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Abstract. In the present paper, we establish first the relation between the perturbation of upper Fredholm
and strictly singular, and then the relation between lower semi-Fredholm and strictly cosingular linear
relations. Most importantly in Theorem 3.4, we show that P(F−(X,Y)) coincides with SC(X,Y).We bring to
light, the relationship between the essential spectra of a multivalued linear operator and its selection

1. Introduction

The theory of multivalued linear operators has proved to be distinct from the theory of single valued
linear operators (especially see [7]). In fact, there arose some problems when applying the theory of single
valued to multivalued linear operators. This is why there emerged a need to formulate fundamental
concepts related exclusively to multivalued linear operators or simply linear relations. In general, linear
relations appeared in Functional Analysis with J. Von Neumann [10] who shed light on the adjoints of
non-densely defined linear operators and the inverses of certain operators.

In this paper, let X and Y be two normed linear spaces. A linear relation T from X to Y is a mapping
from a subspace D(T) = {x ∈ X : Tx , ∅} ⊆ X, called the domain of T, into P(Y)\{∅} ( the collection of
nonempty subsets of Y ) such that T(α1x1 + α2x2) = α1T(x1) + α2T(x2) for all nonzero scalars α1, α2 and
x1, x2 ∈ D(T). If T maps the points of its domain to singletons, then T is said to be single valued or simply
an operator, that is equivalent to T(0) = {0}. The collection of linear relations is denoted by LR(X,Y) and we
write LR(X) = LR(X,X). A linear relation T ∈ LR(X,Y) is uniquely determined by its graph, G(T), which is
defined by

G(T) =
{
(x, y) ∈ X × Y : x ∈ D(T) and y ∈ Tx

}
.

The inverse of T ∈ LR(X,Y) is the linear relation T−1 defined by

G(T−1) =
{
(y, x) ∈ Y × X : (x, y) ∈ G(T)

}
.

Let T, S ∈ LR(X,Y), then the linear relation T + S is defined by

G(T + S) =
{
(x,u + v) ∈ X × Y : (x,u) ∈ G(T) and (x, v) ∈ G(S)

}
.
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Email addresses: ammar.aymen84@gmail.com (Aymen Ammar), aichaezzadam@hotmail.fr ( Aicha Ben Ezzadam),

Aref.Jeribi@fss.rnu.tn (Aref Jeribi)



A. Ammar et al. / Filomat 37:5 (2023), 1399–1408 1400

If T ∈ LR(X,Y) and S ∈ LR(Y,Z), then the composition or product ST ∈ LR(X,Z) is defined by

G(ST) =
{
(x, z) ∈ X × Z : (x, y) ∈ G(T) and (y, z) ∈ G(S) for some y ∈ Y

}
.

If M is a subspace of X such that M ∩D(T) , ∅, then T|M∩D(T) = T|M is defined by

G(T|M) =
{
(x, y) ∈ G(T) : x ∈M

}
.

We write S ⊂ T if G(S) ⊂ G(T) and we say that T is an extension of S if T/D(S) = T. The notations
R(T) and N(T) for a linear relation T denote respectively the range and the null space of T, defined by
R(T) =

{
y : (x, y) ∈ G(T)

}
and N(T) =

{
x ∈ D(T) : (x, 0) ∈ G(T)

}
T is said to be surjective if R(T) = Y.

Similarly, T is said to be injective if the null spaces N(T) = T−1(0) = {0}. When T is both injective and
surjective, we say that T is bijective.

The quotient map from Y into Y/T(0) is denoted by QT. Clearly QTT is single valued and the norm of T
is defined by ∥T∥ = ∥QTT∥ and ∥Tx∥ := ∥QTTx∥ for all x ∈ D(T). We say that T ∈ LR(X,Y) is continuous
if ∥T∥ < ∞; bounded if it is continuous and D(T) = X; open if T−1 is continuous; closed if its graph is a
closed subspace. We denote the set of all closed and bounded linear relations from X to Y by CR(X,Y) and
BR(X,Y) respectively. If X = Y,we have CR(X,X) = CR(X) and BR(X,X) = BR(X).
Let T ∈ LR(X,Y).We say that T is compact if QTT(BX) is compact and BX is the unit ball of X. T is precompact
if QTT(BX) is totally bounded. We denote the class of all compact linear relations byKR(X,Y).

