Q C Dy N Q1. This completes the proof. [

Theorem 3.6. If the sequences {B,}, {An}, 104} and {a,} satisfy the following conditions: for some positive real
numbers a; foreachi=1,---,6,

(C1) {Bu} < [a1,a2] < (0,min {3, 7 });
(C2) {Au) € [a3,04] < (0, min{5, 5 });
(C3) {an} Clas,a6] € (0,1 - k);

(C4) {6,} € [0, ) and lim,_, 6, = 0.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to Prixrna(x1).
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Proof. By Lemma 3.4, we assume that the stop criterion at Step 4 can not be satisfied for all n > 1. Since
QN Fix(T) is a nonempty closed convex subset of Hy, there exists a unique element z; € QN Fix(T) such that

21 = Panrixm (X1)- (32)
From x,41 = Pp,ng,(x1), we have

lxp+1 — xall < llp —xall, ¥p € Du N Q. (33)
Since z; € QN Fix(T) € D, N Q,, we have

lxnsr —xall < llz1 = xall, V> 1. (34)
This implies that {x,} is bounded. Otherwise, for each p € Q,,, we have

Xn=p,x1—%,) 20, Vn2>1, (35)
and hence x,, = Pg,(x1). Since x,,41 € D, N Q, € Q,, we have

llen = x1ll < llxpr — xall, ¥ > 1. (36)

So, the sequence {||x, — x1]|} is bounded and non-decreasing and so
lim,, e ||x;, — x1|| exists. Since x,+1 € Q,,, we have (x;, — x,,41, X1 — x;;) = 0 and so

ey = X1l = 1w = 211 + [Pxnse1 = x> = 2¢x0 = X1, X1 — X1)
= IXn+1 — X1l — IXn — X1l — n — X1, Xn+1 — Xn
Il x1|P = Ilx, — 21l = 2¢xy — 21, x Xn)

< pr = 2l = Il = 21l (37)
This implies that
Tim e, = X1l = 0. (38)
From x,,41 = Pp,ng, (x1), it follows that x,41 € D, ie.,
= X1l < 1y = Xpa1l? + 26, (W5 = X1, Wy = W1 + Opll0, = wya | (39)
Since {x,} is bounded, we also have {u,}, {w,} and {v,} are bounded. By (38) and lim, . 0, = 0, we get
lim luy = xpal = 0. (40)
Hence we have
lltn = 2ull < Mty = Xy |l + |IXn = X2l > 0as n — oo. (41)
Let x* € Fix(T) N Q. By (27), (28) and (29), we obtain
[t = 1P < Nty = X + 26, w0y = X°, Wy, = W1) + O llwy = Wyl = (1 = k = ) II(T = Dsyl?
= (1= 24,2l = 2zl = (1 = 2Ae0)l[on = 2l = Y [I1A%, = £l = yullA*(Ax, = £)IP] . (42)
From (42), it follows that

2 *12 *112 * 2 2
(1 =k = a,)l(T = Dspll” < lIx = X7 = llup = X*|1° + 20wy, — X*, Wy — Wy—1) + Oy llwy, — Wyl
= (lxy = X" + [y — X7 IDllxy — wnll

+ 20, (wy — X", Wy — Wy—1) + 9,21||wn - wn—lllz- (43)



A. Hanjing et al. / Filomat 37:5 (2023), 1607-1623 1616

By (41) and the conditions on «a,, 6,,, we get

lim [I(T = Dsall = 0 (44)
and we have

Lim [fu, = syl| = 0. (45)

Similarly, we have

,}erolo”w” -zl = 321;10 [0y = zall = 0. (46)
By (41) and (45), we get
I = sull < Ilx = thnll + [ty = sull = 0 @s 7 — oo. (47)

