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On the Steklov averages in operator cosine function framework

Andi Kivinukka, Anna Šeletskia

aSchool of Digital Technologies, Tallinn University, Narva Road 25, 10120 Tallinn, Estonia

Abstract. The Steklov averages (Steklov or integral means) are used in approximation theory of functions
in different aspects. This article concerns the Steklov averages by using the operator cosine function
framework. The operator cosine function offers a counterpart of the translation operator, which forms the
basic concept for the modulus of continuity and for some approximation processes as well. We will show
that the operator cosine function concept allows to define very general Steklov averages in an abstract
Banach space. The approximation properties of these generalized Steklov averages appear to be quite
similar to the properties of the Steklov averages in trigonometric approximation.

1. Introduction

The Steklov averages are used in approximation theory of functions in different aspects [1], [8], [13],
[14]. This article concerns the Steklov averages by using the operator cosine function framework. The
operator cosine function [6], [7], [11] offers a counterpart of the translation operator, which forms the basic
concept for the modulus of continuity and for some approximation processes as well. We will show that
the operator cosine function concept allows to define very generally Steklov averages in an abstract Banach
space. The approximation properties of these generalized Steklov averages appear to be quite similar to
the properties of the Steklov averages in trigonometric approximation ([1], [13]).

Let X be an arbitrary (real or complex) Banach space and [X] be the Banach algebra of all bounded linear
operators U : X→ X.We start with the definition (compare [6], [7]).

Definition 1.1. An equibounded cosine operator function Ch ∈ [X] (h ≥ 0) is defined by the properties:

(i) C0 = I(identity operator),

(ii) Ch1 · Ch2 =
1
2 (Ch1+h2 + C|h1−h2 |),

(iii) ∥Ch f ∥ ≤ T∥ f ∥, 0 < T− not depending on h > 0.

We denote by Th ∈ [X], h ∈ R, a translation operator, which is defined by the properties
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(i) T0 = I,

(ii) Th1 · Th2 = Th1+h2 ,

(iii) ∥Th f ∥ ≤ T∥ f ∥, 0 < T− not depending on h ∈ R.

Then Ch := 1
2 (Th + T−h), h ≥ 0, is a cosine operator function. It means that if we can define a translation

operator, then we have also the cosine operator function.
For example, a less trivial cosine operator function is related with the Fourier-Chebyshev series ([3] and

[2], where certain general cosine operator functions can be find), where x ∈ [−1, 1], 0 ≤ h ≤ π and

(CC
h f )(x) :=

1
2

{
f (x cos h +

√

1 − x2 sin h) + f (x cos h −
√

1 − x2 sin h)
}
.

But for some spaces we cannot define the translation operator Th ∈ [X], h ∈ R, nevertheless the cosine
operator function does exist.

Example. Let X = C−2π be the space of π-symmetric and 4π-periodic continuous functions, i.e. f (π−x) =
f (π + x) and f (4π + x) = f (x) for all x ∈ R. Let us discuss the functions f (x) = sin(k − 1

2 )x, k ∈ N in space
C−2π. Here Th

(
sin

(
1
2◦

)
, x

)
= sin 1

2 (x + h) < C−2π for some h ∈ R, but Ch f ∈ C−2π, where Ch := 1
2 (Th + T−h) and Th

is the ordinary translation operator.

2. Steklov averages

We start with basic notion of this article.

Definition 2.1. It is said that Sh,1 f :=
∫ 1

0 Cht f dt for every h > 0 and Sh,r f := Sh,1(Sh,r−1 f ) for r = 2, 3, ... are Steklov
averages for an element f ∈ X.

For instance, for r = 2 we have

Sh,2 f = Sh,1(Sh,1 f ) = Sh,1

(∫ 1

0
Cht f dt

)
=

∫ 1

0
Cht(Sh,1 f )dt. (1)

If 0 ≤ t ≤ 1 then we have by Definition 1.1, (ii)

Cht(Sh,1 f ) =
∫ 1

0
Cht(Chu f )du =

1
2

∫ 1

0

(
Ch(u+t) f + Ch|u−t| f

)
du. (2)

Let us consider for 0 ≤ t ≤ 1∫ 1

0
Ch|u−t| f du =

∫ t

0
Ch(t−u) f du +

∫ 1

t
Ch(u−t) f du =

∫ t

0
Chv f dv +

∫ 1−t

0
Chv f dv,

then by (2) for 0 < t < 1

Cht(Sh,1 f ) =
1
2

(∫ t+1

0
Chv f dv +

∫ 1−t

0
Chv f dv

)
, (3)

and by (1)

Sh,2 f =
1
2

(∫ 1

0
dt

∫ t+1

0
Chv f dv +

∫ 1

0
dt

∫ 1−t

0
Chv f dv

)
=

1
2

(∫ 1

0
dv

∫ 1

0
Chv f dt +

∫ 2

1
dv

∫ 1

v−1
Chv f dt +

∫ 1

0
dv

∫ 1−v

0
Chv f dt

)
=

1
2

(∫ 1

0
Chv f dv +

∫ 2

1
(2 − v)Chv f dv +

∫ 1

0
(1 − v)Chv f dv

)
.
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So we have

Sh,2 f =
1
2

∫ 2

0
(2 − v)Chv f dv. (4)

Remark 2.2. If the cosine operator function is defined in a functional space X = C(R) by

Ch f (x) =
1
2
(

f (x + h) + f (x − h)
)
, h ≥ 0, (5)

then the Steklov averages of Definition 2.1 coincide with the usual Steklov averages (see, e.g. [8], [13])

L0,h f := f , Lr,h f (x) :=
1

2h

∫ x+h

x−h
Lr−1,h f (t)dt, h ≥ 0,

i. e.

