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Abstract. In this paper, we introduce the concepts of partial-quasi k-metric spaces and strongly partial-
quasi k-metric spaces, and their relationship to k-metric spaces and partial-quasi metric spaces are studied.
Furthermore, we obtain some results on fixed point theorems in strongly partial-quasi k-metric spaces.

1. Introduction and preliminaries

Since Wilson introduced the notion of quasi-metric spaces in 1931 [1], several generalizations of metric
spaces were studied by topological researchers [2–22]. For instance, Bakbtin introduced the notion of b-
metric spaces in 1989 [2] (see also Czerwik in 1993 [3]). From a different point of view, Matthews gave the
concept of the partial metric spaces in 1994 [4]. As a generalization of Matthews, Heckmann defined the
concept of weak partial metric spaces in 1999 [5]. Later, Künzi et al and Karapinar studied another two
variants of partial metric spaces, namely partial-quasi metric spaces in 2006 [6] and quasi-partial metric
spaces in 2013 [7], respectively. In the past years, Shukla introduced the notion of partial b-metric spaces
in 2013 [8], which combines the b-metric space with partial metric space. Further, Gupta introduced the
notion of quasi-partial b-metric spaces and studied some fixed point theorems on these spaces in 2015 [9].

In addition, the term “b-metric” has no justification for the letter “b” and says nothing about the constant
“k” laid in the basis of the definition of such “metrics”. In this paper, we continue to generalize the concept
of k-metric and partial-quasi metrics by introducing the partial-quasi k-metric. Also we give some fixed
point theorems in these spaces.

First, we recall some basic notions and results that will be used in the following sections (see more
details in [4–13]).

Throughout this paper, the letters R, R+,N+ always denote the set of real numbers, of all positive real
numbers and of positive integers, respectively.

Definition 1.1. [1] A quasi-metric d is a function d : X × X → [0,+∞) satisfying the following conditions:
∀x, y, z ∈ X,

(M1) x = y⇔ d(x, y) = 0;

(M2) d(x, z) ≤ d(x, y) + d(y, z).

2020 Mathematics Subject Classification. Primary 47H09; Secondary 54A05, 54H25.
Keywords. k-metric; Partial-quasi metric; Partial-quasi k-metric; Strongly partial-quasi k-metric; Fixed point theorem.
Received: 20 January 2022; Accepted: 17 April 2022
Communicated by Erdal Karapinar
Research supported by the Program through the Guiding Science and Technology of Suqian (Z2021131)
Email address: 23036@squ.edu.cn (Yaoqiang Wu)



Y. Q. Wu / Filomat 37:6 (2023), 1825–1834 1826

A quasi-metric d is called a metric if it also satisfies

(M3) d(x, y) = d(y, x).
A (quasi-)metric space is a pair (X, d) such that d is a (quasi-)metric on X.

Definition 1.2. A partial-quasi k-metric is function pk : X × X → [0,+∞) satisfying the following conditions:
∀x, y, z ∈ X,

(PK1) x = y⇔ pk(x, x) = pk(x, y) and pk(y, y) = pk(y, x);

(PK2) pk(x, x) ≤ pk(x, y) ∧ pk(y, x);

(PK3) pk(x, z) ≤ k[pk(x, y) + pk(y, z)] − pk(y, y).

A partial-quasi k-metric is called a partial k-metric if it also satisfies

(PK4) pk(x, y) = pk(y, x).
Particularly, a partial(-quasi) 1-metric (i.e. k=1) is called partial(-quasi) metric[6].

Remark 1.3. (1) A partial(-quasi) metric p on X is a (quasi-)metric if and only if p(x, x) = 0 for all x ∈ X [4].
(2) A partial(-quasi) k-metric pk on X is called a (quasi-)k-metric if pk(x, x) = 0 for all x ∈ X [2].

Next, we give an example of quasi-partial k-metrics, which is not a partial quasi-metric.

Example 1.4. Let X = [0,+∞) and define pk:X × X→ [0,+∞) by

pk(x, y) = |x − y|3 + 1

for all x, y ∈ X. It is not difficult to prove that (X, pk) is a partial-quasi k-metric space with k = 4. But it is not a
partial-quasi metric space. To show this, let x = 1, y = 2 and z = 4. Then pk(x, z) = 28, it holds that pk(x, y) = 2,
pk(y, z) = 9 and pk(y, y) = 1, which implies that

pk(x, z) > pk(x, y) + pk(y, z) − pk(y, y).

