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New characterizations of g-Drazin inverse in a Banach algebra
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Abstract. In this paper, we present a new characterization of g-Drazin inverse in a Banach algebra. We
prove that an element a in a Banach algebra has g-Drazin inverse if and only if there exists x € A such that
ax = xa,a—a*x € A™!. As an application, we obtain the sufficient and necessary conditions for the existence
of the g-Drazin inverse for certain 2 X 2 anti-triangular matrices over a Banach algebra. These extend the

results of Koliha (Glasgow Math. J., 38(1996), 367-381), Nicholson (Comm. Algebra, 27(1999), 3583-3592
and Zou et al. (Studia Scient. Math. Hungar., 54(2017), 489-508).

1. Introduction

Let A be a complex Banach algebra with an identity 1. We define a € A has g-Drazin inverse (i.e.,
generalized Drazin inverse) if there exists b € A such that

ab = ba,b = bab,a — a*b € A is quasinilpotent.

Such b is unique, if exists, and denote it by a?. If we replace quasinilpotent in the above definition with
nilpotent, then b is called the Drazin inverse of a. Following Mosi¢ ,see[15], an element a € A has gs-Drazin
inverse if there exists b € A such that b = bab,b € comm(a) and a — ab € A", The g-Drazin inverse plays
an important role in matrix and operator theory. Many authours have been studying this subject from
different views (see [12, 14] and [17]). In this paper we provide some new characterizations for the g-Drazin
inverse of an element in a Banach algebra. In Section 2, we drop the regular condition for the g-Drazin
invertibility of the definition. We then thereby prove that an element a4 in a Banach algebra A has g-Drazin
inverse if and only if there exist an idempotent ¢, a unit # and a quasinilpotent w which commute each
other such that a = eu + w. This helps us to generalize [16, Theorem 3] and prove that an element a € A
has g-Drazin inverse if and only if there exists an idempotent e € comm(a) such that eze € [eAe]™ and
(1-e)a(l—e) € [(1-e)A(l —e)]™!. It was tirstly posed by Campbell that the solutions to singular systems of
differential equations are determined by the g-Drazin invertibility of the 2 X 2 anti-triangular block matrix
(see [2]). The g-Drazin inverse of such special matrices attracts many authors (see [3, 7, 10, 13] and [18]). In
Section 3, we apply the results in section 2 for certain anti-triangular block matrices over a Banach algebra
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and provide some necessary and sufficient conditions for such matrices to be g-Drazin invertible. These
also extend [3, Theorem 4.1] and [19, Theorem 2.6] for the g-Drazin inverse.

Throughout the paper, we use A~! to denote the set of all units in A. A? indicates the set of all g-Drazin
invertible elements in A. Leta € A. The commutant of 2 € A is defined by comm(a) = {x € A | xa = ax}. N
stands for the set of all natural numbers.

2. g-Drazin inverse

The aim of this section is to provide a new characterization of g-Drazin inverse in a Banach algebra. We
shall prove that regular condition “x = xax” can be dropped from the definition of g-Drazin inverse. An
element a € A has strongly g-Drazin inverse if it is the sum of an idempotent and a quasinilpotent that
commute (see [6]). We begin with a characterization of strongly Drazin inverse.

Lemma 2.1. Let a € A. Then the following are equivalent:

(1) a € A has strongly g-Drazin inverse.
() a—a?e AM,

Proof. See [6, Lemma 2.2]. [
We come now to the demonstration for which this paper has been developed.
Theorem 2.2. Let a € A. Then the following are equivalent:

(1) a € A .
(2) There exists some x € comm(a) such that a — a?x € A,
Proof. (1) = (2) This is obvious by choosing x = a. '
(2) = (1) By hypothesis, there exists some x € comm(a) such that a — a?x € A™! Set z = xax. Then
z € comm(a). As (a — a’x) € A™! and x € comm(a),we see that,

2

a—a*z = a-—axaxa
= (1+ax)a—a*x)
c ﬂqm’l’

z—z% = Xxax — xaxaxax

= x(a—a*x)x + xax(a — a®x)x
ﬂqm’l'
az — (az)? = (a — a’z)z € AT,
By Lemma 2.1, az is strongly g-Drazin invertible and so by [9, Theorem 3.2], we have an idempotent
e € comm?(az) such that az — e € A™!. We easily check that

(a+1-az)z+1—-az) =1+ (a—a’2)1 -2)+ (z - Z%).