Sh,r f (x) = Lr,h f (x).

Remark 2.3. If the cosine operator function is defined by (20) in X = C[−1,1] (continuous real-valued functions on
[−1, 1]) or in X = Lp

w, 1 ≤ p < ∞ (measurable real-valued functions on [−1, 1] for which the norm

∥ f ∥p := (
1
π

∫ 1

−1
| f (u)|pw(u)du)1/p, w(u) =

1
√

1 − u2

is finite), then the Steklov averages of Definition 2.1 coincide with the Steklov averages given in [3], Definition 3. Let
us set by Definition 3 for f ∈ X, h ∈ [−1, 1) and h′ =

√
(1 + h)/2

(Ā1/2
h f )(x) :=

2
arccos h

∫ 1

h′
(CC

arccos u f )(x)
du

√

1 − u2
(x ∈ [−1, 1]).

Indeed, changing of variables gives us

Ā1/2
cos h f = Sh/2,1 f ,

and by equation (1) we have for

Ā1
cos h f := Ā1/2

cos h(Ā1/2
cos h f ) = Sh/2,2 f .

Lemma 2.4. Let φr (r ∈N) be the kernel function of Sh,r, i.e.

Sh,r f =
∫ r

0
φr(u)Chu f du.

Then the kernel function φr+1 has the form (r ≥ 2):

1. φr+1(v) = 1
2

∫ 1−v

0 φr(u)du + 1
2

∫ 1+v

0 φr(u)du on the interval [0, 1];

2. φr+1(v) = 1
2

∫ v+1

v−1 φr(u)du on the interval [1, r − 1];

3. φr+1(v) = 1
2

∫ r

v−1 φr(u)du on the interval [r − 1, r + 1].
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Proof. The case r = 2 is given by (4). By Definition 2.1, and since Sh,1 and Chu are commutative, we have

Sh,r+1 f = Sh,1

(∫ r

0
φr(u)Chu f du

)
=

∫ 1

0
φr(u)Chu(Sh,1 f )du +

∫ r

1
φr(u)Chu(Sh,1 f )du. (6)

By (3) the first integral in (6) has the form

I1 : =
∫ 1

0
φr(u)Chu(Sh,1 f )du =

1
2

∫ 1

0
φr(u)

(∫ u+1

0
Chv f dv +

∫ 1−u

0
Chvdv

)
du,

where, interchanging the order of integration, we obtain

2I1 =

∫ 1

0

(∫ 1

0
φr(u)du

)
Chv f dv +

∫ 2

1

(∫ 1

v−1
φr(u)du

)
Chv f dv +

∫ 1

0

(∫ 1−v

0
φr(u)du

)
Chv f dv.

For 1 ≤ u ≤ r we have by (2)

Chu(Sh,1 f ) =
1
2

∫ u+1

u−1
Chv f dv,

hence, for the second integral of (6) for r ≥ 3 we can write, after interchanging the order of integration,

I2 : =
∫ r

1
φr(u)Chu(Sh,1 f )du =

1
2

∫ r

1
φr(u)

∫ u+1

u−1
Chv f dv

=
1
2

∫ 2

0

(∫ v+1

1
φr(u)du

)
Chv f dv +

1
2

∫ r−1

2

(∫ v+1

v−1
φr(u)du

)
Chv f dv

+
1
2

∫ r+1

r−1

(∫ r

v−1
φr(u)du

)
Chv f dv.

Both integrals, I1 and I2, used together in (6), give

Sh,r+1 f =
1
2

∫ 1

0

(∫ 1−v

0
φr(u)du +

∫ 1+v

0
φr(u)du

)
Chvdv +

1
2

∫ r−1

1

(∫ v+1

v−1
φr(u)du

)
Chvdv

+
1
2

∫ r+1

r−1

(∫ r

v−1
φr(u)du

)
Chvdv.

■

Corollary 2.5. The kernel function φr+1 has for r ≥ 2 continuous derivatives

1. φ′r+1(v) = 1
2
(
φr(1 + v) − φr(1 − v)

)
on the interval [0, 1],

2. φ′r+1(v) = 1
2
(
φr(v + 1) − φr(v − 1)

)
on the interval [1, r − 1],

3. φ′r+1(v) = − 1
2φr(v − 1) on the interval [r − 1, r + 1],

and on the breakpoints φ′r+1(0) = 0, φ′r+1(1) = 1
2
(
φr(2) − φr(0)

)
, φ′r+1(r − 1) = − 1

2φr(r − 2) and φ′r+1(r + 1) = 0.

Examples.

a. By Definition 2.1 we have φ1(u) = 1 for 0 ≤ u ≤ 1.

b. Using equality (4) we get φ2(u) = 1 − u
2 for 0 ≤ u ≤ 2.
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c. Let us calculate φ3(u) for 0 ≤ u ≤ 1 by Lemma 2.4,

φ3(u) =
1
2

∫ 1−u

0

(
1 −

v
2

)
dv +

1
2

∫ 1+u

0

(
1 −

v
2

)
dv =

1
4

(3 − u2).

Next we calculate φ3(u) for 1 ≤ u ≤ 3,

φ3(u) =
1
2

∫ 2

u−1

(
1 −

v
2

)
dv =

1
8

(u − 3)2.

Proposition 2.6. Let Sh,r f =
∫ r

0 φr(u)Chu f du, as in Lemma 2.4. Then the following statements hold

a) φr(u) ≥ 0, 0 ≤ u ≤ r,

b) φr ∈ C[0,r],

c) φr(r) = 0, for r ≥ 2,

d)
∫ r

0 φr(u)du = 1.