Hence, pk does not satisfy the condition (PK3) with k = 1.

The following example shows that a partial-quasi k-metric may not be a partial k-metric.

Example 1.5. Let X = [0,+∞) and define pk:X × X→ [0,+∞). Set pk(x, y) = |x − y| + x. Since pk does not satisfy
the condition (PK4), it is not a partial k-metric (hence not a k-metric).

Next, we verify the conditions (PK1)-(PK3) one by one.
(PK1): Suppose pk(x, x) = pk(x, y) and pk(y, y) = pk(y, x). Then x = |x− y|+ x and y = |y− x|+ y, which implies

|x − y| = 0, so x = y.
(PK2): For any x, y ∈ X, since pk(x, x) = x and pk(x, y) = |x− y|+ x, it holds that pk(x, x) ≤ pk(x, y). In addition,

since x = |x − y + y| ≤ |x − y| + y, it holds that pk(x, x) ≤ pk(y, x).
(PK3): For each x, y, z ∈ X, we have

pk(x, z) = |x − y + y − z| + x
≤ (|x − y| + x) + (|y − z| + y) − y
= pk(x, y) + pk(y, z) − pk(y, y).

Hence, (X, pk) is a partial-quasi k-metric space with k = 1.
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2. The relations among partial-quasi k-metrics, partial quasi-metrics and k-metrics

Proposition 2.1. Let X be a nonempty set, p a partial-quasi metric and dk a quasi-k-metric with coefficient k ≥ 1 on
X. Then the function pk : X × X→ [0,+∞) defined by

∀x, y ∈ X, pk(x, y) = p(x, y) + dk(x, y).

Then pk is a partial-quasi k-metric on X.

Proof. It is trivial to prove that pk satisfied (PK1) and (PK2). Next, we verify condition (PK3).
Let x, y, z ∈ X. Since p is a partial-quasi metric, it follows that p(x, z) ≤ p(x, y)+p(y, z)−p(y, y). Moreover,

since dk is a k-metric, we have that dk(x, z) ≤ k[dk(x, y) + dk(y, z)]. Thus

pk(x, z)
= p(x, z) + dk(x, z)
≤ [p(x, y) + p(y, z) − p(y, y)] + k[dk(x, y) + dk(y, z)]
≤ k[p(x, y) + p(y, z) + dk(x, y) + dk(y, z)] − p(y, y)
= k[(p(x, y) + dk(x, y)) + (p(y, z) + dk(y, z))] − [(p(y, y) + dk(y, y)]
= k[pk(x, y) + pk(y, z)] − pk(y, y),

completing the proof.

From the above Proposition, one can obtain partial-quasi k-metric by adding a partial-quasi metric and
aquasi-k-metric. An example is shown as follows.

Example 2.2. Let X = R and define a function dk and p on X as follows: ∀x, y ∈ X,

dk(x, y) = |x − y|3 and p(x, y) = |x − y| + 1,

respectively. Then it is trivial to check that dk is a k-quasi-metric and p is a partial metric. Therefore, by Proposition
2.1, pk : X × X→ [0,+∞) defined by

pk(x, y) = |x − y|3 + |x − y| + 1

is a partial-quasi k-metric.

Since Künzi, Pajoohesh and Schellekens investigated the concept of a partial quasi-metric and some of
its applications by dropping the symmetry condition in the definition of a partial metric given by Matthews,
roughly speaking a partial quasi metric is a partial metric with does not satisfy the symmetry property. On
the other hand, Mustafa, Roshan, Parvaneh and Kadelburg modified the condition (Pb4) in the definition
of a partial-b metric given by Shukla, and introduced another variant concept of a partial-b metric. In the
following definition, we modify Definition 1.2 in order to obtain that each strongly partial-quasi k-metric
ps

k generates a k-metric.