If M and N are subspaces of X and of the dual space X′ respectively, then

M⊥ =
{
x′ ∈ X′ : x′(x) = 0 for all x ∈M

}
, and

N⊤ =
{
x ∈ X : x′ (x) = 0 for all x′ ∈ N

}
.

Let T ∈ LR(X,Y). The adjoint of T,which is T′, is defined by

G(T′) = G(−T−1)⊥ ⊂ Y′ × X′,

where ⟨(y, x), (y′, x′)⟩ = ⟨x, x′⟩ + ⟨y, y′⟩. This means that

(y′, x′) ∈ G(T′) if, and only if, y′y − x′x = 0 for all (x, y) ∈ G(T).

The adjoint or conjugate T′ of a linear relation T ∈ LR(X,Y) is defined by

G(T′) = G(−T−1)⊥ ⊂ Y′ × X′,

where ⟨(y, x), (y′, x′)⟩ := ⟨x, x′⟩+ ⟨y, y′⟩ = xx′ + y′y. For (y′, x′) ∈ G(T′) we have y′y = x′x whenever x ∈ D(T).

Let E be a subspace of a normed linear space X.We denote the natural injection map from E into X by JE i.e.,
for x ∈ E, JEx = x ∈ E. The families of infinite dimensional and the class of all closed infinite codimensional
subspaces of X are denoted by I(X) and ε(X) respectively. Perturbation theorems recalled below are the
following operational quantities, see Cross [7, Definition IV.1.1 ].

Γ(T) = inf
{
∥T|M∥ : M ∈ I(D(T))

}
,

∆(T) = sup
{
Γ(T|M) : M ∈ I(D(T))

}
,

Γ′(T) = inf
{
∥QM JYT∥ : M ∈ ε(Y)

}
,

∆′(T) = sup
{
Γ′(QMT) : M ∈ ε(Y)

}
.
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We say that T is strictly cosingular if∆′(T) = 0. It is proved in [7, Theorem V.2.6] that T is strictly singular
if, and only if, ∆(T) = 0.

For T ∈ LR(X,Y), we write α(T) = dim N(T), β(T = dim Y/R(T) and the index of T is the quantity
i(T) = α(T) − β(T).
A linear relation T ∈ LR(X,Y) is said to be upper semi-Fredholm and denoted by T ∈ F+(X,Y), if there exists
a finite codimensional subspace M of X for which the restriction T|M is injective and open.
T is said to be lower semi-Fredholm and denoted by T ∈ F−(X,Y), if its conjugate T′ is upper semi-Fredholm.
The class of Fredholm linear relation is defined by F (X,Y) = F+(X,Y) ∩ F−(X,Y).

In the case where X and Y are two Banach spaces, we extend the classes of closed single valued Fredholm
type operators given earlier to include closed multivalued operators. Note that the definitions of the classes
F+(X,Y) and F−(X,Y) are consistent

Φ+(X,Y) =
{
T ∈ CR(X,Y) α(T) < ∞ and R(T) is closed in Y

}
,

Φ−(X,Y) =
{
T ∈ CR(X,Y) : β(T) < ∞ and R(T) is closed in Y

}
.

T is said to be semi-Fredholm (resp. Fredholm) relation if T ∈ Φ+(X,Y) ∪ Φ−(X,Y) = Φ±(X,Y), (resp.
T ∈ Φ+(X,Y) ∩Φ−(X,Y) = Φ(X,Y)).
If X = Y, we have by F+(X,X) = F+(X), F−(X,X) = F−(X), SS(X,X) = SS(X), SC(X,X) = SC(X), F (X,X) =
F (X), Φ+(X,X) = Φ+(X), Φ+(X,X) = Φ+(X), Φ±(X,X) = Φ±(X) and Φ(X,X) = Φ(X).

It is worth noting that the study of multivalued Fredholm linear operators was tackled by D.Wilcox
in his PhD thesis. In fact, he investigated some properties of multivalued Fredholm linear operators in
normed linear spaces. For more information, we may refer to [11].