Proof. It follows directly from Lemma 2.4. ■

Remark 2.7.

An anonymous referee asked: Can we consider the Steklov averages of C-regularized cosine operator
functions in a similar way? The C-regularized cosine operator functions are defined (see [6]), using an
operator C ∈ [X] and replacing the conditions (i), (ii) in Definition 1.1 by conditions

(i) C0 = C(the operator, given above),

(ii) Ch1 · Ch2 =
1
2 (Ch1+h2 + C|h1−h2 |)C.

Let us denote the family of the C-regularized cosine operator functions by {CC
h }h≥0 and let us define the

Steklov averages as in Definition 2.1, i.e. SC
h,1 f :=

∫ 1

0 CC
ht f dt for every h > 0 and SC

h,r f := SC
h,1(SC

h,r−1 f ) for
r = 2, 3, ... Then

SC
h,r f =

∫ r

0
φr(u)CC

hu(Cr−1 f )du,

where φr is the same as in Proposition 2.6. Proof is a small change from the previous one.

Remark 2.8. If

Ch f (x) =
1
2
(

f (x + h) + f (x − h)
)
, h ≥ 0,

then the representation of Sh,r in Proposition 2.6 with a) - d) corresponds to the representation [8], Theorem 2.1 and
Remark 2.2,

Sh,r f (x) = Lr,h f (x) =
1

(2rh)r

∫ x+rh

x−rh
...

∫ x+rh

x−rh
f (

t1 + ... + tr

r
)dt1...dtr.

Moreover, as in [8], let us denote by Bnh
n−1 the B-spline function of degree n − 1 associated to the n + 1 points

−nh < −(n−2)h < −(n−4)h < ... < (n−2)h < nh. Then, by [8], formula (2.7), we can prove that the kernel function
φr in Lemma 2.4 is related to the B-spline by

φr(t) = 2Br
r−1(t), 0 ≤ t ≤ r.
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3. Steklov averages and the infinitesimal generator

We need further facts about the strongly continuous operator cosine function Ch, h ≥ 0 (see [7]). The
family {Ch} is called the strongly continuous, if limh→0+ ∥Ch f − f ∥ = 0.

Theorem A. If Ct : X → X is a strongly continuous operator cosine function, then there are constants M ≥ 1
and ω ≥ 0 such that

∥Ct∥[X] ≤Meωt

for all t ≥ 0.

The concept of the infinitesimal generator A : D(A)→ X of a strongly continuos operator cosine function
is needed.

Definition B. The infinitesimal generator A : D(A)→ X is defined by

D(A) :=
{

f ∈ X
∣∣∣ t→ Ct f is 2-times differentiable in 0

}
,

A f := C′′0 f for f ∈ D(A).

Theorem C. The following statements are true:
a) The generator A is a densely defined on X and closed linear operator.
b) For all t ≥ 0 is true CtD(A) ⊂ D(A) and Ct(A f ) = A(Ct f ) for all f ∈ D(A).
c) For f ∈ D(A) and t ≥ 0
(i)

∫ t

0 (t − u)Cu f du ∈ D(A)

(ii) Ct f − f =
∫ t

0 (t − u)Cu(A f )du = A
(∫ t

0 (t − u)Cu f du
)
.

The equation (ii) can be generalized using the Steklov averages.

Proposition 3.1. Let A : D(A) → X be the generator of Ct : X → X and Sh,r : X → X be the Steklov averages of
order r ∈N. Then for Ar := A(Ar−1) (r = 2, 3, ...), A1 = A there hold Sh,2r f ∈ D(Ar) and

Ar(Sh,2r f ) =
1

2rh2r (C2h − I)r f (7)

for any f ∈ X and h > 0.

Proof. The case r = 1 is the statement of Theorem C. Indeed, by (4)

Sh,2 f =
1
2

∫ 2

0
(2 − v)Chv f dv =

1
2h2

∫ 2h

0
(2h − u)Cu f du

which gives by Theorem C (ii)

A(Sh,2 f ) =
1

2h2 (C2h f − f ).

The general equation (7) follows by induction. ■

Remark 3.2. For the C-regularized cosine operator functions {CC
h }h≥0 there is defined the (sub)generator A, see [6],

Definition 1.2.1, but that definition is not sufficient to prove a counterpart of Proposition 3.1. As proof, all statements
of Theorem C must be valid in case f ∈ D(A),moreover, we must assume that all operator pairs (A,CC

h ), (A,C), (C,CC
h )

are commuting. If all these conditions are met, then

Ar(SC
h,2r f ) =

1
2rh2r (CC

2h − C)r(Cr f ) ( f ∈ X).
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To continue, we recall the trigonometric identity ([16], formula 1.320)

(cos x − 1)l =
1

2l−1

l∑
′

v=0

(−1)l−v
(

2l
l − v

)
cos vx, (8)

where
∑
′

here and in the following means that the term with v = 0 is halved.
We prove a similar identity for the cosine operator function. So, we hope to show that the following

proposition holds.

Proposition 3.3. It holds true for l ∈N that

(Ch − I)l =
1

2l−1

l∑
′

v=0

(−1)l−v
(

2l
l − v

)
Cvh. (9)

Proof. For l = 1 (9) is true. Suppose that (9) is true for l = n and consider

(Ch − I)n+1 =
1

2n−1

n∑
′

v=0

(−1)n−v
(

2n
n − v

)
Cvh(Ch − I).