Definition 2.3. A strongly partial-quasi k-metric is a function ps
k : X × X → [0,+∞) satisfying the following

conditions: for some number k ≥ 1, ∀x, y, z ∈ X,

(SPK1) ps
k(x, x) = ps

k(x, y) = ps
k(y, y)⇔ x = y;

(SPK2) ps
k(x, x) ≤ ps

k(x, y) ∧ ps
k(y, x);

(SPK3) ps
k(x, z) ≤ k[ps

k(x, y) + ps
k(y, z)] −

k − 1
2

[ps
k(x, x) + ps

k(z, z)] − kps
k(y, y).

A strongly partial-quasi k-metric space is a pair (X, ps
k) such that ps

k is a strongly partial-quasi k-metric on X, the
number k is called the coefficient of (X, ps

k).
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Remark 2.4. (1) By Definition 2.3, every strongly partial-quasi k-metric space with coefficient k = 1 is a partial-quasi
metric space;

(2) Every strongly partial-quasi k-metric space is a partial-quasi k-metric space. Indeed, we have

ps
k(x, z) ≤ k[ps

k(x, y) + ps
k(y, z)] −

k − 1
2

[ps
k(x, x) + ps

k(z, z)] − kps
k(y, y)

≤ k[ps
k(x, y) + ps

k(y, z)] − ps
k(y, y).

But we can show the reverse may not be true in the following:
Let X = X1 ∪ X2, where X1 = (−∞, 0) and X2 = (0,+∞). We define pk: X × X→ [0,+∞) as follows:

pk(x, y) =


1, x = y;
2q, x, y ∈ X1;
3
2 , otherwise.

for all x, y ∈ X, where q > 1.
It is trivial to verify that (X, pk) is a partial-quasi k-metric space with coefficient k = q.
Indeed, let x = −1, z = −2 and y = 1. We have pk(−1,−2) = 2q, pk(−1, 1) = pk(1,−2) = 3

2 , and
pk(−1,−1) = pk(1, 1) = pk(−2,−2) = 1. It follows that pk(−1,−2) > q[pk(−1, 1) + pk(1,−2)] − q−1

2 [pk(−1,−1) +
pk(−2,−2)] − qpk(1, 1) for all q > 1. Hence, it is not a strongly partial-quasi k-metric.

Example 2.5. Let X = [0,+∞), and define a function ps
k:X × X→ [0,+∞) by

ps
k(x, y) = |x − y|3 + 3

for all x, y ∈ X. Then (X, ps
k) is a strongly partial-quasi k-metric with coefficient k = 4.

In fact, it is trivial that ps
k satisfies (SPK1) and (SPK2). Condition (SPK3) can be obtained by

ps
k(x, z) ≤ 23−1[|x − y|3 + |y − z|3] + 3

= 4[(|x − y| + 3) + (|y − z| + 3)] − 21
= 4[ps

k(x, y) + ps
k(y, z)] − 21

= 4[ps
k(x, y) + ps

k(y, z)] −
4 − 1

2
[ps

k(x, x) + ps
k(z, z)] − 4ps

k(y, y),

completing the proof.

Proposition 2.6. Let (X, ps
k) be a strongly partial-quasi k-metric. The following statements hold.

(1) If ps
k(x, y) = 0, then x = y.

(2) The set of all ps
k-balls Bps

k
(x, r) in (X, ps

k) forms a base for a topology, denoted by T (ps
k), where Bps

k
(x, r) =

{y ∈ X : ps
k(x, y) < ps

k(x, x) + r} for any x ∈ X and r > 0.
(3) For any x, y ∈ X, define

p̂s
k(x, y) = ps

k(x, y) + ps
k(y, x) − ps

k(x, x) − ps
k(y, y).

Then p̂s
k is a k-metric.

Proof. (1) Suppose ps
k(x, y) = 0. Since ps

k(x, x) ≤ ps
k(x, y) = 0 and ps

k(y, y) ≤ ps
k(x, y) = 0 by (SPK2), we have that

ps
k(x, x) = ps

k(y, y) = 0. From (SPK1), it follows that x = y.
(2) It is trivial by Theorem 3.3 in [4].
(3) We show that p̂s

k satisfies the rules (M1), (M3) and (PK3) one by one.
First, suppose p̂s

k(x, y) = 0. Then ps
k(x, y) + ps

k(y, x) = ps
k(x, x) + ps

k(y, y). Furthermore, ps
k(x, x) ≤ ps

k(y, x) by
(SPK2). Then we have that

ps
k(x, y) + ps

k(x, x) ≤ ps
k(x, y) + ps

k(y, x) = ps
k(x, x) + ps

k(y, y),
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which implies that ps
k(x, y) ≤ ps

k(y, y). Thus we have ps
k(x, y) = ps

k(y, y). Similarly, ps
k(x, y) = ps

k(x, x). Hence,
ps

k(x, y) = ps(y, y) = ps
k(x, x), which implies x = y by (SPK1).