We denote by L(X,Y) the classes of all bounded operators. An operator T ∈ L(X,Y) is called Riesz
operator if λ − T ∈ Φ(X,Y) for all scalars λ , 0.
Let T ∈ LR(X,Y) and let GT denote the graph operator of T, i.e., GT is the identity injection of XT into X
(GTx = x) and XT is the vector spaceD(T) endowed with the norm ∥x∥T = ∥x∥ + ∥Tx∥ for x ∈ D(T).

Let T ∈ LR(X). The resolvent set T is the set defined by

ρ(T =
{
λ ∈ C : λ − T is bijective, open a with dense range

}
.

So, by virtue of Closed Theorem for linear relations (see [7, Theorem III.4.2 ]), when A is closed and X is a
Banach space, this coincides with the set

ρ(T) =
{
λ ∈ C : (λ − T)−1 is everywhere defined and single valued

}
.

The spectrum of T is the set σ(T) = C\ρ(T).

In recent years, several authors have extended the notion of the essential spectra to linear relations. We
can cite as example [2, 3, 6, 11]. Let T ∈ LR(X). We define the essential spectra of T by

σe1(T) = {λ ∈ C : λ − T < F+(X)},
σe2(T) = {λ ∈ C : λ − T < F−(X)},
σe3(T) = {λ ∈ C : λ − T < F±(X)},
σe4(T) = {λ ∈ C : λ − T < F (X)},
σe5(T) = {λ ∈ C : λ − T < F (X) and i(λ − T) = 0}.

Remark 1.1. (i) In [11, Proposition 8.2.9], the other proved that

σe3(T) ⊂ σe1(T) ⊂ σe4(T) ⊂ σe5(T) ⊂ σ(T).

(ii) σe1(T′) = σe2(T). In fact, let λ < σe1(T′) if, and only if, (λ − T′) ∈ F+(X) if, and only if, (λ − T)′ ∈ F+(X) if, and
only if, (λ − T) ∈ F−(X) if, and only if, λ < σe2(T).
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This paper is organized as follows: In the next section, we recall some definitions and results from the theory
of linear relation which will be used extensively in the sequel. In section 3,we establish some perturbation
results. Most importantly in Theorem 3.4, we show hat P(F−(X,Y)) coincides with SC(X,Y). We bring to
light, the relationship between the essential spectra of a multivalued linear operator and its selection.

2. Preliminaries

In this section we recall some results of the theory of linear relations which will be needed in the
following sections. That’s why, we start by giving some auxiliary results from the theory of linear relations.

Proposition 2.1. [7, Definition II.5.1 and Proposition II.5.3 ] Let T ∈ LR(X,Y). Then

(i) T is closed if, and only if, T−1 is closed if, and only if, T(0) is closed and QTT is closed.

(ii) If T is continuous,D(T) and T(0) are closed, then T is closed.

Proposition 2.2. [7, Proposition II.5.13] Let T be closed and F ⊂ Y be finite dimensional, then QFT is closed.

Definition 2.3. [7, Definition I.5.1] A single-valued linear operator, S, is called a linear selection of a linear relation
T if

T = S︸︷︷︸
sin1le valued part

+T − T withD(S) = D(T).

Then for x ∈ D(T), we have Tx = Sx + T(0).

Remark 2.4. Let T ∈ LR(X,Y).

(i) If P is a linear projection withD(P) = R(T) and N(P) = T(0), then PT is a linear selection of T.

(ii) If T has a continuous linear selection S, then T is continuous with ∥T∥ ≤ ∥S∥.

Proposition 2.5. [7, Proposition VII.2.2] Let T ∈ LR(X,Y) and suppose S ∈ LR(X,Y) satisfiesD(T) ⊂ D(S) and
S(0) ⊂ T(0), and is T-bounded with a, b > 0, b < 1 such that for x ∈ D(T), ∥Sx∥ ≤ a∥x∥ + b∥Tx∥. Then the norm ∥.∥T
and ∥.∥T+S are equivalent.

Proposition 2.6. [7, Definition V.1.1] The following equivalences hold:
(i) T ∈ F+(X,Y) if, and only if, QTT ∈ F+(X,Y/T(0)).