Denote here the right-hand side expression by

In+1 :=
1
2n (−1)n

(
2n
n

)
(Ch − I) +

1
2n−1

n∑
v=1

(−1)n−v
(

2n
n − v

)
Cvh(Ch − I), (10)

and let us denote

S1 : =
n∑

v=1

(−1)n−v
(

2n
n − v

) (1
2

[C(v+1)h + C(v−1)h] − Cvh

)
=

1
2

n∑
v=1

(−1)n−v
(

2n
n − v

) (
[C(v+1)h − Cvh] − [Cvh − C(v−1)h]

)
.

We continue, denoting Uv+1 := C(v+1)h − Cvh, and therefore, using a combinatorial identity(
m

p + 1

)
+

(
m
p

)
=

(
m + 1
p + 1

)
,

we have

S1 =
1
2

n+1∑
v=2

(−1)n−v+1

(
2n

n − v + 1

)
Uv −

n∑
v=1

(−1)n−v
(

2n
n − v

)
Uv


=

1
2

(−1)n
(

2n
n − 1

)
U1 +

n+1∑
v=2

(−1)n−v+1
(

2n + 1
n + 1 − v

)
Uv

 .
For

S2 :=
n+1∑
v=2

(−1)n−v+1

(
2n + 1

n + 1 − v

)
Uv (Uv := Cvh − C(v−1)h)

we obtain

S2 = (−1)n
(
2n + 1
n − 1

)
Ch +

n+1∑
v=2

(−1)n−v+1

(
2n + 2

n + 1 − v

)
Cvh.
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Inserting S2 into S1, then S1 into (10), we have

In+1 =
(−1)n

2n

(
2n
n

)
(Ch − I) +

1
2n

[
(−1)n

(
2n

n − 1

)
(Ch − I) + (−1)n

(
2n + 1
n − 1

)
Ch

]
+

1
2n

n+1∑
v=2

(−1)n+1−v
(

2n + 2
n + 1 − v

)
Cvh

=
(−1)n+1

2n

(
2n + 1

n

)
I +

1
2n

n+1∑
v=1

(−1)n+1−v
(

2n + 2
n + 1 − v

)
Cvh.

Since 1
2
(2n+2

n+1
)
=

(2n+1
n

)
, we obtain the equation

In+1 =
1
2n

n+1∑
′

v=0

(−1)n−v+1

(
2n + 2

n + 1 − v

)
Cvh,

which gives (9) for l = n + 1. ■

Remark 3.4. For the C-regularized cosine operator functions {CC
h }h≥0 the equality (9) is valid in the form

(CC
h − C)l =

1
2l−1

 l∑
′

v=0

(−1)l−v
(

2l
l − v

)
CC

vh

 (Cl−1),

if CC
h and C commute, i.e. CC

h (C f ) = C(CC
h f ) for each f ∈ X, h > 0.

4. Steklov averages and the approximation problems

In this part of the article we need the following notion (compare [1], Section 91).

Definition 4.1. The modulus of continuity of order k ∈ N of f ∈ X is defined for δ ≥ 0 via the cosine operator
function in Definition 1.1 by

ωk( f , δ) := sup
0≤h≤δ

∥(Ch − I)k f ∥.

Motivated by the trigonometric approximation [14], let us define

Qh,l f :=
2(2l
l
) l∑

v=1

(−1)v+1

(
2l

l − v

)
Svh,2l f . (11)

Proposition 4.2. Let l ∈N, h > 0. Then for any f ∈ X we have Qh,l f ∈ D(Al) and
1)

∥∥∥ f −Qh,l f
∥∥∥ ≤ 2l

(2l
l )
ωl( f , 2lh),

2)
∥∥∥Al(Qh,l f )

∥∥∥ ≤ 1
2l−1(2l

l )h2l

∑l
v=1

( 2l
l−v

)
v−2lωl( f , 2lh).

Proof. 1) By Proposition 2.6 we get

Qh,l f =
2(2l
l
) l∑

v=1

(−1)v+1
(

2l
l − v

) ∫ 2l

0
φ2l(u)Cvhu f du =

2(2l
l
) ∫ 2l

0
φ2l(u)

l∑
v=1

(−1)v+1
(

2l
l − v

)
Cvhu f du.

By (8), taking x = 0, we have

l∑
v=1

(−1)v+1

(
2l

l − v

)
=

1
2

(
2l
l

)
. (12)
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By (12) and Proposition 2.6, d) we have

f =
2(2l
l
) ∫ 2l

0
φ2l(u)

l∑
v=1

(−1)v+1

(
2l

l − v

)
f du,

hence

Qh,l f − f =
2(2l
l
) ∫ 2l

0
φ2l(u)

l∑
v=1

(−1)v+1

(
2l

l − v

)
(Cvhu − I) f du. (13)

By (9)

(−1)l2l−1(Ch − I)l =
1
2

(
2l
l

)
I +

l∑
v=1

(−1)v
(

2l
l − v

)
Cvh

and using (12) we obtain

(−1)l2l−1(Ch − I)l =

l∑
v=1

(−1)v
(

2l
l − v

)
(Cvh − I).

We use in (13) the equality above, which gives

f −Qh,l f =
(−1)l2l(2l

l
) ∫ 2l

0
φ2l(u)(Chu − I)l f du. (14)

By properties a), d) in Proposition 2.6 and by definition of the modulus of continuity we obtain∥∥∥ f −Qh,l f
∥∥∥ ≤

2l(2l
l
) ∫ 2l

0
φ2l(u)ωl( f , hu)du ≤

2l(2l
l
)ωl( f , 2lh).

2) According to Proposition 3.1 and equation (11) we get

Al(Qh,l f ) =
1

2l−1(2l
l
)
h2l

l∑
v=1

(−1)v+1

(
2l

l − v

)
v−2l(C2vh − I)l f ,

which proves the statement 2). ■

Corollary 4.3. The following evaluations hold for any f ∈ X, h > 0
1)

∥∥∥ f − Sh,2 f
∥∥∥ ≤ ω( f , 2h);

2)
∥∥∥A(Sh,2 f )

∥∥∥ ≤ 1
2h2ω( f , 2h).