(M3) is trivial.
(PK3): For any x, y, z ∈ X, we have

p̂s
k(x, z)

= ps
k(x, z) + ps

k(z, x) − ps
k(x, x) − ps

k(z, z)

≤ k[ps
k(x, y) + ps

k(y, z)] −
k − 1

2
[ps

k(x, x) + ps
k(z, z)] − kps

k(y, y) + k[ps
k(z, y) + ps

k(y, x)]

−
k − 1

2
[ps

k(z, z) + ps
k(x, x)] − kps

k(y, y) − ps
k(x, x) − ps

k(z, z)

= k[ps
k(x, y) + ps

k(y, x) − ps
k(x, x) − ps

k(y, y)] + k[ps
k(y, z) + ps

k(z, y) − ps
k(y, y) − ps

k(z, z)]
= k[p̂s

k(x, y) + p̂s
k(y, z)].

Therefore, p̂s
k is a k-metric.

3. Fixed point theorem on strongly partial-quasi k-metric spaces

In this section we give some fixed point results on strongly partial-quasi k-metric spaces. We begin by
giving some basic notions that will be used in the following.

Definition 3.1. Let (X, ps
k) be a strongly partial-quasi k-metric space and {xn} a sequence in X.

(1) A sequence {xn} converges to a point x ∈ X if and only if ps
k(x, x) = limn→+∞ ps

k(x, xn);

(2) A sequence {xn} is called a Cauchy sequence if limn,m→+∞ ps
k(xn, xm) exists and is finite;

(3) (X, ps
k) is said to be complete if every Cauchy sequence {xn} in X converges to a point x ∈ X such that

limn,m→+∞ ps
k(xn, xm) = limn→+∞ ps

k(xn, x) = ps
k(x, x).

The limit of convergent sequence {xn} in a strongly partial-quasi k-metric space may not be unique, as
shown in the following example.

Example 3.2. Let X = [0,+∞) and define a function ps
k : X × X→ [0,+∞) by

ps
k(x, y) = x2

∨ y2 + 3

for all x, y ∈ X. It is not difficult to prove that (X, ps
k) is a strongly partial-quasi k-metric with coefficient k = 3. Given

a sequence {xn}, where xn = 1 for all n ∈ N+. For all x ≥ 1, we have that ps
k(xn, x) = x2 + 3 and ps

k(x, x) = x2 + 3,
which implies that limn→+∞ ps

k(xn, x) = ps
k(x, x).

Lemma 3.3. Let (X, ps
k) be a strongly partial-quasi k-metric space, {xn} a sequence in X and (X, p̂s

k) the corresponding
k-metric space defined in Proposition 2.6, i.e., where p̂s

k(x, y) = ps
k(x, y) + ps

k(y, x) − ps
k(x, x) − ps

k(y, y). Then the
following statements hold.

(1) A sequence is a Cauchy sequence in (X, ps
k) if and only if it is a Cauchy sequence in (X, p̂s

k).

(2) (X, ps
k) is complete if and only if (X, p̂s

k) is complete.
Furthermore, limn→+∞ p̂s

k(xn, x) = 0 if and only if ps
k(x, x) = limn→+∞ ps

k(xn, x) = limn,m→+∞ ps
k(xn, xm).
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Proof. (1) (⇒) Let {xn}be a Cauchy sequence in (X, ps
k). There exists a ∈ [0,+∞) such that limn,m→+∞ ps

k(xn, xm) =
a. Then for any ε > 0, there exists n0 ∈N+ such that

|ps
k(xn, xm) − a| < ε/4, ∀n,m > n0.