Hence,
a+l-e = (@+1-az)+(@z-e)eA and,
a(l—e) (a — a%z) + a(az — e) € AT,

Since a € comm(az), we have ea = ae. That is, a € A is quasipolar. As every quasipolar element is g-Drazin
invertible so, a € A?, by [11, Theorem 4.2]. [

Corollary 2.3. Let a € A. Then the following are equivalent:

(1) a e A ‘
(2) There exists an invertible u € comm(a) such that a — a>u € A™
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(3) au has strongly g-Drazin inverse for some invertible u € comm(a).

Proof. (1) = (3) Inview of [11, Theorem 4.2], there exists an idempotent p € comm(a) such thatu := a+p € A~
and ap € A™!. Hence, ap = a(u —a) € A™!. Then a — a?u~! € A™!. Thus au™' — [au~']> € A™!. Therefore au
has strongly g-Drazin inverse by Lemma 2.1.

(3) = (2) In light of Lemma 2.1, au — (au)? € A™! for some invertible u € comm(a). Hence a — a?u € A,
as required.

(2) = (1) This is obvious by Theorem 2.2. [

We are now ready to extend [11, Theorem 4.2] as follows.
Corollary 2.4. Let a € A. Then the following are equivalent:

(1) a e AL ‘
(2) There exists some p € comm(a) such that a +p € A~ and ap € A,

Proof. (1) = (2) This is clear by [11, Theorem 4.2].
(2) = (1) Setb = (a + p)~'(1 — p). Then b € comm(a) and
ab a(@a+p)~ (1 -p)
@+p)a+p) (1 =p)—pa+p~1-p)
= 1-p-pa+p)~(1-p)

In view of [19, Lemma 2.11], we have

a—a*bh = a(l-ab)
apll+@+p) ' (1-p),
c ﬂqnil

as1—ab=p+p+p)(1-p). This completes the proof by Theorem 2.2. [J

The next result generalizes [4, Proposition 13.1.18].
Theorem 2.5. Let a € A. Then the following are equivalent:

(1) a e A
(2) There exist an idempotent e, a unit u and a quasinilpotent w which commute each other such that a = eu + w.

Proof. (1) = (2) By hypothesis, there exists a invertible u € comm(a) such that a — a>u~! € A™! . Then
(u'a? —ula € A In light of Lemma 2.1, u™'a has strongly g-Drazin inverse and so by [9, Theorem 3.2],
there exists > = e € comm?(u~'a) such that w := u~'a — e € A™!. Hence, a = ue + uw. Clearly, eu = ue and
ea = ae; hence, uw = wu, (ue)(uw) = (uw)(ue) and uw € A™!, as required.

(2) = (1) Write a = ue + w for an idempotent e, an invertible u and a quasinilpotent w which commute
each other. Then (u"'a)? — u~'a € A™!. Then a — a*u~' € A™, since —u~'(a — a?u~') € AT, O

Corollary 2.6. Leta € A®. Then a is the sum of two units in A.

Proof. Since a € A4, it follows by [19, Theorem 3.11] that 5 € A, In view of Theorem 2.5, there exist an
idempotent e, a unit u and a quasinilpotent w which commute each other such that § = eu + w. Hence,
a=2eu+2w=2e—1)u+u+2w=2e—1)u+u(l+2u'w).Since 2e—1)> =1and 1 +2u"'w € A, ais the
sum of two units, as asserted. [

Theorem 2.7. Let a € A. Then the following are equivalent:

(1) a € A
(2) There exist an idempotent e € comm(a) such that eae € [eAe]™, (1 — e)a(1 —e) € [(1 — e)A(1 — )]
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Proof. (1) = (2) By virtue of Theorem 2.5, there exist an idempotent e, a unit # and a quasinilpotent w
which commute each other such that a = eu + w. Then eae = eu(1 + u~'w) € [eAe]™!. Moreover, we have
(1-e)a(l—e)=(1-ewe[(1-e)A® —e)]", as desired.