Proof. It follows from Proposition 4.2 if we take l = 1. ■

Remark 4.4. For the case of

Ch f (x) =
1
2
(

f (x + h) + f (x − h)
)
, h ≥ 0,

the infinitesimal generator of Definition B equals to the second derivative, i.e.

A f (x) = f ′′(x)

and the modulus of continuity of Definition 4.1 is related to the ordinary modulus of continuity of order two ω∗( f , δ)
(see [1], Section 91) by

ω( f , δ) := ω1( f , δ) =
1
2
ω∗( f , 2δ).

Therefore, the statement of Corollary 4.3 precisely, including constants, coincides with a classical result in [1], Section
95.
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To simplify the notation, let us denote the constants in Proposition 4.2 as follows:

q1(l) :=
2l(2l
l
) , q2(l) :=

1

2l−1(2l
l
) l∑

v=1

(
2l

l − v

)
v−2l (l ∈N). (15)

Let us make some remarks concerning the constants q1(l), q2(l). First, from equation (8) for x = π it follows

l∑
v=1

(
2l

l − v

)
= 22l−1

−
1
2

(
2l
l

)
.

Hence,

q2(l) ≤
1

2l−1(2l
l
) l∑

v=1

(
2l

l − v

)
=

2l(2l
l
) − 1

2l
≤ q1(l).

Moreover, by the Stirling formula, q1(l) ≈
√
πl

2l , and

q2(l) ≤ q1(l) ≤

√
l

2l−1
, (16)

i.e. the constants in (15) are quite rapidly decreasing (comment: q1(l + 1) = l+1
2l+1 q1(l), q1(1) = 1, q1(2) = 2

3 ,
q1(3) = 2

5 , q1(4) = 8
35 , ...).

The next theorem shows a general way to get direct or Jackson-type inequalities with constants in an
explicit form for certain approximation methods.

Theorem 4.5. Suppose a semi-norm P : X→ (0,∞) = R+ is given such that there exist finite numbers

M0 := sup
f∈X

P( f )∥∥∥ f
∥∥∥ , (17)

Mr := sup
f∈D(Ar)

P( f )∥∥∥Ar f
∥∥∥ (r ∈N). (18)

Then for any f ∈ X, h > 0, r ∈N

P( f ) ≤ (M0q1(r) +Mrq2(r)h−2r)ωr( f , 2rh), (19)

where the constants M0,Mr, q1(r), q2(r) are defined by (17), (18) and (15), respectively.

Proof. According to assumptions (17) and (18) we write

P( f ) ≤ P( f −Qh,r f ) + P(Qh,r f ) ≤M0

∥∥∥ f −Qh,r f
∥∥∥ +Mr

∥∥∥Ar(Qh,r f )
∥∥∥ .

The statement (19) follows now from Proposition 4.2. ■

Remark 4.6. The approach given above for the functional spaces was used in [14], [15] and in papers cited therein.

Beside the modulus of continuity, another quantity, used in approximation problems, is the (Peetre)
K-functional (see, e.g. [5], Ch. 6).

Definition 4.7. (compare in [5], Ch. 6, equation (1.11)) Let be given the infinitesimal generator A : D(A) → X of
a strongly continuous operator cosine function. The K-functional of an element f ∈ X is defined for t ≥ 0 via the
formula

K( f , t) := K( f , t; X,D(Ar) := inf
1∈D(Ar)

(∥ f − 1∥ + t∥Ar1∥), t ≥ 0.
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In Approximation Theory, it is an important subject to compare the modulus of continuity and the
K-functional (see, e.g. [5], Ch. 6). It appears that the Steklov avarages are good tools for that comparison.

We begin with some properties of the modulus of continuity in Definition 4.1, which are adaptations of
the well-known properties of the ordinary modulus of continuity (see, e.g. [1], [5], [13])

Proposition 4.8. The modulus of continuity ωk( f , δ)
(
ω( f , δ) := ω1( f , δ)

)
in Definition 4.1 has the following prop-

erties:

(i) ωk( f ,mδ) ≤ mk(1 + (m − 1)T)kωk( f , δ), m ∈N;

(ii) ωk( f , λδ) ≤ ([λ] + 1)k(1 + [λ]T)kωk( f , δ), λ > 0, ([λ] ≤ λ is the entire part of λ ∈ R);

(iii) ωk( f , δ) ≤ (1 + T)k−lωl( f , δ), k ≥ l and k, l = 0, 1, 2, . . . ;

(iv) for f ∈ D(Ak), k = 0, 1, ..., there holds

ωk+l( f , h) ≤
(

Th2

2

)k

ωl(Ak f , h) (l = 0, 1, . . .).

Proof. The inequalities (i)–(iii) can be proved in a very similar way as the classical ones. For (iv), first we
prove that for f ∈ D(Ak), k = 0, 1, ... there holds

∥∥∥(Ct − I)k+l f
∥∥∥ ≤ (

Tt2

2

)k ∥∥∥(Ct − I)lAk f
∥∥∥ (l = 0, 1, ...).

Then (iv) follows by taking supremum. Let us fix l = 0, 1, ... and consider induction by k. For k = 0 the
statement is obvious. Consider

(Ct − I)k+1+l f = (Ct − I)(Ct − I)k+l f =
∫ t

0
(t − u)CuA(Ct − I)k+l f du,

which is valid by Theorem C, (ii). Since ∥Cu∥[X] ≤ T and A and Ct are commutative we get

∥∥∥(Ct − I)k+1+l f
∥∥∥ ≤ ∫ t

0
(t − u) ∥Cu∥[X]

∥∥∥(Ct − I)k+lA f
∥∥∥ du ≤

Tt2

2

∥∥∥(Ct − I)k+lA f
∥∥∥ .