Then we have that

|p̂s
k(xn, xm)|

= |ps
k(xn, xm) + ps

k(xm, xn) − ps
k(xn, xn) − ps

k(xm, xm)|
= |(ps

k(xn, xm) − a) + (ps
k(xm, xn) − a) − (ps

k(xn, xn) − a) − (ps
k(xm, xm) − a)|

≤ |ps
k(xn, xm) − a| + |ps

k(xm, xn) − a| + |ps
k(xn, xn) − a| + |ps

k(xm, xm) − a|

<
ε
4
+
ε
4
+
ε
4
+
ε
4
= ε.

This implies that {xn} is a Cauchy sequence in (X, p̂s
k).

(⇐) Suppose {xn} is a Cauchy sequence in (X, p̂s
k) and let ε > 0. Then there exists nε ∈N+ such that

p̂s
k(xn, xm) <

ε
2
, ∀n,m ≥ nε.

Set ε = 1. Then there exists n0 ∈N+ such that

p̂s
k(xn, xm) <

1
2
, ∀n,m ≥ n0.

Step 1: Since p̂s
k(x, y) = ps

k(x, y) + ps
k(y, x) − ps

k(x, x) − ps
k(y, y), we have that

ps
k(x, y) − ps

k(y, y)
= p̂s

k(x, y) − [ps
k(y, x) − ps

k(x, x)]
≤ p̂s

k(x, y),

which shows that ps
k(x, y) ≤ p̂s

k(x, y) + ps
k(y, y) for all x, y ∈ X. Now we can deduce that ps

k(xn, xn0 ) ≤
p̂s

k(xn, xn0 ) + ps
k(xn0 , xn0 ). From (SPK2), it follows that

ps
k(xn, xn) ≤ ps

k(xn, xn0 )
≤ p̂s

k(xn, xn0 ) + ps
k(xn0 , xn0 )

< 1
2 + ps

k(xn0 , xn0 )

for all n ≥ n0, which implies that the sequence {ps
k(xn, xn)} is bounded in R. Hence the sequence {ps

k(xn, xn)}
exists a subsequence {ps

k(xnk , xnk )} that is convergent and we denote limnk→+∞ ps
k(xnk , xnk ) = a.

Step 2: By step 1, we have

ps
k(xn, xn) − ps

k(xm, xm) ≤ ps
k(xn, xm) − ps

k(xm, xm) ≤ p̂s
k(xn, xm)

and limn→+∞ ps
k(xn, xn) = limm→+∞ ps

k(xm, xm) = a for all n,m ≥ n0. Then there exists n1 ≥ n0 such that

|ps
k(xm, xm) − a| <

ε
2
, ∀n,m ≥ n1.

Then for any m,n ≥ n1, we have that

|ps
k(xn, xm) − a| = |(ps

k(xn, xm) − ps
k(xm, xm)) + (ps

k(xm, xm) − a)|
≤ [ps

k(xn, xm) − ps
k(xm, xm)] + |ps

k(xm, xm) − a|
≤ p̂s

k(xn, xm) + |ps
k(xm, xm) − a|

<
ε
2
+
ε
2
= ε.
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From step 1 and step 2, we obtain that limn,m→+∞ps
k(xn, xm) = a, which implies that {xn} is a Cauchy

sequence in (X, ps
k).

(2)(⇐) Let {xn} be a Cauchy sequence in (X, ps
k), it is clear that {xn} is a Cauchy sequence in (X, p̂s

k) by
Lemma 3.3(1). Since (X, p̂s

k) is complete, there exists x ∈ X such that limn→+∞ p̂s
k(x, xn) = 0. This shows that

{xn} is a convergent sequence in (X, p̂s
k), and we have

limn→+∞[ps
k(x, xn) + ps

k(xn, x) − ps
k(x, x) − ps

k(xn, xn)] = 0.

As

ps
k(xn, x) − ps

k(x, x) ≤ p̂s
k(xn, x) = p̂s

k(x, xn)

and

ps
k(x, xn) − ps

k(xn, xn) ≤ p̂s
k(x, xn),

we have

limn→+∞[ps
k(xn, x) − ps

k(x, x)] = 0

and

limn→+∞[ps
k(x, xn) − ps

k(xn, xn)] = 0.