(ii) T ∈ F−(X,Y) if, and only if, QTT ∈ F−(X,Y/T(0)).

Lemma 2.7. [7, Corollary V.7.7 and Proposition V.5.11] Let T ∈ LR(X,Y) and let M ⊂ Y such that dim(M) < ∞.
Then

(i) T ∈ F+(X,Y) if, and only if, QMT ∈ F+(X,Y/M).

(ii) T ∈ F−(X,Y) if, and only if, QMT ∈ F−(X,Y/M).

Proposition 2.8. (i) [7, Corollary V.2.5] Let T ∈ LR(X,Y).

T ∈ F+(X,Y)if, and only if, TGT ∈ F+(XT,Y).

(ii) [7, Proposition V.5.24] If TGT ∈ F−(XT,Y), then T ∈ F−(X,Y).

(iii) [7, Corollary V.5.27] Let T ∈ LR(X,Y) such that T is closable.

T ∈ F−(X,Y) if, and only if, TGT ∈ F−(XT,Y).
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Lemma 2.9. (i) [7, Proposition IV.5.11] Let T,S ∈ LR(X,Y). Then

Γ′(T + S) ≤ ∆′(JYT) + Γ′(S).

(ii) [11, Corollary 4.2.9] Let T ∈ LR(X,Y). Then

Γ′(JYT) = Γ′(T).

(iii) [11, Proposition 4.2.5] Let M ⊂ Y such that dim(M) < ∞ and dim(Y) = ∞. Then

Γ′(QMT) = Γ′(T) and ∆′(QMT) = ∆′(T).

In his book [7], R.W.Cross has introduced some results for the perturbations of F+(X,Y) and F−(X,Y).

Theorem 2.10. (i) [7, Theorem V.2.4] Let T ∈ LR(X,Y) and dim(D(T)) = ∞.

T ∈ F+(X,Y) if, and only if, Γ(T) > 0.

(ii) [11, Corollary 4.2.9] Let dim(Y) = ∞ and dim(T(0)) < ∞ .

T ∈ F−(X,Y) if, and only if, Γ′(T) > 0.

Theorem 2.11. [7, Theorem V.3.2] Let S,T ∈ LR(X,Y) and let S(0) ⊂ T(0).

If ∆(S) < Γ(T), then T + S ∈ F+(X,Y).

The following Corollary is a direct consequence of Theorem 2.11.

Corollary 2.12. Let S,T ∈ LR(X,Y) and let S(0) ⊂ T(0).

If T ∈ F+(X,Y) and S ∈ SS(X,Y), then T + S ∈ F+(X,Y) and T − S ∈ F+(X,Y).

Remark 2.13. The inclusion S(0) ⊂ T(0) is believed to be necessary (see [7, Example V.3.1]).

Theorem 2.14. [7, Theorem IV.2.9] Let T ∈ LR(X,Y) and S ∈ LR(Y,Z).

If T is an operator, then ∆(ST) ≤ ∆(S)∆(T).

Proposition 2.15. [7, Proposition IV.5.8] Let T ∈ LR(X,Y) and S ∈ LR(Y,Z) such that T(0) ⊂ D(S). Then

∆′(ST) ≤ ∥T∥∆′(S).

3. Main results

In the last years there have been many studies of the peturbation of upper, lower semi Fredholm and
Fredohlm perturbation for single valued operators ( see, for example [4, 5, 8, 9]). These studies of Fredholm
theory and perturbation results are of a great importance in the description of the essential spectrum. For
this, it seems interesting to study some perturbation results of multivalued linear in normed linear spaces.

Lemma 3.1. Let S ∈ LR(X,Y) such that dim(S(0)) < ∞.

(i) T + S − S ∈ F+(X,Y) if, and only if, T ∈ F+(X,Y).

(ii) T + S − S ∈ F−(X,Y) if, and only if, T ∈ F−(X,Y).