Since {x,} is bounded, there exists a subsequence {x,,} of {x,} such that x,, = ¥ € H; asi — 0. By (47), we
also have s,, — X € Hy as i — 0. Using (44) and the demiclosedness of T — I, we have X € Fix(T).
If T is finite, then Ax, — t, = 0 for all n € IN\TI'. It follows from Remark 3.2 that

lim ||Ax, — t,|| = lim ||A*(Ax, — t,)Il = 0.
n—oo n—o0
Suppose that I' is infinite. It is noted that, if n ¢ I, then we have
lim ||Ax, — t,|| = lim ||A"(Ax, — t,)Il = 0.
n—oo n—o0
For each n € T, again, from (42) and the condition of y,, it follows that
€
SA%, = talP < Dl — tP

<7 [IlAx, = £l = yallA*(Axy = t)IP]
< (llen = 21 + g = XD = wall + 20,(wy — X°, Wy — Wy1) + O llw, — wya | (48)

By (41) and the conditions on 8,, we get

lim ||Ax, — t,]| =0 (49)
n—00

and then
lim [|A*(Ax, — t,)]| = 0. (50)
n—o0

Since Pc, is firmly nonexpansive, it follows from (13) and (29) that

[0 = X1 = IPc; [%n = ynA"(Axy = £)] = '
< (O =X, X = YA (AXy — £) — X7)

1 * * £ 1 *
= 5 [lon =21 + Il = A" (A = 1) = X' = 1@ = 50) + yu A" (A = )]

e 1 . e
< v = 21 = 1100 = 2l = (00 = 20, YA (A = ) = %HA (Ax, — to)IP- (51)

By (27), (28) and (51), we have

iy = x| < v, — x| + 20wy, — x°, Wy, — Wy—1) + O2lw, — w,—q|?
7/2
* * n *
< lxy = x| + 20, (w, — x°, Wy — Wy1) + O2|w, — w,q|I* — TIIA (Ax, — to)I?

1 *
— 5llon - Xull® = (O = X, YuA*(Axy — ). (52)
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This implies that

1 X X *
E”vn - xn”2 < (”xn - X ” + ”un - X ”)“xn - un“ + 26n<wn — X, Wy — wn—1>

+ O3 llw, — Wl = (On = X, yuA (AXy = 1)), (53)
By (41), (50) and the condition on 6,,, we have
lim [0, = x| = 0. (54)
By (46) and (54), we get
lxn = zull < [1Xn = Oull + [lon — zull > O@s n — oo, (55)
and
12w = wall < llxn = Zull + [lzn — wyll = 0 as n — oo. (56)

By (54), (55) and (56), we have v,, = X € Cy, z, = X € C1, wy, — X € C1, respectively. Now, we show that
x € Q. By (9), we have

Al fi@n,, 2) = fi(On, 20)] = 2w, = Onyy 20, — 2), Yz € Cy. (57)
Taking i — oo in (57), from (b1), (b4), (46) and the condition on A,, it follows that

fi(%,2) 20, YzeC, (58)
that is, ¥ € EP(f1). Using (49), we get

IPc,Axy — tull = [[Pc,Axy — Pe, tull < lAX, — tall = 0 as n — oo. (59)
By (10), we have

lIt, — Ax'|? < |IPc,Ax, — AX'|? = (1 = 2Bub2)lltn = Yull® = (1 = 2Bub1) P, Axy = yul . (60)

Hence we have

(1= 2B.b1)IPc,Ax, = yull® < P, Axy — AX'IP = It — Ax'|?

< (IPc,Axy = AX|[ + [Itn = AXDINIPc, Axy — tll. (61)
By (59) and the condition on §,, we get
lim [IPc, Axy = yull = 0. (62)
Similarly, we have
Tim [ty = yll = 0. (63)
By (49) and (63), we have
1yn = Axall < llyn = tall + [Itn = Axull = 0 as n — co. (64)

Since A is a bounded linear and x,, — ¥ € H;, we have Ax,, — A% € H,. Since {y,} € C; and (64), we have
Yn, — AX € C,. Using (62), we get Pc,Ax, — AX € Cy,. By (9), we have