Thus ps
k(x, x) = limn→+∞ ps

k(xn, x) = limn→+∞ ps
k(x, xn) = limn→+∞ ps

k(xn, xn).
In addition, by (SPK3) we have

ps
k(xn, xm) ≤ k[ps

k(xn, x) + ps
k(x, xm)] −

k − 1
2

[ps
k(xn, xn) + ps

k(xm, xm)] − kps
k(x, x).

Then

limn,m→+∞ ps
k(xn, xm) ≤ ps

k(x, x).

Moreover ps
k(xn, xn) ≤ ps

k(xn, xm), thus we have

ps
k(x, x) ≤ limn,m→+∞ ps

k(xn, xm).

Hence limn,m→+∞ ps
k(xn, xm) = ps

k(x, x). This implies (X, ps
k) is complete.

(⇒) Let {xn} be a Cauchy sequence in (X, p̂s
k). Then {xn} is a Cauchy sequence in (X, ps

k) by Lemma 3.3(1).
Since (X, ps

k) is complete, there exists x ∈ X such that

limn,m→+∞ ps
k(xn, xm) = limn→+∞ ps

k(xn, x) = ps
k(x, x).

In addition, by (SPK2) we have ps
k(xn, xn)−ps

k(x, x) ≤ ps
k(xn, xm)−ps

k(x, x).which implies limn→+∞ ps
k(xn, xn) =

ps
k(x, x). Moreover, by (SPK3) we have

ps
k(xn, x) ≤ k[ps

k(xn, xm) + ps
k(xm, x)] −

k − 1
2

[ps
k(xn, xn + ps

k(x, x))] − kps
k(xm, xm),

which implies limn→+∞ ps
k(xn, x) = ps

k(x, x). Since

p̂s
k(xn, x) = ps

k(xn, x) + ps
k(x, xn) − ps

k(xn, xn) − ps
k(x, x),

we can deduce limn→+∞ p̂s
k(xn, x) = 0. Hence (X, p̂s

k) is complete.
Finally, it is simple matter to check that limn→+∞ p̂s

k(xn, x) = 0 if and only if ps
k(x, x) = limn→+∞ ps

k(xn, x) =
limn,m→+∞ ps

k(xn, xm).

Theorem 3.4. Let (X, ps
k) be complete strongly partial-quasi k-metric space with coefficient k ≥ 1, and T : X → X a

function satisfying ps
k(Tx,Ty) ≤ λps

k(x, y) for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point x∗ ∈ X,
and ps

k(x∗, x∗) = 0.



Y. Q. Wu / Filomat 37:6 (2023), 1825–1834 1832

Proof. By assumption, we have ps
k(Tx,Ty) ≤ λps

k(x, y) for all x, y ∈ X, where λ ∈ [0, 1). Given 0 < ε < 1. We
can choose n0 ∈N+ such that λn0 < (1+k)ε

4k , where k ≥ 1. We define the sequence in the following way: x0 = x,
and xn+1 = Fxn = Fn+1x0 for all n ∈ N+, x0 ∈ X, where F = Tn0 . Then ps

k(Fx,Fy) = ps
k(Tn0 x,Tn0 y) ≤ λn0 ps

k(x, y),
which implies that ps

k(xn, xn+1) = ps
k(Fxn−1,Fxn) ≤ λn0 ps

k(xn−1, xn). By repetition of this process, we have
ps

k(xn, xn+1) ≤ (λn0 )nps
k(x0, x1), which implies limn→+∞ ps

k(xn, xn+1) = 0. Then for any 0 < ε < 2
1+k , there exists

n1 ∈ N+ such that ps
k(xn, xn+1) < (1+k)ε

4k , where n > n1 ≥ n0. To prove the existence and uniqueness of the
fixed point, we consider the following steps:

Step 1: We denote Bps
k
(x, δ) = {y ∈ X : ps

k(x, y) ≤ ps
k(x, x) + δ}. It is obvious that xr ∈ Bps

k
(xr,

(1+k)ε
2 ) for all

k ≥ 1 and 0 < ε < 2
1+k , where r ∈N+. Then Bps

k
(xr,

(1+k)ε
2 ) , ∅. For each z ∈ Bps

k
(xr,

(1+k)ε
2 ), we have

ps
k(Fxr,Fz) ≤ λn0 ps

k(xr, z) ≤ λn0 [
(1 + k)ε

2
+ ps

k(xr, xr)].