(2) = (1) Suppose there exists an idempotent e € comm(a) such that eae € [eAe]™!, (1 — e)a(l —¢) €
[(1-e) A1 —-e)]7. Thena = ea+(1-e)a = e[eae+1—e] + (1 —e)a. In view of [19, Lemma 2.11], (1 —e)a € AT,
Obviously, eae + 1 — e € A~!. According to Theorem 2.5, 4 has g-Drazin inverse, as asserted. []

Let a € A = End(M). The submodule P of M is a-invariant provided that a(P) C P (see [16]). We now
derive

Corollary 2.8. Let o € A = End(M). Then the following are equivalent:
(1) ae A

(2) M = P& Q, where P and Q are a-invariant, alp € [End(P)]™, alg € End(Q)™!. The corresponding
PQPQ-decomposition looks like

M - P b Q
a lp=unit | L alo= quasinilpotent
M = P D Q

Proof. (1) = (2) In view of Theorem 2.7, there exist an idempotent e € comm() such that eae € [eAe] ™}, (1 —
e)a(l —e) € [(1 —e)A(1 —e)]"". Set P = Me and Q = M(1 —e). Then M = P& Q. As e € comm(a), we see that
P and Q are a-invariant.

Write (eae)™! = eBe. Then one easily checks that [a|p] ™ = Blp. Let y € End(Q) N comm(alg). We will
suffice to prove 1g — alpy € [End(P)]™".

lo—-algy: Q —» Q
p o q-(pay.

Definey : M — M givenby (p+q)y = (g)y foranyp e BLge Q. Set f =1—e. If (q)(lQ - alQ)/) =0,
nil

then (qf)(f - (foz)ﬁf) =0. Asaf e (fﬂf)q , we get qf = 0. This implies that 15 — alp € End(Q) is an

R-monomorphism. For any g € Q. Choose z = (qf)(f - (foc)j‘?f)_1 € Q. Then (z)(lQ - ale) = g; hence,

1o — algy € End(Q) is an A-epimorphism. Thus 1o — algy € [End(Q)]™}, and so alg € End(Q)™.

(2) > (1) Lete: M = P®Q — P be the projection on P. In view of [16, Lemma 2], ¢* = e € comm(q).
Moreover, P = Me and Q = M(1 —e). Since alp € [End(P)]™", we see that eae € (eAe)™". It follows from
(1 —e)a(l —e) € [(1 — )AL — e)]™! that (1 — e)a(1l —e) € [(1 — e)A(1 — ¢)]7!. This completes the proof by
Theorem 2.7. O

3. Anti-triangular matrices

In this section we apply Theorem 2.2 to block matrices over a Banach algebra and present necessary
and sufficient conditions for the existence of the g-Drazin inverse for a class of 2 X 2 anti-triangular block
matrices. We now derive

Lemma 3.1. Let M = ( Lll (1) ) € My(A). Then
L[ um  um-1 N m—i e
(1) Foranyn e N, M" = U(m—1)a U@ -2 | where U(m) = Ef) ; ,m>0;U(-1)=0

(2) Un)—Um—-1)=Um —2)a foranyn € N.
Proof. See [3, Proposition 3.1]. O
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Lemma 3.2. Let a € A. Then the following are equivalent:

(1) a e A
@, o )emen

Proof. (1) = (2) As 1 and a are g-Drazin invertible then we obtain the result by [8, Lemma 2.2] and [5,
Corollary 2.4].

2)=(@1) WriteMd:( e ) Then MM? = M?M, and so
X21 X2
11 X1 X2 | _ [ X1 X2 11
a 0 Xo1 Xp |\ X;1 X a 0 )

X11 +Xo1 X2 +X22 | _ [ X11+ X124 X11
axii axiz X21 + X224  X21

Then

Hence, we have
X11 + X21 = X711 + X124,

axi2 = X21.
Therefore axip = Xp1 = X124.
Write (M2M4 — M)" = W,, = ( ;é" g" )(n € IN). Since M"'M* — M" = W,,, we see that
n n
lim || W, |[=0,
n—00
and then
. Bn \yi_ 10 0 0 1_
iﬁi‘o”( o o )I"=lmii{o o )Welo 1 [I"=0
This implies that
lim || B, [I"=0
Likewise,
lim || 5, 7= 0
Clearly, we have
Um+1) U(n) X1 X2
n+lagd
MEME = ( Umnya Umn-1)a X1 X2

M+ W,

— U(}’l) U(I/l - 1) + ap ﬁn

B Un-1a U —2)a Yn On |
Comparing two-sides of the preceding equality, we have

U(n + 1)x12 + U(n)xyn = U(n — 1) + vy, 00 = Py @)
U(n)axip + U(n — Vaxy; = U(n — 2)a + v1, 01 := 0y (i)

Multiplying a from the left side of (i), we get

U(n + Laxip + U(n)axy = U(n — 1)a + ap, (1ii)



H. Chen, M. Sheibani Abdolyousefi / Filomat 37:6 (2023), 1803-1813

1808

Inview of Lemma 3.1, U(n+1)—U(n) = U(n—1)a, Un)—Un-1) = Un—-2)a, Un-1)-Un-2) = U(n-23)a.