Bl f2(Pc,Axy,, 2) = fo(Pe, A%, Yn)l 2 (Yn, — Pe,Axn, P, Axn, — y), Yy € Co. (65)
Taking i — oo in (65), it follows from (b1), (b4), (62) and the condition on §, that
f2(A.72, y) 2 0/ Vy € CZ/ (66)

that is, Ax € EP(f,). Therefore, we have ¥ € Fix(T) N Q, i.e., wy(x,) € Fix(T) N Q. Therefore, it follows the
inequality (34) and Lemma 2.6 that {x,,} — Priyr)na(x1) as n — oo. This completes the proof. O
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If we set 0, = 0 for all n > 1 in Algorithm 3.1, then we obtain the following result for the split
pseudomonotone equilibrium problem and the fixed point problem of a demicontractive mapping:

Corollary 3.7. Let {x,} be a sequence generated by
x1 € Hy

(1
Yo = argmm{EHy = Pe,Axy|P + ufa(Pe,Ax, y) 1 y € Ca,

(1
ty = argmin{ > lIt = P, Axull” + Bu falyn, 1) : £ € Ca,
Up = PC1 [x, — )/nA*(Axn - tn)]/

(1
Zy = argmm{illz — v + Anfi(vy,2) 1z € Cl}, (67)

1
Wy, = argmin{zllw o A fi(zn,w):w e Cl},

u, = (1 - ap)w, + a,Tw,,
Dy ={p € Hy : |luy — pll < llxn — pll},
Qu={peHy:{xy—p,x1—x2) 20}
Xns1 = Pp,no,(x1), 121,

where {y,} is bounded and satzsﬁes the condition (21). If {B4}, {An} and {a,} satisfy the following conditions: for some
positive real number a; foreachi=1,---,6,

C1) {Bu} € [a1,a2] € (0 mm{% %})
( ) { } - [a3,a4] C (O mln{zl 2L})
(C3) {an} Clas,a6] € (0,1 k),
Then the sequence {x,} generated by (67) converges strongly to Prixrna(x1).

If we set T = I in Algorithm 3.1, then we obtain the following result for the split pseudomonotone
equilibrium:

Corollary 3.8. Suppose that Q) # 0. Let {x,} be a sequence generated by
x1 € Hy

(1
yn = argmin{Zly — Po, A%l + B falPe,Ax, ) < y € G2,

(1
by = argmm{EHt — P, Axyl? + Bufo(yu, D) 1 £ € G,
Up = PC1 [x, — )/nA*(Axn - tn)]/ (68)
(1
Zy = argmm{illz — v + Anfi(vy,2) 1z € Cl},

1
Wy, = argmin{illw o Afi(zn, w):w e Cl},

Uy = Wy + Op(Wy, — Wp_1),

Xn+l = PD,,ﬁQn(xl)l nz 1/

where Dy = {p € Hy : llun—pIP < |xa—plP+20,(wy—p, wa— wn DO Iwn—wnalP}, Qu = {p € Hy & (xa—p, x1-%n) >
0} and {y,} is bounded and satzsﬁes the condition (21). If {B,), {A,} and {0,} satisfy the following conditions: for some
positive real number a; for eachi=1,--- ,4,
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(C1) (B} € [y, a2] < (0, min {5, -} );

(C2) {Au} C [a3,a] € (0, min {2, L});
(C3) {6,} C (=00, 00) and lim;,—,c 6,, = 0.
Then the sequence {x,} generated by (68) converges strongly to Po(x1).

If we set f, = 0 and C, = Hj in Algorithm 3.1, So, we obtain the following result for the pseudomonotone
equilibrium and the fixed point problem of a demicontractive mapping:

Corollary 3.9. Suppose that Fix(T) N EP(f) # 0. Let {x,,} be a sequence generated by
x1 =wy € Hy,

(1
Zy = argmm{illz — Pclx,,ll2 + Aufi(Pe,Xn,2) 1z € Cl},

(1
Wy = argmm{illw - PC1xn||2 + AMfi(zn, w) :w € Cl}, (69)

Sy = Wy + Gn(wn - wn—l)/
Uy = (1= ay)sy +a,Tsy,

Xn+l1 = PD,,ﬂQn(xl)/ nz ]-/

where D, = {p € Hy : |luy = pl* < |Ixy = plP? + 20,(w, — p, w0y = wn1) + Onllw, — wual?), Qu = {p € Hi :
(Xn —p,x1 — x) 2 O} If (A4}, {avn} and {6,) satisfy the following conditions: for some positive real number a; for each
i=1,---,4,

(C1) {Au} € [a1,82] € (0, min {5, 5-});

(C2) {an} C [a3,a4] € (0,1 - k);

(C3) {0,} C (=0, ) and lim,_,. 6,, = 0.