(iii) T + S − S ∈ F (X,Y) if, and only if, T ∈ F (X,Y).
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Proof. (i) [7, Lemma V.7.8].
(ii) We have

QS(T + S − S) = QS(T) +QS(S − S) = QS(T). (1)

Since T + S − S ∈ F−(X,Y) and dim(S(0)) < ∞, then by using Lemma 2.7 (iii), QS(T + S − S) ∈ F−(X,Y). It
follows from Eq. (1) that QST ∈ F−(X,Y). Hence, T ∈ F−(X,Y). Conversely, we suppose that T ∈ F−(X,Y),
then by Proposition 2.6 (ii), we have QST ∈ F−(X,Y). From Eq.(1), it follows that QS(T + S − S) ∈ F−(X,Y).
Thus using Lemma 2.7 (ii), we have T + S − S ∈ F−(X,Y).
(iii) The proof may be checked in the same way as the proof of (ii).

Definition 3.2. Let S ∈ LR(X,Y) such that dim S(0) < ∞.

(i) S is called an upper semi-Fredholm perturbation if T + S ∈ F+(X,Y) whenever T ∈ F+(X,Y).

(ii) S is called lower semi-Fredholm perturbation if T + S ∈ F−(X,Y) whenever T ∈ F−(X,Y).

(iii) S is called a Fredholm perturbation if T + S ∈ F (X,Y) whenever T ∈ F (X,Y).

The sets of upper, lower semi-Fredholm and Fredholm perturbations are denoted byP(F+(X,Y)),P(F−(X,Y))
and P(F (X,Y)) = P(F+(X,Y)) ∩ P(F−(X,Y)) respectively. If X = Y, we get P(F+(X)) := P(F+(X,X)),
P(F−(X)) := P(F−(X,X))(X,X) and P(F (X)) := P(F (X,X)).

K̃ (X,Y) := {K ∈ KR(X,Y) : dim K(0) < ∞}

and
K̃p(X,Y) :=

{
K is precompact : dim K(0) < ∞

}
.

In general we have :

K̃ (X,Y) ⊂ P(F+(X,X))

and
K̃ (X,Y) ⊂ K̃p(X,Y) ⊂ P(F−(X,X)).

Remark 3.3. If X is a Banach space and S ∈ L(X), the pre-mentioned sets coincide with the sets of Fredholm, upper
semi-Fredholm and lower semi-Fredholm perturbations respectively in [9, Definition 2.1.13].

Theorem 3.4. Let X and Y be two normed linear spaces, we have

(i) P(F+(X,Y)) = SS(X,Y).

(ii) P(F−(X,Y)) = SC(X,Y).

(iii) P(F (X,Y)) = SS(X,Y) ∩ SC(X,Y).

Proof. (i) Let T ∈ F+(X,Y) and S ∈ SS(X,Y) such that dim(S(0)) < ∞.We have

QS(T + S) = QST +QSS.

Since T ∈ F+(X,Y) and dim(S(0)) < ∞, then by Lemma 2.7 (i), QST ∈ F+(X,Y/S(0)).Moreover, QSS is strictly
singular and single valued. Therefore, applying Theorem 2.11 we obtain QSS + QST = QS(S + T) is upper
semi-fredholm, which implies that T + S ∈ F+(X,Y) (see Proposition 2.6 (i)). Thus SS(X,Y) ⊂ P(F+(X,Y)).
For the reverse inclusion, let S < SS(X,Y) then by Theorem 2.10 (iii) ∆(S) > 0, there exists M ∈ I(D(T)) such
that Γ(S|M) > 0. Let T ∈ LR(X,Y) such thatD(S) =M and T = −S|M.Then

Γ(T) = inf
N∈I(D(T))

∥T|N∥

= inf
N∈I(M)

∥S|M∩N∥

= Γ(S|M) > 0.
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Hence by Theorem 3.1 T ∈ F+(X,Y). Moreover, we have T + S = S − S|M < F+(X,Y), then S < P(F+(X,Y)).
Therefore P(F+(X,Y)) ⊂ SS(X,Y).
(ii) Let T ∈ F−(X,Y) and S ∈ SC(X,Y) with dim(S(0)) < ∞.We have

QST = QS(T) +QSS −QSS
= QS(T + S) −QSS,

and so from Lemma 2.9, we obtain

Γ′(QST) ≤ Γ′(QS(T + S)) + ∆′(QSS). (2)