By (iii) subtracted (i), we derive

U(n — 1a*xip + U(n — 2)a*xy = U(n — 3)a® + vy, vy 1= avg — v; (iv)
Moreover, by (iv) subtracted (ii), we have

U(n —2)alx1 + U = 3)alxyn = U — 4)a® + vs,03 1= av; — v (v)
By iteration of this process, we have

Un— (n—2)a"xpp + Um — (n —1))a" xo
=Umn-n)a"'+0,q;

Up-1 := A0y—3 — Up-2,

Umn—n—1))a"x;x + Un —n)a"xypy = Un — (n+1))a" + v,
Uy 1= AUy_p — Up1.

That is,
(1+a)a"xpp + 0" g = " + 01, Upey = AUz — Vya;
a"x1y + A" Xy = Uy, Uy = AVy_2 — VUp_q.-
Therefore
an — ananfl

= a[(1+a)a" xpp +a" xp —v,.4]

= (1 +a)a"xy+a"xy —av,—,

= (1 +a)a"xp + (v, —a"x12) — avy—

= a"lx;p + 0, —av,_1.
Hence,

a" —a"lxy, = v, — av,_q.

By the preceding construction, we have a recurrence relations
00 = Pu, U1 = On, Un = —Up-1 + A0

Obviously,
oz Il on Il + Nallll oo < A+ L@ ID*(l vo |l + [l o1 ).

By induction, we show that

ol

| p—1 I + [l @ [lll o2 ||

@+ la ) oo Il + Hor D+ Ha llll A+ a1l oo [l + 1o 1)
[+ Fa )+ la QA+ a1y =210 oo | + [T or 1)

A+ lla iy 2@+ 21 alihdli oo Il + 1l o1 1)

@+ Fa )"l oo Il + 1l o1 ID)-

A IA

IA I

Likewise, we have
-1
| on-1 IS A+ la D"l vo I + I o1 ).

Therefore we have

o Il + [l a [l 2 I
[A+Nla i)+ lall @+ lla "1 oo Il + [T or 1)
@+ a iy (oo Il + [l o1 II).

| vp — avy,—1 ||

IAIA A
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Then we get
o —ava I < @+ llal) (oo ll + 1o “),,
< @+ Hal)S A Ba Il + 1 6 Il
< @+ Ha )™l Bu 7 + 1 64 110).
Thus,

. 1
lim || a" —a" g ||7=0
n—oo

Since || (a — a?x12)" ||I<]| @ — @™ x1p ||| 1 — ax1z "1, we deduce that

lim | (a—a’xp)" [|7=0

Therefore a — a?x, € A In light of Theorem 2.2, a € A4 as asserted. [

We are ready to extend [18, Theorem 2.6] for the g-Drazin inverse.

(SRS

Theorem 3.3. Let M = (

(1) M € My(A).
(2) bc e A

Proof. (1) = (2) One easily checks that

By using Cline’s formula, ( [; lz)c ) has g-Drazin inverse. Moreover, we have

3500 )0 w)
[ea)-(o )5 8)

By using Cline’s formula again, ( bac g ) has g-Drazin inverse. Since

be
0
a
0

1 - u 0 L e a
be bc 0}’
it follows by [8, Theorem 2.2] that ( be g ) as g-Drazin inverse. Let S = ( blc

=i 0) 5= (e o )

1

In view of Cline’s formula, ( be (1) ) has g-Drazin inverse. In light of Lemma 3.2, bc € A? as asserted.

g ) € Mp(A). If a* = a € Aand ab = b, then the following are equivalent:

1809

0 ) Then
a
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(2) = (1) Since bc = abc € A, it follows by Cline’s formula that bca has g-Drazin inverse. In light of

Lemma 3.2, 1o has g-Drazin inverse. As
bca 0

1 1\[(a 0) (a0} 1 1
bca 0 0 al] \0 a bca 0 )
a a
bca 0

a a\ _ 0 0 a a

be 0 )~ bc(l—a)0+bca0’
a
bc

[ o)=(o w1 5)
(55 )=(16)(0 a)