Then the sequence {x,} generated by (69) converges strongly to Prixr)nep(f)(X1)-

4. Numerical Experiments

Now, we present a numerical experiment for supporting our main theorems, where all codes were
written in Matlab and run on laptop Intel core i5, 4.00 GB RAM, windows 8 (64-bit).

Example 4.1. Let H; = R°, H, = Rand

T 5. 5. .
x=(x;,x,,x5)  €eRy:={xeRE :x;20,Vi=1,2,---,5},
C X1+ X2 +x3+2x4 + x5 <10,
1:
2X1 + X2 — X3 + X4 + 3x5 < 15,

X1+ Xo +x3 + x4 + 0.5x5 > 4.

Define a bifunction fi : C; X C1 = Rby fi(x,y) = (Bx+ x>(y +x) + p — o, y — x), ¥x,y € Cy, where

0 x x x «x
x 0 x x x
B=|x x 0 x x|, x=3 a=(2,222,2", u=(3,4,5756)".
X x x 0 x
X x x x 0

Then we have f is a pseudomonotone on Cy, but it is not monotone on Cy (see [5]). It is known that fi is Lipschitz-type
continuous on Cy with the constants ¢c; = ¢, = @ = 6. Let C; = [0, 1]. Define a bifunction f, : Co X C, = R by

fl,y) =HX)(y —x), Vx,y€Cy,
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where

0, if0<x<
e +sin(x - 1) -1,  ifl<x<

H(x) = {

Then we have f is a monotone on C, and Lipschitz-type continuous on C, with the constants by = by = 2 (see [23]).
The linear operator A : R° — R is defined by A(x) = {(a, x), where a is a vector in R> whose elements are randomly
generated in [1,5]. Thus A*(y) = y - a for all y € R. Define the mapping T : R°> — R® by

B X, ifx [S (_OO/ 0]/
T(x) —{ -2x,  ifxe[0,00),

forall x = (x1,%2,- -+, x5)T € R®. Then T is -demicontractive mapping, but it is not quasi-nonexpansive mapping.
By Algorithm 3.1, we have the following:

Step 1. Solve the strong convex problem:
. (1
Yn = argmm{z(y — Ppo1jAxa)* + BuH(Ppo11Ax)(y — ProjAx,) : y € [0, 1]}, (70)

where B, = 155,=3 for all n > 1. A simple computation shows that (70) is equivalent to the following:
Yn = Ppo11Ax, — pnH(Po11AX,), Yn > 1.

Similarly, we get t, = Pyo11Axy — BnH(yn), ¥Yn > 1.
Step 2. Compute v,, using

vp = P, [xy — Vn(Ax, —t,) - al, Yn>1,

wherea = (1,1,1,1,1)T e R°and y,, = Yn > 1.

1
100]la3”
Step 3. Solve the strong convex problem:

1
Zy = argmin{zllz - Un”% + Ap(Boy + X2z + vn) + U—q,z—Vy):Z € C1}
and
(1 2 5
wy, = argmm{illz =l + Au(Bzy + X (2 +2p) + U —,2—2y) 12 € Cl},

where Ay = 15— foralln > 1.

Step 4. Compute sy, u, and Xy where 0, = - and a, = ' foralln > 1.

In the experiment, we choose the stopping criterion is E, =: ||x,|la < 1071°, Time (s) is the average of execution
times and Iter. := Number of iterations. So, the numerical result and the graph of error are shown in the Table 1 and
Figure 1.
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Table 1: Numerical result of Algorithm 3.1 with start x; = wy = (0.5,1,0.5, 3, 2)T.