Therefore, by assumption of the induction

∥∥∥(Ct − I)k+1+l f
∥∥∥ ≤ Tt2

2

(
Tt2

2

)k ∥∥∥(Ct − I)lAk+1 f
∥∥∥ .

■
The comparison theorem between the modulus of continuity and the K-functional reads as follows.

Theorem 4.9. For any f ∈ X, t > 0, r ∈N there hold the inequalities

c1(r)ωr( f , t) ≤ K( f , t2r) ≤ c2(r)ωr( f , t),

where the constants c2(r) ≥ c1(r) > 0 are independent on f ∈ X and t > 0.

Proof. 1) For the left-hand side inequality let us take 1 ∈ D(Ar). By the properties of the modulus of
continuity we have

ωr( f , t) ≤ ωr( f − 1, t) + ωr(1, t) ≤ (T + 1)r
∥ f − 1∥ + (T/2)rt2r

∥Ar1∥

≤ max((T + 1)r, (T/2)r)K( f , t2r).
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2) For the right-hand side inequality let us notice that for any 1 ∈ D(Ar) we have

K( f , t2r) ≤ ∥ f − 1∥ + t2r
∥Ar1∥, t ≥ 0.

By Proposition 4.2 Qt,r f ∈ D(Ar), hence

K( f , t2r) ≤ ∥ f −Qt,r f ∥ + t2r
∥Ar(Qt,r f )∥.

Again, by Proposition 4.2 using notations in (15) we have

K( f , t2r) ≤ q1(r)ωr( f , 2rt) + q2(r)t2rt−2rωr( f , 2rt) = (q1(r) + q2(r))ωr( f , 2rt).

On the one hand, by inequality (16) q1(r) + q2(r) ≤
√

r/2r−2. On the other hand, by the property of the
modulus of continuity

ωr( f , 2rt) ≤ (2r)r(1 + (2r − 1)T)rωr( f , t).

Therefore, we get

K( f , t2r) ≤ 4rr+1/2(1 + (2r − 1)T)rωr( f , t).

■

Remark 4.10. The constant c2(r) in Theorem 4.9 is somehow smaller than that in [5], Ch. 6, Theorem 2.4, or in [3],
Theorem 1. Indeed, in these cases T = 1 and for the constant c2(r) we get the estimate c2(r) ≤ 4rr+1/2(1+ (2r−1)T)r =
2r+2r2r+1/2, whereas in [3], Theorem 1, c2(r) ≤ 25rr2r + 2r.

5. A Jackson-type theorem with Chebyshev cosine operator function

Below, X stands for one of the Banach spaces C[−1,1] or X = Lp
w, (1 ≤ p < ∞), defined as in Remark 2.3.

For these spaces a suitable cosine operator function is defined by (in following notations the letter C stands
for Chebyshev)

(CC
h f )(x) :=

1
2

{
f (x cos h +

√

1 − x2 sin h) + f (x cos h −
√

1 − x2 sin h)
}
. (20)

Our purpose is to study the best algebraic approximation of f ∈ X by polynomials of degree n in X,

En( f ) := inf
p∈Pn
∥ f − p∥,

for which we will apply Theorem 4.5, i.e. we consider the semi-norm P( f ) = En( f ). Obviously, since
En( f ) ≤ ∥ f ∥, in Theorem 4.5 the constant M0 = 1.

For the constant Mr we need further results from [3]. The main tool to prove statements in [3] is the
Chebyshev translation operator (see [3], formula (1.2))

(τh f )(x) :=
1
2

{
f (xh +

√
(1 − x2)(1 − h2)) + f (xh −

√
(1 − x2)(1 − h2))

}
, x, h ∈ [−1, 1],

which is related with the cosine operator function (20) via equality

(CC
h f )(x) = (τcos h f )(x), h ∈ [0, π].

Obviously, τh : X → X is equibounded, i.e. ∥τh f ∥ ≤ ∥ f ∥, moreover, strongly continuous (see [3], Lemma
2), i.e. limh→1− ∥τh f − f ∥ = 0. Hence CC

h satisfies limh→0+ ∥CC
h f − f ∥ = 0, i.e. strongly continuous and by

Definition B we may calculate the generator

(A f )(x) = (1 − x2) f ′′(x) − x f (x), x ∈ [−1, 1].
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Analogously to [3], formula (1.3), we define the (Chebyshev) strong derivative as the function 1 ∈ X for
which

lim
h→0+

∥
CC

h f − f

1 − cos h
− 1∥ = 0,

and write D1
C f = 1. The higher derivatives are defined iteratively for r = 1, 2, . . . by Dr+1

C f = D1
C(Dr

C f ) with
D0

C f = f . The (Sobolev) class Wr
X is the set of f ∈ X for which Dr

C f exists.
Denote by X2π the space of 2π-periodic functions as the counterpart of space X in the beginning of this

subsection. Then a quite obvious statement holds.

Proposition 5.1. The function f ∈ X has the Chebyshev derivative Dr
C f ∈ X(r = 0, 1, 2, . . . ) iff f ◦ cos ∈ X2π has

the ordinary derivative of order 2r.Moreover,

(Dr
C f )(cos x) = (−1)r(D2r

2π( f ◦ cos))(x).

Calculating

(D
′′

2π( f ◦ cos))(x) =
d2

dx2 f (cos x) = sin2 x f ′′(cos x) − cos x f ′(cos x),

we see that

(D1
C f )(u) = −(A f )(u).