) has g-Drazin inverse. Furthermore, we have
a b\ _ (1 0\fa b
c 0)J7\0 ¢ 1 0/
a be\ _[a b\[1 0
1 0/ {1 0 0 ¢/

By using Cline’s formula again, we conclude that M has g-Drazin inverse. [J

it follows by [11, Theorem 5.5] that ( ) has g-Drazin inverse. Since

(@IS

it follows by [8, Theorem 2.2] that ( ) has g-Drazin inverse. We easily check that

In view of Cline’s formula, ( {i lz)c

a a

Corollary 3.4. Let M = ( b0

) € Ma(A). If a*> = a € A, then the following are equivalent:

(1) M € My(A)".
(2) ab € A“.

Proof. This is obvious by Theorem 3.3. O

Lemma 3.5. Let M = ( Z b ) € My(A). Ifa € A%, caa’ = c and a“bc = bea®, then the following are equivalent:

0

(1) M € My(A).
(2) bc e A

Proof. (2) = (1) Since a?bc = bea?, it follows by [11, Theorem 5.5] that (a)?bc € A?. In view of Lemma 3.2,

( (ad;bc (1) )GMz(ﬂ)d-

We easily check that
a 0 1 1) 1 1 a 0
0 a )\ @?bc 0]\ @?c 0J\0 a )
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we see that
a 0 1 1
( 0 a )( @)?bc 0 )EMZ(ﬂ)d'

(50 e o)emn

M:( Cld (1) )(g 2)eM2(ﬂ)d.

(1) = (2) Since M has g-Drazin inverse, we prove that

(2 8)(3 ¢)oment

(38 4)emen

( " (1) )eMz(ﬂ)d.

This shows that

By using Cline’s formula,

By Cline’s formula,
That is,

Since a“(bc) = (bc)a?, by virtue of [19, Theorem 3.1], we have
a‘a  a? a 0 a 1
(a”’bc 0 ):( 0 at )(bc O)EMZ(ﬂ)d'
By using Cline’s formula,
ala  aa®\ (1 0
@bc 0 |\ 0 a
L T R T aa’  aa®
@2 0)" L0 o0 @)bc 0 |

( (adizbc (1) )EMZ(ﬂ)d-

One easily checks that
Hence,

In light of Lemma 3.2, (a%)?bc € A”. Since a(a?)*bc = (a?)?bca, we see that a*(a?)?be = (a)?bca®. In view of [19,
Theorem 3.1],
be = be(a®)2a? = (%) bea® € AY,

as asserted. [

The following result is a generalization of [3, Theorem 4.1] for the g-Drazin inverse.
Theorem 3.6. Let M = ( {Z (b) ) € My(A). Ifa € A%, bea™ = 0 and a’bc = bea®, then the following are equivalent:

1) M € My(AY.
() bc € A
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Proof. (2) = (1) Let ¢’ = caa®. Since bca™ = 0, we have bc = bcaa. We see that

a b 0 O
M_P+Q/P_(C/ 0)/Q_(Cﬂn O)
Clearly, PQ = 0 and Q? = 0. Since ¢’a™ = 0,a%bc’ = bc’a® and bc’ = be € A, it follows by Lemma 3.5 that P
has g-Drazin inverse. In light of [8, Theorem 2.2], M has g-Drazin inverse, as required.
(1) = (2) One easily checks that

a b 0 O
(& 5)enenn=[ & 9).

b
0
ca™ = 0,a’bc’ = bc’a® and bc’ = bc € A’ According to Lemma 3.5, bc = bc’ has g-Drazin inverse, as
asserted. [

Clearly, MN = 0 and N? = 0. In view of [8, Theorem 2.2], ( Z, ) has g-Drazin inverse. Moreover,

Corollary 3.7. Let M = ( Z 8 ) € My(A). Ifa € A4, a"bc = 0 and abc = bea, then the following are equivalent:
(1) M € My(A).
(2) bc e A

Proof. Since a(bc) = (bc)a and a has g-Drazin inverse, by [11, Theorem 4.4], a%(bc) = (bc)a?, and so 0 = a™bc =
(1 = aa®ybc = be(1 — aa) = bea™. The corollary is therefore established by Theorem 3.6. [
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