Time (s) Iter. Approximate solution E,

0.4493 1 (0.3040, 0.7648, 1.2256, 0.7710, 0.3893)" 1.7104
2 (0.1525, 0.3083, 0.4640, 0.2985, 0.1472)" 0.6666
3 (2.6x1077, 0.0081, 0.2664, 0.0576, 0.0465)" 0.2766
4 (2.8x107°, 0.2445, 4.6x1077, 2.4x107°, 2.6x1076)T 0.2445
5 (0.0001, 0.0352, 0.0897, 0.0389, 0.0204)" 0.1059
6  (7.8x1071, 4.2x10711, 2.7x107!, 4.2x1071, 8.3x1071)T  1.3x1071°
7 (39x107M,4.1x107!, 4.1x1071, 4.2x10711, 8.3x1071)T  1.2x1071°
8  (3.6x107",3.9x107!,4.3x107!,3.9x1071, 8.1x107)T  1.1x1071°
9

)
(5.1x10711, 4.7x10711, 431011, 4.8x10711, 9.9x10" )T 1.3x10710
10 (2.6x1071,3.3x10713,2.2x10711, 2.6x10°1!, 5.9x10"11)T  7.3x10~11

Error
T T

—H— Algorithm 3.1

e e e e e e e e e
8 10 12 14 16
Number of iteration

Figure 1: Graph of error for Example 4.1

Example 4.2. Let H = R? and C = {(x1,x2) : x; = 0Vi = 1,2}. Define a bifunction f : Cx C — R by
fx,y) = 2(y2 — x)llxll2, for all x = (x1,%2), ¥y = (y1,Y2) € C. Define the mapping T : R? - R? by T(x) = —0.9x
for all x = (x1,x2) € RZ. The stopping criterion is given by E, =: |lx,|l» < 107%. Choose 6, = ﬁ,an = 0.6 and
An = 1505=7 - S0, the comparison of numerical results between Anh Algorithm [3] and Corollary 3.9 are shown in the
Table 3.9 and Figure ??.

Table 2: Comparison of numerical results between Anh Algorithm and Corollary 3.9.

Anh Algorithm [3]  Corollary 3.9

Case  Starting points Iter. Tims (s) Iter. Tims (s)
1 xp=wp=(2,08) 774 0.2322 27 0.3431
2 x=wp =(1,2) 1708 0.2203 56 0.3057
3 x =wo = (1.5,07) 1233 0.2280 37 0.3478
4 x1 =wp = (1,5) 867 0.2335 53 0.3389
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(a) Case 1 (b) Case 2

4
—=— Corollary 3.9 —&— Corollary 3.9
1 —%— Anh Algorithm —#— Anh Algorithm

= SO N 0 e
10 20 30 40 50 60 70 80 90 100 10 20 3 40 50 60 70 80 90 100
Number of iterations Number of iterations

(c) Case 3 (d) Case 4

—— Corollary 3.9 —&— Corollary 3.9
—#— Anh Algorithm A —#— Anh Algorithm

50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100
Number of iterations Number of iterations

Figure 2: Plot of error by Anh Algorithm and Corollary 3.9.

5. Conclusion

In this paper, we proposed a new hybrid extragradient method for solving a common solutions of the
fixed point problem of a demicontractive mapping and the split equilibrium problem for a pseudomonotone
and Lipschitz-type continuous bifunction and proved some strong convergence results of the proposed
method under some control conditions. Moreover, we gave some numerical experiments to support our
main results. The novelty of this paper is as follows:

(1) We introduced a new method for solving a common solutions of the fixed point problem of a
demicontractive mapping and the split equilibrium problem for a pseudomonotone and Lipschitz-type
continuous bifunction;

(2) We obtained some strong convergence results of our proposed algorithm which is more desirable
than the methods of Tran et al. [32] and Anh [3];

(3) Finally, we gave some examples to illustrate our main results and the comparison of the methods of
Anh [3] with our method.
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