Hence, the Sobolev class W1
X coincides with the domain D(A) of the generator A, and, in general, Wr

X = D(Ar).
Now we are able to reformulate, in our notations, an important statement from [3].

Theorem 5.2. ([3], Proposition 3.a)) If f ∈ D(Ar), r ∈ N, then there exists a constant Cr > 0, being independent of
f and n, such that

En( f ) ≤ Crn−2r
∥Ar f ∥.

Remark 5.3. In Trigonometric Approximation there is a deep statement (sometimes called as Theorem of Akhiezer-
Krein-Favard), analogous to the previous theorem, but with the exact constant Kr < π2 , called as the Favard numbers
(see, e.g. [5], Ch. 5, §5, and Ch. 7, Theorem 4.3). Unfortunately, here we do not know any idea to have a reasonable
estimate for the constant Cr. At least, the proof of Proposition 3 of [3] overestimates that constant very much.

Anyway, to apply Theorem 4.5, we have now by previous theorem that Mr = Crn−2r, and if take h = 1/n,
then we get for any f ∈ X, r ∈N a Jackson-type estimate

En( f ) ≤ (q1(r) + Crq2(r))ωr( f ,
2r
n

),

or by the estimate (16) in a more compact form as

En( f ) ≤
√

r
2r−1 (1 + Cr)ωr( f ,

2r
n

).

This estimate is not new by the order, compare [3], the new part of that estimate is the constant
√

r
2r−1 (1 + Cr)

only.
The Chebyshev cosine operator function is useful for the Chebyshev-Fourier series. One might ask how

about other classical orthogonal polynomials?
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6. A Jackson-type theorem using Legendre polynomials

In this Section, as above, X stands for one of the Banach spaces C[−1,1] or X = Lp
w, (1 ≤ p < ∞).Here we may

present a general approach due to S. Z. Rafal’son [9], [10]. Let the system of algebraic polynomials {Pk}
∞

k=0,
defined on [−1, 1], be orthonormal with respect to the weight w(x) > 0. Moreover, suppose ∥Pk∥C = Pk(1).
The Fourier coefficients of f ∈ X via the system {Pk}

∞

k=0 is denoted by ck( f ). The generalized translation
operator τt : X→ X, t ∈ [0, π] is defined by properties:

a) for any f ∈ X and t ∈ [0, π] there holds ∥τt f ∥ ≤ ∥ f ∥,

b) for any f ∈ X and t ∈ [0, π] the Fourier coefficients of τt f satisfy the equation

ck(τt f ) = ck( f )Pk(cos t)/Pk(1), k = 0, 1, 2, . . .

In this framework S. Z. Rafal’son [9] announced (without proof) an Akhiezer-Krein-Favard-type theorem
for the Legendre polynomials (then w(x) = 1). Unfortunately, in case of Legendre polynomials, the operator
τt : X → X does not form the cosine operator function. Indeed, by the definition of τt : X → X, comparing
the Fourier coefficients, for the cosine operator function we should have

Pk(cos s)Pk(cos t) =
Pk(1)

2
(Pk(cos(s + t)) + Pk(cos(s − t))), s, t ∈ [0, π], k = 0, 1, 2, . . . (21)

The equation (21) is valid for the orthonormal system of the Chebyshev polynomials {T0(x) =
√

2
π ,Tk(x) =

2
√
π

cos(k arccos x), k ∈ N}. For the Chebyshev system the generalized translation operator τh : X → X
coincides with the cosine operator function (20) (see [9], Section 3).

S. Z. Rafal’son [9] considers more precisely the system of Legendre polynomials, consisting of polyno-
mials

Pk(x) =
(−1)k

2kk!
dk

dxk
(1 − x2)k (x ∈ [−1, 1]; k = 0, 1, 2, . . . ).

In particular, P2(x) = (3x2
− 1)/2, which does not satisfy the equation (21), hence, the corresponding

generalized translation operator ([9], Section 3; letter L in the notation below stands for Legendre)

(τL
t f )(x) :=

1
π

∫ 1

−1
f (x cos t + u

√

1 − x2 sin t)
du

√

1 − u2
, (22)

does not form the cosine operator function. Nevertheless, the given generalized translation operator is
very useful in approximation theory ([12]). Therefore, we cite here by S. Z. Rafal’son [9] an Akhiezer-Krein-
Favard-type theorem with the (almost) exact constant therein.

For f ∈ C[−1,1], for which there exists f (2r)
∈ C[−1,1], we denote

(Dr f )(t) :=
dr

dtr

(
(1 − t2)r f (r)(t)

)
.

For r = 1 this is, up to a constant factor, as the strong (Legendre-) derivative Dr
L f of f ∈ X in [12], Subsection

3, Definition 1, namely D1
L f = − 1

2 D1 f .Unfortunately, for the higher derivatives there are no simple relations
between these derivatives, for example, D2

L f = 1
4 (D2 f − 2D1 f ).

Theorem 6.1. ([9], Subsection 6, Theorem 6) If f (2r)
∈ C[−1,1], r ∈N, then for any n ≥ r − 1

En( f )C ≤Mr,nEn(Dr f )C,

where

Mr,n :=
4(n + 2)Γ(r + 1/2)

√
πΓ(r)

∞∑
ν=0

((2ν + 1)(n + 2) − r − 1)!
((2ν + 1)(n + 2) + r)!

.

Moreover, c1(r)Mr,n ≤ n−2r
≤ c2(r)Mr,n with certain constants 0 < c1(r) ≤ c2(r), not depending on n.
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Since we are interested in constants in Jackson-type inequalities, we shall look for estimates of the
constants Mr,n.