In addition, ps
k(xr,Fxr) = ps

k(xr, xr+1) and

ps
k(xr,Fz)

≤ k[ps
k(xr,Fxr) + ps

k(Fxr,Fz)] −
k − 1

2
[ps

k(xr, xr) + ps
k(Fz,Fz)] − kps

k(Fxr,Fxr)

by (SPK3). Then we have

ps
k(xr,Fz)

≤ k[ps
k(xr,Fxr) + ps

k(Fxr,Fz)] −
k − 1

2
ps

k(xr, xr)

= k[ps
k(xr, xr+1) + ps

k(Fxr,Fz)] −
k − 1

2
ps

k(xr, xr)

≤ k[
(1 + k)ε

4k
+

(1 + k)ε
4k

(
(1 + k)ε

2
+ ps

k(xr, xr))] −
k − 1

2
ps

k(xr, xr)

=
(1 + k)ε

4
(1 +

(1 + k)ε
2

) + (1 −
(1 + k)(2 − ε)

4
)ps

k(xr, xr)

<
(1 + k)ε

2
+ ps

k(xr, xr).

Thus Fz ∈ Bps
k
(xr,

(1+k)ε
2 ).

Step 2: From step 1, we have Fxr ∈ Bps
k
(xr,

(1+k)ε
2 ) for all n ∈N+. Then Fmxr ∈ Bps

k
(xr,

(1+k)ε
2 ) for all m ∈N+.

Namely, xn ∈ Bps
k
(xr,

(1+k)ε
2 ) for all n ≥ r. Thus, for any n,m ≥ r, we obtain that

ps
k(xn, xm)

<
(1 + k)ε

2
+ ps

k(xr, xr)

≤
(1 + k)ε

2
+ ps

k(xr, xr+1)

≤
(1 + k)(2k + 1)ε

4k
.

This implies that {xn} is a Cauchy sequence and limn,m→+∞ ps
k(xn, xm) = 0. Since (X, ps

k) is complete, then there
exists x∗ ∈ X, such that

limn→+∞ ps
k(xn, x∗) = limn→+∞ ps

k(x∗, xn) = ps
k(x∗, x∗) = 0.
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Furthermore, we have

ps
k(x∗,Tx∗)

≤ k[ps
k(x∗, xn+1) + ps

k(xn+1,Tx∗)] −
k − 1

2
[ps

k(x∗, x∗) + ps
k(Tx∗,Tx∗)] − kps

k(xn+1, xn+1)

≤ k[ps
k(x∗, xn+1) + ps

k(xn+1,Tx∗)]
= kps

k(x∗, xn+1) + kps
k(xn+1,Tx∗)

≤ kps
k(x∗, xn+1) + λkps

k(xn, x∗).

This implies ps
k(x∗,Tx∗) = 0. Thus Tx∗ = x∗ by Proposition 2.6(1).

Step 3: Suppose x∗ , y∗, where Ty∗ = y∗. We have

ps
k(x∗, y∗) = ps

k(Tx∗,Ty∗) ≤ λps
k(x∗, y∗) < ps

k(x∗, y∗),

which is a contradiction. Hence x∗ = y∗.

Corollary 3.5. Let (X, ps
k) be a complete strongly partial-quasi k-metric space with coefficient k ≥ 1, and let T : X→ X

be a function satisfying ps
k(Tx,Ty) ≤ φ(t)ps

k(x, y) for all x, y ∈ X, where φ : R+ → R+ is an increasing function such
that limn→+∞ φn(r) = 0 for some r > 0. Then T has a unique fixed point x∗ ∈ X, and ps

k(x∗, x∗) = 0.

Proof. It is similar to Theorem 3.4.

Conclusions

The purpose of this paper is to introduce a new notion of (strongly) partial-quasi k-metrics by omitting
the condition p(x, y) = p(y, x), whenever x, y ∈ X, which is another variant concept of partial-(quasi)-k
metrics given by Künzi et al. and Mustafa et al., respectively. In Section 2, we show the relationships among
partial-quasi k-metrics, partial quasi-metrics and k-metrics via several examples. Finally, we illustrate some
fixed point theorems on strongly partial-quasi k-metric spaces.
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