Since dim(S(0)) < ∞, then by Lemma 2.9 (iii) ∆′(QSS) = ∆′(S) = 0. Moreover, since T ∈ F−(X,Y) and
dim(S(0)) < ∞, thus QST ∈ F−(X,Y).Hence Γ′(QST)) > 0. So that by Eq.(2),we obtain Γ′(QS(T+S)) > 0, then
T + S ∈ F−(X,Y). Therefore SC(X,Y) ⊂ P(F−(X,Y))
For the reverse inclusion, let S < SC(X,Y). Then ∆′(S) > 0 and hence there exist N ∈ ε(Y) such that
Γ′(QNS) > 0.
Let T ∈ LR(X,Y) such that dim(T(0)) < ∞,D(T) =M ∈ ε(Y), N ⊂M and JYTx = −JYSx (x ∈M). Then

Γ′(T) = inf{∥QM JYT∥|M ∈ ε(Y)}
= inf{|QM JYS∥|M ∈ ε(Y) and N ⊂M}
= Γ′(QNS) > 0.

Hence by Theorem 3.1(ii) T ∈ F−(X,Y).While

Γ′(T + S) = Γ′(JYT + JYS) (By Lemma 2.9)
= Γ′(JYT − JYT)
= 0,

then T + S < F−(X,Y). Thus S < P(F−(X,Y). Therefore P(F−(X,Y)) ⊂ SC(X,Y).
(iii) we have

P(F (X,Y)) = P(F+(X,Y)) ∩ P(F−(X,Y))
= P(F (X,Y)) = SS(X,Y) ∩ SC(X,Y).

Proposition 3.5. Let T ∈ LR(X,Y) and S ∈ LR(Y,Z).

i) If T is an operator continuous and S ∈ P(F+(Y,Z)), then ST ∈ P(F+(X,Z)).

ii) If T ∈ LR(X,Y) and S ∈ P(F−(Y,Z)) such that T(0) ⊂ D(S) and S is continuous,

then ST ∈ P(F−(X,Z)).

Proof. i) Since S ∈ P(F+(Y,Z)), then it follows from Theorem 3.4 that S ∈ SS(Y,Z) which implies that∆(S) = 0.
The use of Theorem2.14 leads to ∆(ST) ≤ ∆(S)∆(T) = 0. Thus ∆(ST) = 0 which implies that ST ∈ SS(X,Z).
Therefore ST ∈ P(F+(X,Z)).

ii) Since S ∈ P(F−(Y,Z)), then it follows from Theorem 3.4 that S ∈ SC(Y,Z) which implies that ∆′(S) = 0.
Since S(0) ⊂ D(T) and S is continuous, then by Proposition 2.15, we get ∆′(ST) ≤ ∥T∥∆′(S) = 0. Hence
∆′(ST) = 0 and therefore ST ∈ SC(X,Z). This yields ST ∈ P(F−(X,Z)).

Definition 3.6. Let X and Y be two normed spaces, A ∈ LR(X,Y) and let T ∈ LR(X,Y) be an arbitrary linear
relation. We say that T is A-Fredholm perturbation if TGA ∈ P(F (XA,Y).
T is called upper ( resp., lower ) A-Fredholm perturbation if TGA ∈ P(F+(XA,Y) ( resp., TGA ∈ P(F−(XA,Y)).

Let AP(F (X,Y)),AP(F+(X,Y)) and AP(F−(X,Y)) designate the set of A-Fredholm, upper A-Fredholm and lower
A-Fredholm perturbation respectively.

If X = Y, we get AP(F (X)) = AP(F (X,X)), AP(F+(X)) = AP(F+(X,X)) and AP(F−(X)) = AP(F−(X,X)).
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Proposition 3.7. Let X and Y be two normed spaces, A ∈ LR(X,Y) such that A is continuous.

(i) P(F+(X)) ⊂ AP(F+(X)).

(ii) P(F−(X)) ⊂ AP(F−(X)).

Proof. (i) Let T ∈ P(F+(X)). Since A ∈ LR(X,Y) such that A is continuous, then GA is the graph operator of
A. Let x ∈ XA, then

∥GAx∥A = ∥x∥ + ∥Ax∥
≤ ∥x∥ +M∥x∥ = (1 +M)∥x∥ (as A is continuous),

this implies that GA ∈ L(XA,X). From Proposition3.5, it follows TGA ∈ P(F+(XA,Y)).Hence T ∈ AP(F+(X,Y)).