Proposition 6.2. For n ≥ r − 1 we have

4Γ(r + 1/2)
√
πΓ(r)(n + 2)2r

∞∑
ν=0

1
(2ν + 1)2r+1 ≤Mr,n ≤

4Γ(r + 1/2)(r + 1)2r

√
πΓ(r)(2r + 1)r(n + 2)2r

∞∑
ν=0

1
(2ν + 1)2r+1 (r ≥ 2),

in particular, 2ζ(3)
(n+2)2 ≤M1,n ≤

7ζ(3)
3(n+2)2 , where ζ(z) is the Riemann zeta function.

Proof. Denote ℓ := (2ν + 1)(n + 2), then we may rewrite the sum in the expression of Mr,n as

Sr,n :=
1

(n + 2)2r+1

∞∑
ν=0

1
(2ν + 1)2r+1

1

(1 − r2

ℓ2 )(1 − (r−1)2

ℓ2 ) . . . (1 − 12

ℓ2 )
≥

1
(n + 2)2r+1

∞∑
ν=0

1
(2ν + 1)2r+1 .

Since ℓ ≥ n + 2 ≥ r + 1, for j = 1, 2, . . . r we estimate

1

1 − j2

ℓ2

≤
1

1 − j2

(n+2)2

= 1 +
j2

(n + 2)2 − j2
≤ 1 +

r2

2n + 3
≤ 1 +

r2

2r + 1
=

(r + 1)2

2r + 1

for r ≥ 2. If j = r = 1, then 1
1−1/ℓ2 ≤

4
3 . ■

To prove a Jackson-type theorem, e.g. Theorem 4.5, it is not ultimately necessary to work in the
cosine operator framework. It is important to have in hand a good approximation operator such that
the statements of Proposition 4.2 are true. In the Legendre case the suitable operator is introduced and
studied in [4] and [12]. In [12], Sec. 3, there had been introduced the (Legendre-) integral or Steklov means
Sh f , f ∈ X, h ∈ (−1, 1). They are defined, using the kernel (log−1(z) ≡ 1/ log(z))

κ(x; h) := log
(1 + x)(1 − h)
(1 − x)(1 + h)

log−1(
2

1 + h
), −1 < h ≤ x < 1,

and κ(x; h) := 0 otherwise. It is important to mention that this kernel is non-negative for x, h ∈ [−1, 1] and

1
2

∫ 1

−1
κ(u; h)du = 1.

Then the Steklov means are defined via the integral

(Sh f )(x) :=
1
2

∫ 1

−1
(τL

u f )(x)κ(u; h)du,

where the translation operator τL
u : X→ X is defined in (22).

The counterpart of the modulus of continuity takes here the next form (compare Definition 4.1)

ωL( f , δ) := sup
δ≤h≤1

∥τL
h f − f ∥,

for which limδ→1− ωL( f , δ) = 0. The set of all f ∈ X for which the strong (Legendre-) derivative D1
L f exists

as an element of X is denoted by W1
X.

We reformulate (and improve a little) a statement from [4] and [12].

Proposition 6.3. ([4], Theorem 3, Part a) for 1)and [12], Corollary 2, (d) for 2), respectively) For the Steklov means
Sh f , f ∈ X, for each h ∈ (−1, 1) it holds:

1)
∥∥∥Sh f − f

∥∥∥ ≤ ωL( f , h),
2) Sh f ∈W1

X and
∥∥∥D1

L(Sh f )
∥∥∥ ≤ 1

1−hω
L( f , h).
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Proof. 1) By the definition of the kernel κ(u; h) we have

(Sh f )(x) − f (x) =
1
2

∫ 1

h

(
(τL

u f )(x) − f (x)
)
κ(u; h)du,

hence, by the definition of the modulus of continuity

∥Sh f − f ∥ ≤
1
2

∫ 1

h
sup

h≤u≤1
∥τL

u f − f ∥κ(u; h)du = ωL( f , h).

2) By [12], Corollary 2, (d)

(D1
L(Sh f ))(x) =

1
2

log−1(
2

1 + h
)
(

f (x) − (τL
h f )(x)

)
.

Since 1 − h ≤ 2 log( 2
1+h ), h ∈ (−1, 1],we have proved the statement 2). ■

Proposition 6.3 yields, analogously to Theorem 4.5, next

Theorem 6.4. Suppose a semi-norm P : X→ (0,∞) = R+ is given in space X such that there exist finite numbers

M0 := sup
f∈X

P( f )∥∥∥ f
∥∥∥ , (23)

M1 := sup
f∈W1

X

P( f )∥∥∥D1
L f

∥∥∥ . (24)

Then for any f ∈ X, 0 < h < 1,

P( f ) ≤ (M0 +
1

1 − h
M1)ωL( f , h). (25)

As a corollary we obtain a Jackson-type inequality with a constant in explicit shape for the Legendre
framework.

Corollary 6.5. For all f ∈ C[−1,1],n ∈N the algebraic best approximation satisfies the inequality

En( f )C ≤

(
1 +

14
3
ζ(3)

)
ωL( f , 1 −

1
(n + 2)2 )C,

where ζ(3) = 1.2020569 . . . (Riemann dzeta function).

Proof. Firstly we take in Theorem 6.4 P( f ) = En( f )C, then we get by Rafal’son’s Theorem 6.1 the constant
M1 in (24) equals to 14

3(n+2)2 ζ(3), since D1 f = −2D1
L and therefore En(D1 f )C = 2En(D1

L f )C ≤ 2∥D1
L f ∥C. Lastly,

we prove the statement using (25) with h = 1 − 1
(n+2)2 . ■
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