(ii) Let T ∈ P(F−(X,Y)) and we have GA ∈ L(XA,X). Using Proposition3.5, we get TGA ∈ P(F−(XA,Y)).
Hence T ∈ AP(F+(X,Y)).

Theorem 3.8. Let T ∈ LR(X,Y) and A ∈ LR(X,Y) such that T(0) ⊂ A(0),D(A) ⊂ D(T) and T is A-bounded.

(i) If A ∈ F+(X,Y) and T ∈ AP(F+(X,Y)), then A + T ∈ F+(X,Y).

(ii) If A ∈ F−(X,Y) such that A is closable and T ∈ AP(F−(X,Y)), then A + T ∈ F−(X,Y).

Proof. (i) Since A ∈ F+(X,Y), then it follows from Proposition2.8 that AGA ∈ F+(XA,Y). Assume that
T ∈ AP(F+(X,Y)), hence TGA ∈ F+(XA,Y), allows us to deduce that TGA + AGA ∈ F+(XA,Y). This shows
that (T +A)GA ∈ F+(XA,Y).Hence by the equivalence ∥.∥A and ∥.∥T+A,we get (T +A)GA+T ∈ F+(XA+T,Y). by
Proposition2.8, we get T + A ∈ F+(X,Y).

(ii) Since A ∈ F−(X,Y) such that A is closable, then it follows from Proposition2.8 that AGA ∈ F−(XA,Y).
Assume that T ∈ AP(F−(X,Y)), hence TGA ∈ F−(XA,Y), allows us to deduce that TGA + AGA ∈ F−(XA,Y).
Which implies that (T + A)GA+T ∈ F−(XA+T,Y). by Proposition2.8, we get T + A ∈ F−(X,Y).

Proposition 3.9. Let T ∈ LR(X).

(i) If S ∈ P(F+(X)). then σe1(T + S) = σe1(T).

(ii) If S ∈ P(F−(X)), then σe2(T + S) = σe2(T).

(iii) If S ∈ P(F±(X)), then σe3(T + S) = σe3(T).

(iv) If S ∈ P(F (X)), then σe4(T + S) = σe4(T).

Proof. (i) Let λ < σe1(T). Then λ−T ∈ F+(X).Also S ∈ P(F+(X)),which implies that λ−T−S ∈ F+(X).Hence
λ − (T + S) ∈ F+(X),which yields that λ < σe1(T + S). Therefore σe1(T + S) ⊂ σe1(T).
Conversely, let λ < σe1(T+S). Then (λ− (T+S)) ∈ F+(X).Moreover, since S ∈ P(F+(X)), hence λ−T−S+S ∈
F+(X). By Lemma 3.1 (i), we deduce that λ − T ∈ F+(X). Thus λ < σe1(T). Therefore σe1(T) ⊂ σe1(T + S).
Statements (ii), (iii) and (iv) can be checked in the same way as (i).

Theorem 3.10. Let T ∈ LR(X,Y) and A ∈ LR(X,Y) such that T(0) ⊂ A(0),D(A) ⊂ D(T) and T is A-bounded.

(i) If T ∈ AP(F+(X)), then
σe1(T + A) = σe1(A).

(ii) If T ∈ AP(F−(X)) and A is closable, then

σe2(T + A) = σe1(A).

Proof. (i) Let λ < σe1(T + A). Then, λ − T − A ∈ F+(X) and we have T ∈ AP(F+(X)), using Theorem3.8, we
get λ − T − A + A ∈ F+(X). This show that λ − A ∈ F+(X). Thus λ < σe1(A). σe1(A) ⊂ σe1(T + A)
Conversely, Let λ < σe1(A). Then, λ − A ∈ F+(X) and we have T ∈ AP(F+(X)). Using Theorem3.8, we get
λ − T − A ∈ F+(X). λ < σe1(T + A). Therefore σe1(T + A) ⊂ σe1(A).
The proofs of (ii) may be achieved by following the same reasoning in (i).
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In what follows, we will introduce some properties of linear selections and we will show that the essential
spectra of a linear relation is stable with the essential spectra of its selection.

Proposition 3.11. Let T ∈ LR(X,Y) such that dim(T(0)) < ∞ and let S be a selection of T.

(i) If S ∈ CR(X,Y), then T ∈ CR(X,Y).

(ii) If S ∈ F+(X,Y), then T ∈ F+(X,Y).

(iii) If S ∈ F−(X,Y), then T ∈ F−(X,Y).

(iv) If S ∈ F (X,Y), then T ∈ F (X,Y).

Proof. (i) Let S be a closed selection of T, then T = S + T − T and

QTT = QT(S + T − T) = QTS. (3)

Since S is closed and dim(T(0)) < ∞, then by Proposition 2.2 (i) QTS is closed.This implies that QTT is closed
by referring back to Eq.(3). Moreover T(0) is closed. Then we have by Proposition 2.1 that T ∈ CR(X,Y).
(ii) Since S ∈ F+(X,Y) and dim(T(0)) < ∞, then using Lemma 2.7 (i), we infer that QTS ∈ F+(X,Y). Hence it
follows from Eq.(3), that QTT ∈ F+(X,Y). Therefore, T ∈ F+(X,Y).
Statements (iii) and (iv) can be checked in the same way as (ii).

Theorem 3.12. Let T ∈ LR(X) such that dim(T(0)) < ∞ and let S be a selection of T. Then

σei(T) = σei(S), i = 1, 2, 3, 4.

Proof. Let λ < σe1(T). Then λ − T ∈ F+(X). Also S is a selection of T, thus T = S + T − T, which implies that
λ− S+T−T ∈ F+(X).Moreover, we have dim(T(0)) < ∞. From Lemma 3.1 (i), it follows that λ− S ∈ F+(X).
Then λ < σe1(S). Therefore σe1(S) ⊂ σe1(T).
Conversely, let λ < σe1(S). Then λ − S ∈ F+(X). Thus using Lemma 3.1 (i), we have λ − S + T − T ∈ F+(X)
which implies that λ − T ∈ F+(X) ( as S is a selection of T ). Therefore σe1(T) ⊂ σe1(S).
For i = 2, 3, 4, their proof may be checked in the same way.

Remark 3.13. Let S be a selection of T such that dim(T(0)) < ∞.
If S is a Riesz operator, then σei(T) = {0}, i = 1, 2, 3, 4.
In fact, using the preceding Theorem, we have σe1(T) = σe1(S). Since S is a Riesz operator, then σe1(S) = {0}, which
implies that σe1(T) = {0}.
For i = 2, 3, 4, their proof may be checked in the same way.

Theorem 3.14. Let X Banach spaces. Let S1 and S2 be selections of T1 and T2 respectively such that S1,S2 ∈ L(X),
dim(T1(0)) < ∞ and dim(T2(0)) < ∞.

(i) If S1S2 ∈ P(F+)(X) and S2S1 ∈ P(F+)(X), then

σe1(T1 + T2)\{0} = [σe1(T1) ∪ σe1(T2)]\{0}.

(ii) If S1S2 ∈ P(F−(X)) and S2S1 ∈ P(F−(X)), then

σe2(T1 + T2)\{0} = [σe2(T1) ∪ σe2(T2)]\{0}.

(iii) If S1S2 ∈ P(F (X)) and S2S1 ∈ P(F )(X), then

σe4(T1 + T2)\{0} = [σe4(T1) ∪ σe4(T2)]\{0}.

Proof. (i) Let λ ∈ σe1(T1 + T2)\{0}. Since dim((T1 + T2)(0)) < ∞, then by using Theorem 3.12, we have
λ ∈ σe1(S1 + S2)\{0}. Hence, it follows from [1, Theorem 2.2] that λ ∈ [σe1(S1) ∪ σe1(S2)]\{0}. Moreover,
dim(T1(0)) < ∞) and dim(T2(0)) < ∞. Then, by Theorem 3.12, we have λ ∈ [σe1(T1)∪σe1(T2)]\{0}.Conversely,
by using the same reasoning, we find the result.
Statements (ii) and (iii) can be checked in the same way as (i).
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